Skip to main content
Top
Published in: BMC Nephrology 1/2021

Open Access 01-12-2021 | Diabetic Nephropathy | Research

Comprehensive analysis of diabetic nephropathy expression profile based on weighted gene co-expression network analysis algorithm

Authors: Alieh Gholaminejad, Mohammad Fathalipour, Amir Roointan

Published in: BMC Nephrology | Issue 1/2021

Login to get access

Abstract

Background

Diabetic nephropathy (DN) is the major complication of diabetes mellitus, and leading cause of end-stage renal disease. The underlying molecular mechanism of DN is not yet completely clear. The aim of this study was to analyze a DN microarray dataset using weighted gene co-expression network analysis (WGCNA) algorithm for better understanding of DN pathogenesis and exploring key genes in the disease progression.

Methods

The identified differentially expressed genes (DEGs) in DN dataset GSE47183 were introduced to WGCNA algorithm to construct co-expression modules. STRING database was used for construction of Protein-protein interaction (PPI) networks of the genes in all modules and the hub genes were identified considering both the degree centrality in the PPI networks and the ranked lists of weighted networks. Gene ontology and Reactome pathway enrichment analyses were performed on each module to understand their involvement in the biological processes and pathways. Following validation of the hub genes in another DN dataset (GSE96804), their up-stream regulators, including microRNAs and transcription factors were predicted and a regulatory network comprising of all these molecules was constructed.

Results

After normalization and analysis of the dataset, 2475 significant DEGs were identified and clustered into six different co-expression modules by WGCNA algorithm. Then, DEGs of each module were subjected to functional enrichment analyses and PPI network constructions. Metabolic processes, cell cycle control, and apoptosis were among the top enriched terms. In the next step, 23 hub genes were identified among the modules in genes and five of them, including FN1, SLC2A2, FABP1, EHHADH and PIPOX were validated in another DN dataset. In the regulatory network, FN1 was the most affected hub gene and mir-27a and REAL were recognized as two main upstream-regulators of the hub genes.

