Skip to main content
Top
Published in: Cardiovascular Diabetology 1/2024

Open Access 01-12-2024 | Diabetic Cardiomyopathy | Research

Single-cell insights: pioneering an integrated atlas of chromatin accessibility and transcriptomic landscapes in diabetic cardiomyopathy

Authors: Qiang Su, Wanzhong Huang, Yuan Huang, Rixin Dai, Chen Chang, Qiu-Yan Li, Hao Liu, Zhenhao Li, Yuxiang Zhao, Qiang Wu, Di-Guang Pan

Published in: Cardiovascular Diabetology | Issue 1/2024

Login to get access

Abstract

Background

Diabetic cardiomyopathy (DCM) poses a growing health threat, elevating heart failure risk in diabetic individuals. Understanding DCM is crucial, with fibroblasts and endothelial cells playing pivotal roles in driving myocardial fibrosis and contributing to cardiac dysfunction. Advances in Multimodal single-cell profiling, such as scRNA-seq and scATAC-seq, provide deeper insights into DCM’s unique cell states and molecular landscape for targeted therapeutic interventions.

Methods

Single-cell RNA and ATAC data from 10x Multiome libraries were processed using Cell Ranger ARC v2.0.1. Gene expression and ATAC data underwent Seurat and Signac filtration. Differential gene expression and accessible chromatin regions were identified. Transcription factor activity was estimated with chromVAR, and Cis-coaccessibility networks were calculated using Cicero. Coaccessibility connections were compared to the GeneHancer database. Gene Ontology analysis, biological process scoring, cell-cell communication analysis, and gene-motif correlation was performed to reveal intricate molecular changes. Immunofluorescent staining utilized various antibodies on paraffin-embedded tissues to verify the findings.

Results

This study integrated scRNA-seq and scATAC-seq data obtained from hearts of WT and DCM mice, elucidating molecular changes at the single-cell level throughout the diabetic cardiomyopathy progression. Robust and accurate clustering analysis of the integrated data revealed altered cell proportions, showcasing decreased endothelial cells and macrophages, coupled with increased fibroblasts and myocardial cells in the DCM group, indicating enhanced fibrosis and endothelial damage. Chromatin accessibility analysis unveiled unique patterns in cell types, with heightened transcriptional activity in myocardial cells. Subpopulation analysis highlighted distinct changes in cardiomyocytes and fibroblasts, emphasizing pathways related to fatty acid metabolism and cardiac contraction. Fibroblast-centered communication analysis identified interactions with endothelial cells, implicating VEGF receptors. Endothelial cell subpopulations exhibited altered gene expressions, emphasizing contraction and growth-related pathways. Candidate regulators, including Tcf21, Arnt, Stat5a, and Stat5b, were identified, suggesting their pivotal roles in DCM development. Immunofluorescence staining validated marker genes of cell subpopulations, confirming PDK4, PPARγ and Tpm1 as markers for metabolic pattern-altered cardiomyocytes, activated fibroblasts and endothelial cells with compromised proliferation.