Conclusions

The identified hub genes from the hearts of co-expression modules could widen our understanding of the DN development and might be of targets of future investigations, exploring their therapeutic potentials for treatment of this complicated disease.
Literature
1.
go back to reference Navarror González JFM, Defuentesm M. Inflammatorymoleculesandpathwaysinthepathogenesisof diabeticnephropathy. Nat Rev Nephrol. 2011;7(6):327. Navarror González JFM, Defuentesm M. Inflammatorymoleculesandpathwaysinthepathogenesisof diabeticnephropathy. Nat Rev Nephrol. 2011;7(6):327.
2.
go back to reference Cahn A, Cernea S, Raz I. The SONAR study—is there a future for endothelin receptor antagonists in diabetic kidney disease? Ann Transl Med. 2019;7(Suppl 8):S330.PubMedPubMedCentralCrossRef Cahn A, Cernea S, Raz I. The SONAR study—is there a future for endothelin receptor antagonists in diabetic kidney disease? Ann Transl Med. 2019;7(Suppl 8):S330.PubMedPubMedCentralCrossRef
3.
4.
go back to reference Brenner B, Cooper M, de Zeeuw D, Keane W, Mitch W, Parving H, et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med. 2001;345:861–9.PubMedCrossRef Brenner B, Cooper M, de Zeeuw D, Keane W, Mitch W, Parving H, et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med. 2001;345:861–9.PubMedCrossRef
5.
go back to reference De Nicola L, Gabbai FB, Liberti ME, Sagliocca A, Conte G, Minutolo R. Sodium/glucose cotransporter 2 inhibitors and prevention of diabetic nephropathy: targeting the renal tubule in diabetes. Am J Kidney Dis. 2014;64(1):16–24.PubMedCrossRef De Nicola L, Gabbai FB, Liberti ME, Sagliocca A, Conte G, Minutolo R. Sodium/glucose cotransporter 2 inhibitors and prevention of diabetic nephropathy: targeting the renal tubule in diabetes. Am J Kidney Dis. 2014;64(1):16–24.PubMedCrossRef
6.
go back to reference Gholaminejad A, Gheisari Y, Jalali S, Roointan A. Comprehensive analysis of IgA nephropathy expression profiles: identification of potential biomarkers and therapeutic agents. BMC Nephrol. 2021;22(1):1–10.CrossRef Gholaminejad A, Gheisari Y, Jalali S, Roointan A. Comprehensive analysis of IgA nephropathy expression profiles: identification of potential biomarkers and therapeutic agents. BMC Nephrol. 2021;22(1):1–10.CrossRef
7.
go back to reference Zhang B, Horvath S. A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol. 2005;4(1):Article17.PubMedCrossRef Zhang B, Horvath S. A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol. 2005;4(1):Article17.PubMedCrossRef
8.
go back to reference Maschietto M, Tahira AC, Puga R, Lima L, Mariani D, da Silveira Paulsen B, et al. Co-expression network of neural-differentiation genes shows specific pattern in schizophrenia. BMC Med Genomics. 2015;8(1):23.PubMedPubMedCentralCrossRef Maschietto M, Tahira AC, Puga R, Lima L, Mariani D, da Silveira Paulsen B, et al. Co-expression network of neural-differentiation genes shows specific pattern in schizophrenia. BMC Med Genomics. 2015;8(1):23.PubMedPubMedCentralCrossRef
9.
go back to reference Zuo Z, Shen J-X, Pan Y, Pu J, Li Y-G, Shao X-h, et al. Weighted gene correlation network analysis (WGCNA) detected loss of MAGI2 promotes chronic kidney disease (CKD) by podocyte damage. Cell Physiol Biochem. 2018;51(1):244–61.PubMedCrossRef Zuo Z, Shen J-X, Pan Y, Pu J, Li Y-G, Shao X-h, et al. Weighted gene correlation network analysis (WGCNA) detected loss of MAGI2 promotes chronic kidney disease (CKD) by podocyte damage. Cell Physiol Biochem. 2018;51(1):244–61.PubMedCrossRef
11.
go back to reference Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504.PubMedPubMedCentralCrossRef Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504.PubMedPubMedCentralCrossRef
12.
go back to reference Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A, et al. ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics. 2009;25(8):1091–3.PubMedPubMedCentralCrossRef Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A, et al. ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics. 2009;25(8):1091–3.PubMedPubMedCentralCrossRef
13.
go back to reference Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47(D1):D607–D13.PubMedCrossRef Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47(D1):D607–D13.PubMedCrossRef
14.
go back to reference Chin C-H, Chen S-H, Wu H-H, Ho C-W, Ko M-T, Lin C-Y. cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol. 2014;8(S4):S11.PubMedPubMedCentralCrossRef Chin C-H, Chen S-H, Wu H-H, Ho C-W, Ko M-T, Lin C-Y. cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol. 2014;8(S4):S11.PubMedPubMedCentralCrossRef
15.
go back to reference Pan Y, Jiang S, Hou Q, Qiu D, Shi J, Wang L, et al. Dissection of glomerular transcriptional profile in patients with diabetic nephropathy: SRGAP2a protects podocyte structure and function. Diabetes. 2018;67(4):717–30.PubMedCrossRef Pan Y, Jiang S, Hou Q, Qiu D, Shi J, Wang L, et al. Dissection of glomerular transcriptional profile in patients with diabetic nephropathy: SRGAP2a protects podocyte structure and function. Diabetes. 2018;67(4):717–30.PubMedCrossRef
16.
go back to reference Chou C-H, Shrestha S, Yang C-D, Chang N-W, Lin Y-L, Liao K-W, et al. miRTarBase update 2018: a resource for experimentally validated microRNA-target interactions. Nucleic Acids Res. 2018;46(D1):D296–302.PubMedCrossRef Chou C-H, Shrestha S, Yang C-D, Chang N-W, Lin Y-L, Liao K-W, et al. miRTarBase update 2018: a resource for experimentally validated microRNA-target interactions. Nucleic Acids Res. 2018;46(D1):D296–302.PubMedCrossRef
17.
go back to reference Han H, Cho J-W, Lee S, Yun A, Kim H, Bae D, et al. TRRUST v2: an expanded reference database of human and mouse transcriptional regulatory interactions. Nucleic Acids Res. 2018;46(D1):D380–D6.PubMedCrossRef Han H, Cho J-W, Lee S, Yun A, Kim H, Bae D, et al. TRRUST v2: an expanded reference database of human and mouse transcriptional regulatory interactions. Nucleic Acids Res. 2018;46(D1):D380–D6.PubMedCrossRef
18.
go back to reference Yeung KY, Ruzzo WL. Principal component analysis for clustering gene expression data. Bioinformatics. 2001;17(9):763–74.PubMedCrossRef Yeung KY, Ruzzo WL. Principal component analysis for clustering gene expression data. Bioinformatics. 2001;17(9):763–74.PubMedCrossRef
19.
go back to reference Duranton F, Lundin U, Gayrard N, Mischak H, Aparicio M, Mourad G, et al. Plasma and urinary amino acid metabolomic profiling in patients with different levels of kidney function. Clin J Am Soc Nephrol. 2014;9(1):37–45.PubMedCrossRef Duranton F, Lundin U, Gayrard N, Mischak H, Aparicio M, Mourad G, et al. Plasma and urinary amino acid metabolomic profiling in patients with different levels of kidney function. Clin J Am Soc Nephrol. 2014;9(1):37–45.PubMedCrossRef
20.