Conclusion

Our integrated scRNA-seq and scATAC-seq analysis unveils intricate cell states and molecular alterations in diabetic cardiomyopathy. Identified cell type-specific changes, transcription factors, and marker genes offer valuable insights. The study sheds light on potential therapeutic targets for DCM.
Appendix
Available only for authorised users
Literature
2.
go back to reference Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, Stein C, Basit A, Chan JCN, Mbanya JC, et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 2022;183:109119.PubMedCrossRef Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, Stein C, Basit A, Chan JCN, Mbanya JC, et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 2022;183:109119.PubMedCrossRef
3.
go back to reference Sacre JW, Magliano DJ, Shaw JE. Heart failure hospitalisation relative to major atherosclerotic events in type 2 diabetes with versus without chronic kidney disease: a meta-analysis of cardiovascular outcomes trials. Diabetes Metab. 2021;47(5):101249.PubMedCrossRef Sacre JW, Magliano DJ, Shaw JE. Heart failure hospitalisation relative to major atherosclerotic events in type 2 diabetes with versus without chronic kidney disease: a meta-analysis of cardiovascular outcomes trials. Diabetes Metab. 2021;47(5):101249.PubMedCrossRef
4.
go back to reference Palazzuoli A, Iacoviello M. Diabetes leading to heart failure and heart failure leading to diabetes: epidemiological and clinical evidence. Heart Fail Rev. 2023;28(3):585–96.PubMedCrossRef Palazzuoli A, Iacoviello M. Diabetes leading to heart failure and heart failure leading to diabetes: epidemiological and clinical evidence. Heart Fail Rev. 2023;28(3):585–96.PubMedCrossRef
5.
go back to reference Yang J, Liu Y, Fan X, Li Z, Cheng Y. A pathway and network review on beta-adrenoceptor signaling and beta blockers in cardiac remodeling. Heart Fail Rev. 2014;19(6):799–814.PubMedCrossRef Yang J, Liu Y, Fan X, Li Z, Cheng Y. A pathway and network review on beta-adrenoceptor signaling and beta blockers in cardiac remodeling. Heart Fail Rev. 2014;19(6):799–814.PubMedCrossRef
6.
go back to reference Tuleta I, Frangogiannis NG. Fibrosis of the diabetic heart: clinical significance, molecular mechanisms, and therapeutic opportunities. Adv Drug Deliv Rev. 2021;176:113904.PubMedPubMedCentralCrossRef Tuleta I, Frangogiannis NG. Fibrosis of the diabetic heart: clinical significance, molecular mechanisms, and therapeutic opportunities. Adv Drug Deliv Rev. 2021;176:113904.PubMedPubMedCentralCrossRef
7.
go back to reference Piera-Velazquez S, Jimenez SA. Endothelial to mesenchymal transition: role in physiology and in the Pathogenesis of Human diseases. Physiol Rev. 2019;99(2):1281–324.PubMedPubMedCentralCrossRef Piera-Velazquez S, Jimenez SA. Endothelial to mesenchymal transition: role in physiology and in the Pathogenesis of Human diseases. Physiol Rev. 2019;99(2):1281–324.PubMedPubMedCentralCrossRef
8.
go back to reference Nakamura K, Miyoshi T, Yoshida M, Akagi S, Saito Y, Ejiri K, Matsuo N, Ichikawa K, Iwasaki K, Naito T et al. Pathophysiology and Treatment of Diabetic Cardiomyopathy and Heart failure in patients with diabetes Mellitus. Int J Mol Sci 2022, 23(7). Nakamura K, Miyoshi T, Yoshida M, Akagi S, Saito Y, Ejiri K, Matsuo N, Ichikawa K, Iwasaki K, Naito T et al. Pathophysiology and Treatment of Diabetic Cardiomyopathy and Heart failure in patients with diabetes Mellitus. Int J Mol Sci 2022, 23(7).
9.
go back to reference Du JK, Yu Q, Liu YJ, Du SF, Huang LY, Xu DH, Ni X, Zhu XY. A novel role of kallikrein-related peptidase 8 in the pathogenesis of diabetic cardiac fibrosis. Theranostics. 2021;11(9):4207–31.PubMedPubMedCentralCrossRef Du JK, Yu Q, Liu YJ, Du SF, Huang LY, Xu DH, Ni X, Zhu XY. A novel role of kallikrein-related peptidase 8 in the pathogenesis of diabetic cardiac fibrosis. Theranostics. 2021;11(9):4207–31.PubMedPubMedCentralCrossRef
10.
go back to reference Phang RJ, Ritchie RH, Hausenloy DJ, Lees JG, Lim SY. Cellular interplay between cardiomyocytes and non-myocytes in diabetic cardiomyopathy. Cardiovasc Res. 2023;119(3):668–90.PubMedCrossRef Phang RJ, Ritchie RH, Hausenloy DJ, Lees JG, Lim SY. Cellular interplay between cardiomyocytes and non-myocytes in diabetic cardiomyopathy. Cardiovasc Res. 2023;119(3):668–90.PubMedCrossRef
11.
go back to reference Li W, Lou X, Zha Y, Qin Y, Zha J, Hong L, Xie Z, Yang S, Wang C, An J et al. Single-cell RNA-seq of heart reveals intercellular communication drivers of myocardial fibrosis in diabetic cardiomyopathy. Elife 2023, 12. Li W, Lou X, Zha Y, Qin Y, Zha J, Hong L, Xie Z, Yang S, Wang C, An J et al. Single-cell RNA-seq of heart reveals intercellular communication drivers of myocardial fibrosis in diabetic cardiomyopathy. Elife 2023, 12.
12.
go back to reference Sinha S, Satpathy AT, Zhou W, Ji H, Stratton JA, Jaffer A, Bahlis N, Morrissy S, Biernaskie JA. Profiling chromatin accessibility at single-cell resolution. Genomics Proteom Bioinf. 2021;19(2):172–90.CrossRef Sinha S, Satpathy AT, Zhou W, Ji H, Stratton JA, Jaffer A, Bahlis N, Morrissy S, Biernaskie JA. Profiling chromatin accessibility at single-cell resolution. Genomics Proteom Bioinf. 2021;19(2):172–90.CrossRef
13.
go back to reference Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol. 2018;36(5):411–20.PubMedPubMedCentralCrossRef Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol. 2018;36(5):411–20.PubMedPubMedCentralCrossRef
14.
15.
go back to reference McGinnis CS, Murrow LM, Gartner ZJ. DoubletFinder: Doublet Detection in single-cell RNA sequencing data using Artificial Nearest neighbors. Cell Syst. 2019;8(4):329–e337324.PubMedPubMedCentralCrossRef McGinnis CS, Murrow LM, Gartner ZJ. DoubletFinder: Doublet Detection in single-cell RNA sequencing data using Artificial Nearest neighbors. Cell Syst. 2019;8(4):329–e337324.PubMedPubMedCentralCrossRef
16.
go back to reference Gaspar JM. Improved peak-calling with MACS2. BioRxiv 2018:496521. Gaspar JM. Improved peak-calling with MACS2. BioRxiv 2018:496521.
17.
go back to reference Hao Y, Hao S, Andersen-Nissen E, Mauck WM 3rd, Zheng S, Butler A, Lee MJ, Wilk AJ, Darby C, Zager M, et al. Integrated analysis of multimodal single-cell data. Cell. 2021;184(13):3573–e35873529.PubMedPubMedCentralCrossRef Hao Y, Hao S, Andersen-Nissen E, Mauck WM 3rd, Zheng S, Butler A, Lee MJ, Wilk AJ, Darby C, Zager M, et al. Integrated analysis of multimodal single-cell data. Cell. 2021;184(13):3573–e35873529.PubMedPubMedCentralCrossRef
18.
go back to reference Schep AN, Wu B, Buenrostro JD, Greenleaf WJ. chromVAR: inferring transcription-factor-associated accessibility from single-cell epigenomic data. Nat Methods. 2017;14(10):975–8.PubMedPubMedCentralCrossRef Schep AN, Wu B, Buenrostro JD, Greenleaf WJ. chromVAR: inferring transcription-factor-associated accessibility from single-cell epigenomic data. Nat Methods. 2017;14(10):975–8.PubMedPubMedCentralCrossRef