go back to reference Han L-D, Xia J-F, Liang Q-L, Wang Y, Wang Y-M, Hu P, et al. Plasma esterified and non-esterified fatty acids metabolic profiling using gas chromatography–mass spectrometry and its application in the study of diabetic mellitus and diabetic nephropathy. Anal Chim Acta. 2011;689(1):85–91.PubMedCrossRef Han L-D, Xia J-F, Liang Q-L, Wang Y, Wang Y-M, Hu P, et al. Plasma esterified and non-esterified fatty acids metabolic profiling using gas chromatography–mass spectrometry and its application in the study of diabetic mellitus and diabetic nephropathy. Anal Chim Acta. 2011;689(1):85–91.PubMedCrossRef
21.
go back to reference Sharma K, Karl B, Mathew AV, Gangoiti JA, Wassel CL, Saito R, et al. Metabolomics reveals signature of mitochondrial dysfunction in diabetic kidney disease. J Am Soc Nephrol. 2013;24(11):1901–12.PubMedPubMedCentralCrossRef Sharma K, Karl B, Mathew AV, Gangoiti JA, Wassel CL, Saito R, et al. Metabolomics reveals signature of mitochondrial dysfunction in diabetic kidney disease. J Am Soc Nephrol. 2013;24(11):1901–12.PubMedPubMedCentralCrossRef
22.
go back to reference Nishi H, Nangaku M. Podocyte lipotoxicity in diabetic kidney disease. Kidney Int. 2019;96(4):809–12.PubMedCrossRef Nishi H, Nangaku M. Podocyte lipotoxicity in diabetic kidney disease. Kidney Int. 2019;96(4):809–12.PubMedCrossRef
23.
go back to reference Sifuentes-Franco S, Padilla-Tejeda DE, Carrillo-Ibarra S, Miranda-Díaz AG. Oxidative stress, apoptosis, and mitochondrial function in diabetic nephropathy. Int J Endocrinol. 2018;1875870 Sifuentes-Franco S, Padilla-Tejeda DE, Carrillo-Ibarra S, Miranda-Díaz AG. Oxidative stress, apoptosis, and mitochondrial function in diabetic nephropathy. Int J Endocrinol. 2018;1875870
24.
go back to reference Duni A, Liakopoulos V, Roumeliotis S, Peschos D, Dounousi E. Oxidative stress in the pathogenesis and evolution of chronic kidney disease: untangling Ariadne’s thread. Int J Mol Sci. 2019;20(15):3711.PubMedCentralCrossRef Duni A, Liakopoulos V, Roumeliotis S, Peschos D, Dounousi E. Oxidative stress in the pathogenesis and evolution of chronic kidney disease: untangling Ariadne’s thread. Int J Mol Sci. 2019;20(15):3711.PubMedCentralCrossRef
25.
go back to reference Galvan DL, Danesh FR. Paradoxical role of IL-17 in progression of diabetic nephropathy. Am Soc Nephrol. 2016:657–8. Galvan DL, Danesh FR. Paradoxical role of IL-17 in progression of diabetic nephropathy. Am Soc Nephrol. 2016:657–8.
26.
go back to reference Song S, Qiu D, Luo F, Wei J, Wu M, Wu H, et al. Knockdown of NLRP3 alleviates high glucose or TGFB1-induced EMT in human renal tubular cells. J Mol Endocrinol. 2018;61(3):101–13.PubMedCrossRef Song S, Qiu D, Luo F, Wei J, Wu M, Wu H, et al. Knockdown of NLRP3 alleviates high glucose or TGFB1-induced EMT in human renal tubular cells. J Mol Endocrinol. 2018;61(3):101–13.PubMedCrossRef
27.
go back to reference Trevisan R, Yip J, Sarika L, Li LK, Viberti G. Enhanced collagen synthesis in cultured skin fibroblasts from insulin-dependent diabetic patients with nephropathy. J Am Soc Nephrol. 1997;8(7):1133–9.PubMedCrossRef Trevisan R, Yip J, Sarika L, Li LK, Viberti G. Enhanced collagen synthesis in cultured skin fibroblasts from insulin-dependent diabetic patients with nephropathy. J Am Soc Nephrol. 1997;8(7):1133–9.PubMedCrossRef
28.
go back to reference Wolf G. Cell cycle regulation in diabetic nephropathy. Kidney Int. 2000;58:S59–66.CrossRef Wolf G. Cell cycle regulation in diabetic nephropathy. Kidney Int. 2000;58:S59–66.CrossRef
29.
go back to reference Huynh P, Chai Z. Transforming growth factor β (TGFβ) and related molecules in chronic kidney disease (CKD). Clin Sci. 2019;133(2):287–313.CrossRef Huynh P, Chai Z. Transforming growth factor β (TGFβ) and related molecules in chronic kidney disease (CKD). Clin Sci. 2019;133(2):287–313.CrossRef
30.
go back to reference Ruiz-Ortega M, Egido J. Angiotensin II modulates cell growth-related events and synthesis of matrix proteins in renal interstitial fibroblasts. Kidney Int. 1997;52(6):1497–510.PubMedCrossRef Ruiz-Ortega M, Egido J. Angiotensin II modulates cell growth-related events and synthesis of matrix proteins in renal interstitial fibroblasts. Kidney Int. 1997;52(6):1497–510.PubMedCrossRef
31.
go back to reference Wolf G, Neilson EG. Angiotensin II induces cellular hypertrophy in cultured murine proximal tubular cells. Am J Physiol. 1990;259(5):F768–F77.PubMed Wolf G, Neilson EG. Angiotensin II induces cellular hypertrophy in cultured murine proximal tubular cells. Am J Physiol. 1990;259(5):F768–F77.PubMed
32.
go back to reference Thomasova D, Anders H-J. Cell cycle control in the kidney. Nephrol Dial Transplant. 2015;30(10):1622–30.PubMedCrossRef Thomasova D, Anders H-J. Cell cycle control in the kidney. Nephrol Dial Transplant. 2015;30(10):1622–30.PubMedCrossRef
33.
go back to reference Zhou L-T, Qiu S, Lv L-L, Li Z-L, Liu H, Tang R-N, et al. Integrative bioinformatics analysis provides insight into the molecular mechanisms of chronic kidney disease. Kidney Blood Press Res. 2018;43(2):568–81.PubMedCrossRef Zhou L-T, Qiu S, Lv L-L, Li Z-L, Liu H, Tang R-N, et al. Integrative bioinformatics analysis provides insight into the molecular mechanisms of chronic kidney disease. Kidney Blood Press Res. 2018;43(2):568–81.PubMedCrossRef
34.
go back to reference Ma X, Lu C, Lv C, Wu C, Wang Q. The expression of miR-192 and its significance in diabetic nephropathy patients with different urine albumin creatinine ratio. J Diabetes Res. 2016;2016:6789402.PubMedPubMedCentralCrossRef Ma X, Lu C, Lv C, Wu C, Wang Q. The expression of miR-192 and its significance in diabetic nephropathy patients with different urine albumin creatinine ratio. J Diabetes Res. 2016;2016:6789402.PubMedPubMedCentralCrossRef
35.
go back to reference Chowdhury B, Zhang Z, Mukherjee AB. Uteroglobin interacts with the heparin-binding site of fibronectin and prevents fibronectin–IgA complex formation found in IgA-nephropathy. FEBS Lett. 2008;582(5):611–5.PubMedPubMedCentralCrossRef Chowdhury B, Zhang Z, Mukherjee AB. Uteroglobin interacts with the heparin-binding site of fibronectin and prevents fibronectin–IgA complex formation found in IgA-nephropathy. FEBS Lett. 2008;582(5):611–5.PubMedPubMedCentralCrossRef
36.
go back to reference Shui H-A, Ka S-M, Lin J-C, Lee J-H, Jin J-S, Lin Y-F, et al. Fibronectin in blood invokes the development of focal segmental glomerulosclerosis in mouse model. Nephrol Dial Transplant. 2006;21(7):1794–802.PubMedCrossRef Shui H-A, Ka S-M, Lin J-C, Lee J-H, Jin J-S, Lin Y-F, et al. Fibronectin in blood invokes the development of focal segmental glomerulosclerosis in mouse model. Nephrol Dial Transplant. 2006;21(7):1794–802.PubMedCrossRef
38.
go back to reference Vega ME, Kastberger B, Wehrle-Haller B, Schwarzbauer JE. Stimulation of fibronectin matrix assembly by lysine acetylation. Cells. 2020;9(3):655.PubMedCentralCrossRef Vega ME, Kastberger B, Wehrle-Haller B, Schwarzbauer JE. Stimulation of fibronectin matrix assembly by lysine acetylation. Cells. 2020;9(3):655.PubMedCentralCrossRef
39.