19.
go back to reference Pliner HA, Packer JS, McFaline-Figueroa JL, Cusanovich DA, Daza RM, Aghamirzaie D, Srivatsan S, Qiu X, Jackson D, Minkina A, et al. Cicero predicts cis-Regulatory DNA interactions from single-cell chromatin Accessibility Data. Mol Cell. 2018;71(5):858–e871858.PubMedPubMedCentralCrossRef Pliner HA, Packer JS, McFaline-Figueroa JL, Cusanovich DA, Daza RM, Aghamirzaie D, Srivatsan S, Qiu X, Jackson D, Minkina A, et al. Cicero predicts cis-Regulatory DNA interactions from single-cell chromatin Accessibility Data. Mol Cell. 2018;71(5):858–e871858.PubMedPubMedCentralCrossRef
20.
go back to reference Fishilevich S, Nudel R, Rappaport N, Hadar R, Plaschkes I, Iny Stein T, Rosen N, Kohn A, Twik M, Safran M et al. GeneHancer: genome-wide integration of enhancers and target genes in GeneCards. Database (Oxford) 2017, 2017. Fishilevich S, Nudel R, Rappaport N, Hadar R, Plaschkes I, Iny Stein T, Rosen N, Kohn A, Twik M, Safran M et al. GeneHancer: genome-wide integration of enhancers and target genes in GeneCards. Database (Oxford) 2017, 2017.
22.
go back to reference The Gene Ontology C. The Gene Ontology Resource: 20 years and still GOing strong. Nucleic Acids Res. 2019;47(D1):D330–8.CrossRef The Gene Ontology C. The Gene Ontology Resource: 20 years and still GOing strong. Nucleic Acids Res. 2019;47(D1):D330–8.CrossRef
23.
go back to reference Vento-Tormo R, Efremova M, Botting RA, Turco MY, Vento-Tormo M, Meyer KB, Park JE, Stephenson E, Polanski K, Goncalves A, et al. Single-cell reconstruction of the early maternal-fetal interface in humans. Nature. 2018;563(7731):347–53.PubMedPubMedCentralCrossRef Vento-Tormo R, Efremova M, Botting RA, Turco MY, Vento-Tormo M, Meyer KB, Park JE, Stephenson E, Polanski K, Goncalves A, et al. Single-cell reconstruction of the early maternal-fetal interface in humans. Nature. 2018;563(7731):347–53.PubMedPubMedCentralCrossRef
24.
25.
go back to reference Wang M, Li Y, Li S, Lv J. Endothelial dysfunction and Diabetic Cardiomyopathy. Front Endocrinol (Lausanne). 2022;13:851941.PubMedCrossRef Wang M, Li Y, Li S, Lv J. Endothelial dysfunction and Diabetic Cardiomyopathy. Front Endocrinol (Lausanne). 2022;13:851941.PubMedCrossRef
26.
go back to reference Braile M, Marcella S, Cristinziano L, Galdiero MR, Modestino L, Ferrara AL, Varricchi G, Marone G, Loffredo S. VEGF-A in Cardiomyocytes and Heart diseases. Int J Mol Sci 2020, 21(15). Braile M, Marcella S, Cristinziano L, Galdiero MR, Modestino L, Ferrara AL, Varricchi G, Marone G, Loffredo S. VEGF-A in Cardiomyocytes and Heart diseases. Int J Mol Sci 2020, 21(15).
27.
go back to reference Gao L, Yang J, Li Y, Liu K, Sun H, Tang J, Xia Z, Zhang L, Hu Z. Long Noncoding RNA SCIRT Promotes HUVEC Angiogenesis via Stabilizing VEGFA mRNA Induced by Hypoxia. Oxid Med Cell Longev 2022, 2022:9102978. Gao L, Yang J, Li Y, Liu K, Sun H, Tang J, Xia Z, Zhang L, Hu Z. Long Noncoding RNA SCIRT Promotes HUVEC Angiogenesis via Stabilizing VEGFA mRNA Induced by Hypoxia. Oxid Med Cell Longev 2022, 2022:9102978.
28.
go back to reference Zhao T, Zhao W, Chen Y, Ahokas RA, Sun Y. Vascular endothelial growth factor (VEGF)-A: role on cardiac angiogenesis following myocardial infarction. Microvasc Res. 2010;80(2):188–94.PubMedPubMedCentralCrossRef Zhao T, Zhao W, Chen Y, Ahokas RA, Sun Y. Vascular endothelial growth factor (VEGF)-A: role on cardiac angiogenesis following myocardial infarction. Microvasc Res. 2010;80(2):188–94.PubMedPubMedCentralCrossRef