go back to reference Xue C, Mei C-L. Polycystic kidney disease and renal fibrosis. In: Renal fibrosis: mechanisms and therapies; 2019. p. 81–100.CrossRef Xue C, Mei C-L. Polycystic kidney disease and renal fibrosis. In: Renal fibrosis: mechanisms and therapies; 2019. p. 81–100.CrossRef
41.
go back to reference Herman-Edelstein M, Scherzer P, Tobar A, Levi M, Gafter U. Altered renal lipid metabolism and renal lipid accumulation in human diabetic nephropathy. J Lipid Res. 2014;55(3):561–72.PubMedPubMedCentralCrossRef Herman-Edelstein M, Scherzer P, Tobar A, Levi M, Gafter U. Altered renal lipid metabolism and renal lipid accumulation in human diabetic nephropathy. J Lipid Res. 2014;55(3):561–72.PubMedPubMedCentralCrossRef
42.
go back to reference Miranda-Díaz AG, Pazarín-Villaseñor L, Yanowsky-Escatell FG, Andrade-Sierra J. Oxidative stress in diabetic nephropathy with early chronic kidney disease. J Diabetes Res. 2016;2016:7047238.PubMedPubMedCentralCrossRef Miranda-Díaz AG, Pazarín-Villaseñor L, Yanowsky-Escatell FG, Andrade-Sierra J. Oxidative stress in diabetic nephropathy with early chronic kidney disease. J Diabetes Res. 2016;2016:7047238.PubMedPubMedCentralCrossRef
43.
go back to reference Struys EA, Jakobs C. Metabolism of lysine in α-aminoadipic semialdehyde dehydrogenase-deficient fibroblasts: evidence for an alternative pathway of pipecolic acid formation. FEBS Lett. 2010;584(1):181–6.PubMedCrossRef Struys EA, Jakobs C. Metabolism of lysine in α-aminoadipic semialdehyde dehydrogenase-deficient fibroblasts: evidence for an alternative pathway of pipecolic acid formation. FEBS Lett. 2010;584(1):181–6.PubMedCrossRef
44.
go back to reference Natarajan SK, Zhu W, Liang X, Zhang L, Demers AJ, Zimmerman MC, et al. Proline dehydrogenase is essential for proline protection against hydrogen peroxide-induced cell death. Free Radic Biol Med. 2012;53(5):1181–91.PubMedPubMedCentralCrossRef Natarajan SK, Zhu W, Liang X, Zhang L, Demers AJ, Zimmerman MC, et al. Proline dehydrogenase is essential for proline protection against hydrogen peroxide-induced cell death. Free Radic Biol Med. 2012;53(5):1181–91.PubMedPubMedCentralCrossRef
45.
go back to reference Natarajan SK, Muthukrishnan E, Khalimonchuk O, Mott JL, Becker DF. Evidence for pipecolate oxidase in mediating protection against hydrogen peroxide stress. J Cell Biochem. 2017;118(7):1678–88.PubMedCrossRef Natarajan SK, Muthukrishnan E, Khalimonchuk O, Mott JL, Becker DF. Evidence for pipecolate oxidase in mediating protection against hydrogen peroxide stress. J Cell Biochem. 2017;118(7):1678–88.PubMedCrossRef
46.
go back to reference Thorens B. Molecular and cellular physiology of GLUT-2, a high-Km facilitated diffusion glucose transporter. Int Rev Cytol. 1992;137:209–38.PubMedCrossRef Thorens B. Molecular and cellular physiology of GLUT-2, a high-Km facilitated diffusion glucose transporter. Int Rev Cytol. 1992;137:209–38.PubMedCrossRef
47.
go back to reference Lewko B, Bryl E, Witkowski JM, Latawiec E, Angielski S, Stepinski J. Mechanical stress and glucose concentration modulate glucose transport in cultured rat podocytes. Nephrol Dial Transplant. 2005;20(2):306–11.PubMedCrossRef Lewko B, Bryl E, Witkowski JM, Latawiec E, Angielski S, Stepinski J. Mechanical stress and glucose concentration modulate glucose transport in cultured rat podocytes. Nephrol Dial Transplant. 2005;20(2):306–11.PubMedCrossRef
48.
go back to reference Hinden L, Udi S, Drori A, Gammal A, Nemirovski A, Hadar R, et al. Modulation of renal GLUT2 by the cannabinoid-1 receptor: implications for the treatment of diabetic nephropathy. J Am Soc Nephrol. 2018;29(2):434–48.PubMedCrossRef Hinden L, Udi S, Drori A, Gammal A, Nemirovski A, Hadar R, et al. Modulation of renal GLUT2 by the cannabinoid-1 receptor: implications for the treatment of diabetic nephropathy. J Am Soc Nephrol. 2018;29(2):434–48.PubMedCrossRef
49.
go back to reference Schroeder F, McIntosh AL, Martin GG, Huang H, Landrock D, Chung S, et al. Fatty acid binding protein-1 (FABP1) and the human FABP1 T94A variant: roles in the endocannabinoid system and dyslipidemias. Lipids. 2016;51(6):655–76.PubMedPubMedCentralCrossRef Schroeder F, McIntosh AL, Martin GG, Huang H, Landrock D, Chung S, et al. Fatty acid binding protein-1 (FABP1) and the human FABP1 T94A variant: roles in the endocannabinoid system and dyslipidemias. Lipids. 2016;51(6):655–76.PubMedPubMedCentralCrossRef
50.
go back to reference Schanstra J, Bachvarova M, Neau E, Bascands J-L, Bachvarov D. Gene expression profiling in the remnant kidney model of wild type and kinin B1 and B2 receptor knockout mice. Kidney Int. 2007;72(4):442–54.PubMedCrossRef Schanstra J, Bachvarova M, Neau E, Bascands J-L, Bachvarov D. Gene expression profiling in the remnant kidney model of wild type and kinin B1 and B2 receptor knockout mice. Kidney Int. 2007;72(4):442–54.PubMedCrossRef
51.
go back to reference Xu Y, Xie Y, Shao X, Ni Z, Mou S. L-FABP: a novel biomarker of kidney disease. Clin Chim Acta. 2015;445:85–90.PubMedCrossRef Xu Y, Xie Y, Shao X, Ni Z, Mou S. L-FABP: a novel biomarker of kidney disease. Clin Chim Acta. 2015;445:85–90.PubMedCrossRef
52.
go back to reference Choromańska B, Myśliwiec P, Dadan J, Hady HR, Chabowski A, i Endokrynologicznej IKCO. Znaczenie kliniczne białek wiążących kwasy tłuszczowe (FABPs). The clinical significance of fatty acid binding proteins. Postepy Hig Med Dosw (Online). 2011;65:759–63.CrossRef Choromańska B, Myśliwiec P, Dadan J, Hady HR, Chabowski A, i Endokrynologicznej IKCO. Znaczenie kliniczne białek wiążących kwasy tłuszczowe (FABPs). The clinical significance of fatty acid binding proteins. Postepy Hig Med Dosw (Online). 2011;65:759–63.CrossRef
53.
54.
go back to reference Ichikawa D, Kamijo-Ikemori A, Sugaya T, Yasuda T, Hoshino S, Igarashi-Migitaka J, et al. Renal liver-type fatty acid binding protein attenuates angiotensin II–induced renal injury. Hypertension. 2012;60(4):973–80.PubMedCrossRef Ichikawa D, Kamijo-Ikemori A, Sugaya T, Yasuda T, Hoshino S, Igarashi-Migitaka J, et al. Renal liver-type fatty acid binding protein attenuates angiotensin II–induced renal injury. Hypertension. 2012;60(4):973–80.PubMedCrossRef
55.
go back to reference Declèves A-E, Zolkipli Z, Satriano J, Wang L, Nakayama T, Rogac M, et al. Regulation of lipid accumulation by AMK-activated kinase in high fat diet–induced kidney injury. Kidney Int. 2014;85(3):611–23.PubMedCrossRef Declèves A-E, Zolkipli Z, Satriano J, Wang L, Nakayama T, Rogac M, et al. Regulation of lipid accumulation by AMK-activated kinase in high fat diet–induced kidney injury. Kidney Int. 2014;85(3):611–23.PubMedCrossRef
56.
go back to reference Kang HM, Ahn SH, Choi P, Ko Y-A, Han SH, Chinga F, et al. Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development. Nat Med. 2015;21(1):37–46.PubMedCrossRef Kang HM, Ahn SH, Choi P, Ko Y-A, Han SH, Chinga F, et al. Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development. Nat Med. 2015;21(1):37–46.PubMedCrossRef