29.
go back to reference Acharya A, Baek ST, Huang G, Eskiocak B, Goetsch S, Sung CY, Banfi S, Sauer MF, Olsen GS, Duffield JS, et al. The bHLH transcription factor Tcf21 is required for lineage-specific EMT of cardiac fibroblast progenitors. Development. 2012;139(12):2139–49.PubMedPubMedCentralCrossRef Acharya A, Baek ST, Huang G, Eskiocak B, Goetsch S, Sung CY, Banfi S, Sauer MF, Olsen GS, Duffield JS, et al. The bHLH transcription factor Tcf21 is required for lineage-specific EMT of cardiac fibroblast progenitors. Development. 2012;139(12):2139–49.PubMedPubMedCentralCrossRef
30.
go back to reference Knapp M, Zheng M, Sladojevic N, Zhao Q, Liao JK, Wu R. Reduction of endothelial Arnt mediates vascular dysfunction in diabetes. Circulation. 2016;134(suppl1):A20699–20699. Knapp M, Zheng M, Sladojevic N, Zhao Q, Liao JK, Wu R. Reduction of endothelial Arnt mediates vascular dysfunction in diabetes. Circulation. 2016;134(suppl1):A20699–20699.
31.
go back to reference Yang X, Meyer K, Friedl A. STAT5 and prolactin participate in a positive autocrine feedback loop that promotes angiogenesis. J Biol Chem. 2013;288(29):21184–96.PubMedPubMedCentralCrossRef Yang X, Meyer K, Friedl A. STAT5 and prolactin participate in a positive autocrine feedback loop that promotes angiogenesis. J Biol Chem. 2013;288(29):21184–96.PubMedPubMedCentralCrossRef
32.
go back to reference Wirka RC, Wagh D, Paik DT, Pjanic M, Nguyen T, Miller CL, Kundu R, Nagao M, Coller J, Koyano TK, et al. Atheroprotective roles of smooth muscle cell phenotypic modulation and the TCF21 disease gene as revealed by single-cell analysis. Nat Med. 2019;25(8):1280–9.PubMedPubMedCentralCrossRef Wirka RC, Wagh D, Paik DT, Pjanic M, Nguyen T, Miller CL, Kundu R, Nagao M, Coller J, Koyano TK, et al. Atheroprotective roles of smooth muscle cell phenotypic modulation and the TCF21 disease gene as revealed by single-cell analysis. Nat Med. 2019;25(8):1280–9.PubMedPubMedCentralCrossRef
33.
go back to reference Jankauskas SS, Kansakar U, Varzideh F, Wilson S, Mone P, Lombardi A, Gambardella J, Santulli G. Heart failure in diabetes. Metabolism. 2021;125:154910.PubMedPubMedCentralCrossRef Jankauskas SS, Kansakar U, Varzideh F, Wilson S, Mone P, Lombardi A, Gambardella J, Santulli G. Heart failure in diabetes. Metabolism. 2021;125:154910.PubMedPubMedCentralCrossRef
34.
go back to reference Varzideh F, Kansakar U, Jankauskas SS, Gambardella J, Santulli G. Cardiovascular Endocrinology: evolving concepts and updated epidemiology of relevant diseases. Front Endocrinol (Lausanne). 2021;12:772876.PubMedCrossRef Varzideh F, Kansakar U, Jankauskas SS, Gambardella J, Santulli G. Cardiovascular Endocrinology: evolving concepts and updated epidemiology of relevant diseases. Front Endocrinol (Lausanne). 2021;12:772876.PubMedCrossRef
35.
go back to reference Tan Y, Zhang Z, Zheng C, Wintergerst KA, Keller BB, Cai L. Mechanisms of diabetic cardiomyopathy and potential therapeutic strategies: preclinical and clinical evidence. Nat Rev Cardiol. 2020;17(9):585–607.PubMedPubMedCentralCrossRef Tan Y, Zhang Z, Zheng C, Wintergerst KA, Keller BB, Cai L. Mechanisms of diabetic cardiomyopathy and potential therapeutic strategies: preclinical and clinical evidence. Nat Rev Cardiol. 2020;17(9):585–607.PubMedPubMedCentralCrossRef
36.