57.
go back to reference Sagoo MK, Gnudi L. Diabetic nephropathy: is there a role for oxidative stress? Free Radic Biol Med. 2018;116:50–63.PubMedCrossRef Sagoo MK, Gnudi L. Diabetic nephropathy: is there a role for oxidative stress? Free Radic Biol Med. 2018;116:50–63.PubMedCrossRef
58.
go back to reference Chhabra R, Dubey R, Saini N. Cooperative and individualistic functions of the microRNAs in the miR-23a~ 27a~ 24-2 cluster and its implication in human diseases. Mol Cancer. 2010;9(1):1–16.CrossRef Chhabra R, Dubey R, Saini N. Cooperative and individualistic functions of the microRNAs in the miR-23a~ 27a~ 24-2 cluster and its implication in human diseases. Mol Cancer. 2010;9(1):1–16.CrossRef
59.
go back to reference Gholaminejad A, Abdul Tehrani H, Gholami Fesharaki M. Identification of candidate microRNA biomarkers in renal fibrosis: a meta-analysis of profiling studies. Biomarkers. 2018;23(8):713–24.PubMedCrossRef Gholaminejad A, Abdul Tehrani H, Gholami Fesharaki M. Identification of candidate microRNA biomarkers in renal fibrosis: a meta-analysis of profiling studies. Biomarkers. 2018;23(8):713–24.PubMedCrossRef
60.
go back to reference Wu L, Wang Q, Guo F, Ma X, Ji H, Liu F, et al. MicroRNA-27a induces mesangial cell injury by targeting of PPARγ and its in vivo knockdown prevents progression of diabetic nephropathy. Sci Rep. 2016;6(1):1–12. Wu L, Wang Q, Guo F, Ma X, Ji H, Liu F, et al. MicroRNA-27a induces mesangial cell injury by targeting of PPARγ and its in vivo knockdown prevents progression of diabetic nephropathy. Sci Rep. 2016;6(1):1–12.
61.
go back to reference Wu L, Wang Q, Guo F, Ma X, Wang J, Zhao Y, et al. Involvement of miR-27a-3p in diabetic nephropathy via affecting renal fibrosis, mitochondrial dysfunction, and endoplasmic reticulum stress. J Cell Physiol. 2021;236(2):1454–68.PubMedCrossRef Wu L, Wang Q, Guo F, Ma X, Wang J, Zhao Y, et al. Involvement of miR-27a-3p in diabetic nephropathy via affecting renal fibrosis, mitochondrial dysfunction, and endoplasmic reticulum stress. J Cell Physiol. 2021;236(2):1454–68.PubMedCrossRef
62.
go back to reference Nolan GP, Ghosh S, Liou H-C, Tempst P, Baltimore D. DNA binding and IκB inhibition of the cloned p65 subunit of NF-κB, a rel-related polypeptide. Cell. 1991;64(5):961–9.PubMedCrossRef Nolan GP, Ghosh S, Liou H-C, Tempst P, Baltimore D. DNA binding and IκB inhibition of the cloned p65 subunit of NF-κB, a rel-related polypeptide. Cell. 1991;64(5):961–9.PubMedCrossRef
63.
go back to reference Mezzano S, Aros C, Droguett A, Burgos ME, Ardiles L, Flores C, et al. NF-κB activation and overexpression of regulated genes in human diabetic nephropathy. Nephrol Dial Transplant. 2004;19(10):2505–12.PubMedCrossRef Mezzano S, Aros C, Droguett A, Burgos ME, Ardiles L, Flores C, et al. NF-κB activation and overexpression of regulated genes in human diabetic nephropathy. Nephrol Dial Transplant. 2004;19(10):2505–12.PubMedCrossRef
Metadata
Title
Comprehensive analysis of diabetic nephropathy expression profile based on weighted gene co-expression network analysis algorithm
Authors
Alieh Gholaminejad
Mohammad Fathalipour
Amir Roointan
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Nephrology / Issue 1/2021
Electronic ISSN: 1471-2369
DOI
https://doi.org/10.1186/s12882-021-02447-2

Other articles of this Issue 1/2021

BMC Nephrology 1/2021 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.