go back to reference Askin L, Tanrıverdi O, Tibilli H, Turkmen S. New Method improves the evaluation of subclinical left ventricular dysfunction in type 2 diabetes Mellitus. Arq Bras Cardiol. 2019;113(2):216–7.PubMedPubMedCentral Askin L, Tanrıverdi O, Tibilli H, Turkmen S. New Method improves the evaluation of subclinical left ventricular dysfunction in type 2 diabetes Mellitus. Arq Bras Cardiol. 2019;113(2):216–7.PubMedPubMedCentral
38.
go back to reference Chiu HC, Kovacs A, Blanton RM, Han X, Courtois M, Weinheimer CJ, Yamada KA, Brunet S, Xu H, Nerbonne JM, et al. Transgenic expression of fatty acid transport protein 1 in the heart causes lipotoxic cardiomyopathy. Circ Res. 2005;96(2):225–33.PubMedCrossRef Chiu HC, Kovacs A, Blanton RM, Han X, Courtois M, Weinheimer CJ, Yamada KA, Brunet S, Xu H, Nerbonne JM, et al. Transgenic expression of fatty acid transport protein 1 in the heart causes lipotoxic cardiomyopathy. Circ Res. 2005;96(2):225–33.PubMedCrossRef
39.
go back to reference Jia G, Whaley-Connell A, Sowers JR. Diabetic cardiomyopathy: a hyperglycaemia- and insulin-resistance-induced heart disease. Diabetologia. 2018;61(1):21–8.PubMedCrossRef Jia G, Whaley-Connell A, Sowers JR. Diabetic cardiomyopathy: a hyperglycaemia- and insulin-resistance-induced heart disease. Diabetologia. 2018;61(1):21–8.PubMedCrossRef
40.
go back to reference Chen MY, Meng XF, Han YP, Yan JL, Xiao C, Qian LB. Profile of crosstalk between glucose and lipid metabolic disturbance and diabetic cardiomyopathy: inflammation and oxidative stress. Front Endocrinol (Lausanne). 2022;13:983713.PubMedCrossRef Chen MY, Meng XF, Han YP, Yan JL, Xiao C, Qian LB. Profile of crosstalk between glucose and lipid metabolic disturbance and diabetic cardiomyopathy: inflammation and oxidative stress. Front Endocrinol (Lausanne). 2022;13:983713.PubMedCrossRef
41.
go back to reference Guo Q, Hong W, Chen J, Zhu X, Duan G, Huang H, Duan C. Metformin Treatment Is Associated with Mortality in patients with type 2 diabetes and chronic heart failure in the Intensive Care Unit: a retrospective cohort study. Cardiovasc Innovations Appl 2023, 8(1). Guo Q, Hong W, Chen J, Zhu X, Duan G, Huang H, Duan C. Metformin Treatment Is Associated with Mortality in patients with type 2 diabetes and chronic heart failure in the Intensive Care Unit: a retrospective cohort study. Cardiovasc Innovations Appl 2023, 8(1).
42.
go back to reference Asbun J, Villarreal FJ. The pathogenesis of myocardial fibrosis in the setting of Diabetic Cardiomyopathy. J Am Coll Cardiol. 2006;47(4):693–700.PubMedCrossRef Asbun J, Villarreal FJ. The pathogenesis of myocardial fibrosis in the setting of Diabetic Cardiomyopathy. J Am Coll Cardiol. 2006;47(4):693–700.PubMedCrossRef
43.
go back to reference Rubler S, Dlugash J, Yuceoglu YZ, Kumral T, Branwood AW, Grishman A. New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am J Cardiol. 1972;30(6):595–602.PubMedCrossRef Rubler S, Dlugash J, Yuceoglu YZ, Kumral T, Branwood AW, Grishman A. New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am J Cardiol. 1972;30(6):595–602.PubMedCrossRef
44.
go back to reference Regan TJ, Lyons MM, Ahmed SS, Levinson GE, Oldewurtel HA, Ahmad MR, Haider B. Evidence for cardiomyopathy in familial diabetes mellitus. J Clin Invest. 1977;60(4):884–99.PubMedCrossRef Regan TJ, Lyons MM, Ahmed SS, Levinson GE, Oldewurtel HA, Ahmad MR, Haider B. Evidence for cardiomyopathy in familial diabetes mellitus. J Clin Invest. 1977;60(4):884–99.PubMedCrossRef
45.
go back to reference Cheng Y, Wang Y, Yin R, Xu Y, Zhang L, Zhang Y, Yang L, Zhao D. Central role of cardiac fibroblasts in myocardial fibrosis of diabetic cardiomyopathy. Front Endocrinol (Lausanne). 2023;14:1162754.PubMedCrossRef Cheng Y, Wang Y, Yin R, Xu Y, Zhang L, Zhang Y, Yang L, Zhao D. Central role of cardiac fibroblasts in myocardial fibrosis of diabetic cardiomyopathy. Front Endocrinol (Lausanne). 2023;14:1162754.PubMedCrossRef
47.
go back to reference Fowlkes V, Clark J, Fix C, Law BA, Morales MO, Qiao X, Ako-Asare K, Goldsmith JG, Carver W, Murray DB, et al. Type II diabetes promotes a myofibroblast phenotype in cardiac fibroblasts. Life Sci. 2013;92(11):669–76.PubMedCrossRef Fowlkes V, Clark J, Fix C, Law BA, Morales MO, Qiao X, Ako-Asare K, Goldsmith JG, Carver W, Murray DB, et al. Type II diabetes promotes a myofibroblast phenotype in cardiac fibroblasts. Life Sci. 2013;92(11):669–76.PubMedCrossRef
48.
go back to reference Yang XX, Zhao ZY. miR-30a-5p inhibits the proliferation and collagen formation of cardiac fibroblasts in diabetic cardiomyopathy. Can J Physiol Pharmacol. 2022;100(2):167–75.PubMedCrossRef Yang XX, Zhao ZY. miR-30a-5p inhibits the proliferation and collagen formation of cardiac fibroblasts in diabetic cardiomyopathy. Can J Physiol Pharmacol. 2022;100(2):167–75.PubMedCrossRef
49.
go back to reference Zhao T, Chen H, Cheng C, Zhang J, Yan Z, Kuang J, Kong F, Li C, Lu Q. Liraglutide protects high-glucose-stimulated fibroblasts by activating the CD36-JNK-AP1 pathway to downregulate P4HA1. Biomed Pharmacother. 2019;118:109224.PubMedCrossRef Zhao T, Chen H, Cheng C, Zhang J, Yan Z, Kuang J, Kong F, Li C, Lu Q. Liraglutide protects high-glucose-stimulated fibroblasts by activating the CD36-JNK-AP1 pathway to downregulate P4HA1. Biomed Pharmacother. 2019;118:109224.PubMedCrossRef
50.
go back to reference Jia G, DeMarco VG, Sowers JR. Insulin resistance and hyperinsulinaemia in diabetic cardiomyopathy. Nat Rev Endocrinol. 2016;12(3):144–53.PubMedCrossRef Jia G, DeMarco VG, Sowers JR. Insulin resistance and hyperinsulinaemia in diabetic cardiomyopathy. Nat Rev Endocrinol. 2016;12(3):144–53.PubMedCrossRef
51.
go back to reference Cojan-Minzat BO, Zlibut A, Agoston-Coldea L. Non-ischemic dilated cardiomyopathy and cardiac fibrosis. Heart Fail Rev. 2021;26(5):1081–101.PubMedCrossRef Cojan-Minzat BO, Zlibut A, Agoston-Coldea L. Non-ischemic dilated cardiomyopathy and cardiac fibrosis. Heart Fail Rev. 2021;26(5):1081–101.PubMedCrossRef
52.
go back to reference Adiarto S, Heiden S, Vignon-Zellweger N, Nakayama K, Yagi K, Yanagisawa M, Emoto N. ET-1 from endothelial cells is required for complete angiotensin II-induced cardiac fibrosis and hypertrophy. Life Sci. 2012;91(13–14):651–7.PubMedCrossRef Adiarto S, Heiden S, Vignon-Zellweger N, Nakayama K, Yagi K, Yanagisawa M, Emoto N. ET-1 from endothelial cells is required for complete angiotensin II-induced cardiac fibrosis and hypertrophy. Life Sci. 2012;91(13–14):651–7.PubMedCrossRef
53.
go back to reference Widyantoro B, Emoto N, Nakayama K, Anggrahini DW, Adiarto S, Iwasa N, Yagi K, Miyagawa K, Rikitake Y, Suzuki T, et al. Endothelial cell-derived endothelin-1 promotes cardiac fibrosis in diabetic hearts through stimulation of endothelial-to-mesenchymal transition. Circulation. 2010;121(22):2407–18.PubMedCrossRef Widyantoro B, Emoto N, Nakayama K, Anggrahini DW, Adiarto S, Iwasa N, Yagi K, Miyagawa K, Rikitake Y, Suzuki T, et al. Endothelial cell-derived endothelin-1 promotes cardiac fibrosis in diabetic hearts through stimulation of endothelial-to-mesenchymal transition. Circulation. 2010;121(22):2407–18.PubMedCrossRef
54.
55.
go back to reference Chaudhary NI, Roth GJ, Hilberg F, Müller-Quernheim J, Prasse A, Zissel G, Schnapp A, Park JE. Inhibition of PDGF, VEGF and FGF signalling attenuates fibrosis. Eur Respir J. 2007;29(5):976–85.PubMedCrossRef Chaudhary NI, Roth GJ, Hilberg F, Müller-Quernheim J, Prasse A, Zissel G, Schnapp A, Park JE. Inhibition of PDGF, VEGF and FGF signalling attenuates fibrosis. Eur Respir J. 2007;29(5):976–85.PubMedCrossRef
56.
go back to reference Ke X, Lin Z, Ye Z, Leng M, Chen B, Jiang C, Jiang X, Li G. Histone Deacetylases in the Pathogenesis of Diabetic Cardiomyopathy. Front Endocrinol (Lausanne). 2021;12:679655.PubMedCrossRef Ke X, Lin Z, Ye Z, Leng M, Chen B, Jiang C, Jiang X, Li G. Histone Deacetylases in the Pathogenesis of Diabetic Cardiomyopathy. Front Endocrinol (Lausanne). 2021;12:679655.PubMedCrossRef
57.
go back to reference Wang AJ, Wang S, Wang BJ, Xiao M, Guo Y, Tang Y, Zhang J, Gu J. Epigenetic regulation Associated with Sirtuin 1 in complications of diabetes Mellitus. Front Endocrinol (Lausanne). 2020;11:598012.PubMedCrossRef Wang AJ, Wang S, Wang BJ, Xiao M, Guo Y, Tang Y, Zhang J, Gu J. Epigenetic regulation Associated with Sirtuin 1 in complications of diabetes Mellitus. Front Endocrinol (Lausanne). 2020;11:598012.PubMedCrossRef
58.
59.
go back to reference Li Y, He Q, He CY, Cai C, Chen Z, Duan JZ. Activating transcription factor 4 drives the progression of diabetic cardiac fibrosis. ESC Heart Fail. 2023;10(4):2510–23.PubMedPubMedCentralCrossRef Li Y, He Q, He CY, Cai C, Chen Z, Duan JZ. Activating transcription factor 4 drives the progression of diabetic cardiac fibrosis. ESC Heart Fail. 2023;10(4):2510–23.PubMedPubMedCentralCrossRef
60.
go back to reference Zhang N, Yu H, Liu T, Zhou Z, Feng B, Wang Y, Qian Z, Hou X, Zou J. Bmal1 downregulation leads to diabetic cardiomyopathy by promoting Bcl2/IP3R-mediated mitochondrial ca(2+) overload. Redox Biol. 2023;64:102788.PubMedPubMedCentralCrossRef Zhang N, Yu H, Liu T, Zhou Z, Feng B, Wang Y, Qian Z, Hou X, Zou J. Bmal1 downregulation leads to diabetic cardiomyopathy by promoting Bcl2/IP3R-mediated mitochondrial ca(2+) overload. Redox Biol. 2023;64:102788.PubMedPubMedCentralCrossRef
61.
go back to reference Gambardella J, Jankauskas SS, Kansakar U, Varzideh F, Avvisato R, Prevete N, Sidoli S, Mone P, Wang X, Lombardi A, et al. Ketone Bodies Rescue Mitochondrial dysfunction Via Epigenetic Remodeling. JACC Basic Transl Sci. 2023;8(9):1123–37.PubMedPubMedCentralCrossRef Gambardella J, Jankauskas SS, Kansakar U, Varzideh F, Avvisato R, Prevete N, Sidoli S, Mone P, Wang X, Lombardi A, et al. Ketone Bodies Rescue Mitochondrial dysfunction Via Epigenetic Remodeling. JACC Basic Transl Sci. 2023;8(9):1123–37.PubMedPubMedCentralCrossRef
Metadata
Title
Single-cell insights: pioneering an integrated atlas of chromatin accessibility and transcriptomic landscapes in diabetic cardiomyopathy
Authors
Qiang Su
Wanzhong Huang
Yuan Huang
Rixin Dai
Chen Chang
Qiu-Yan Li
Hao Liu
Zhenhao Li
Yuxiang Zhao
Qiang Wu
Di-Guang Pan
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Cardiovascular Diabetology / Issue 1/2024
Electronic ISSN: 1475-2840
DOI
https://doi.org/10.1186/s12933-024-02233-y

Other articles of this Issue 1/2024

Cardiovascular Diabetology 1/2024 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.