Skip to main content
Top
Published in: Cardiovascular Diabetology 1/2024

Open Access 01-12-2024 | Diabetic Cardiomyopathy | Review

Underlying mechanisms and cardioprotective effects of SGLT2i and GLP-1Ra: insights from cardiovascular magnetic resonance

Authors: Angelica Cersosimo, Nadia Salerno, Jolanda Sabatino, Alessandra Scatteia, Giandomenico Bisaccia, Salvatore De Rosa, Santo Dellegrottaglie, Chiara Bucciarelli-Ducci, Daniele Torella, Isabella Leo

Published in: Cardiovascular Diabetology | Issue 1/2024

Login to get access

Abstract

Originally designed as anti-hyperglycemic drugs, Glucagon-Like Peptide-1 receptor agonists (GLP-1Ra) and Sodium-glucose cotransporter-2 inhibitors (SGLT2i) have demonstrated protective cardiovascular effects, with significant impact on cardiovascular morbidity and mortality. Despite several mechanisms have been proposed, the exact pathophysiology behind these effects is not yet fully understood. Cardiovascular imaging is key for the evaluation of diabetic patients, with an established role from the identification of early subclinical changes to long-term follow up and prognostic assessment. Among the different imaging modalities, CMR may have a key-role being the gold standard for volumes and function assessment and having the unique ability to provide tissue characterization. Novel techniques are also implementing the possibility to evaluate cardiac metabolism through CMR and thereby further increasing the potential role of the modality in this context. Aim of this paper is to provide a comprehensive review of changes in CMR parameters and novel CMR techniques applied in both pre-clinical and clinical studies evaluating the effects of SGLT2i and GLP-1Ra, and their potential role in better understanding the underlying CV mechanisms of these drugs.
Literature
1.
go back to reference Ogurtsova K, Da Rocha Fernandes JD, Huang Y, Linnenkamp U, Guariguata L, Cho NH, et al. IDF Diabetes Atlas: global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res Clin Pract Giugno. 2017;128:40–50.CrossRef Ogurtsova K, Da Rocha Fernandes JD, Huang Y, Linnenkamp U, Guariguata L, Cho NH, et al. IDF Diabetes Atlas: global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res Clin Pract Giugno. 2017;128:40–50.CrossRef
2.
go back to reference Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract. novembre. 2019;157:107843. Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract. novembre. 2019;157:107843.
3.
go back to reference Di Cesare M, Bentham J, Stevens GA, Zhou B, Danaei G, Lu Y et al. Trends in adult body-mass index in 200 countries from 1975 to 2014: A pooled analysis of 1698 population-based measurement studies with 19.2 million participants. Lancet. 2016;387(10026):1377–1396. doi: 10.1016/S0140-6736(16)30054-X. Erratum in: Lancet. 2016;387(10032):1998. Di Cesare M, Bentham J, Stevens GA, Zhou B, Danaei G, Lu Y et al. Trends in adult body-mass index in 200 countries from 1975 to 2014: A pooled analysis of 1698 population-based measurement studies with 19.2 million participants. Lancet. 2016;387(10026):1377–1396. doi: 10.1016/S0140-6736(16)30054-X. Erratum in: Lancet. 2016;387(10032):1998.
4.
go back to reference Fox CS, Coady S, Sorlie PD, D’Agostino RB, Pencina MJ, Vasan RS et al. Increasing Cardiovascular Disease Burden Due to Diabetes Mellitus: The Framingham Heart Study. Circulation. 27 marzo. 2007;115(12):1544–50. Fox CS, Coady S, Sorlie PD, D’Agostino RB, Pencina MJ, Vasan RS et al. Increasing Cardiovascular Disease Burden Due to Diabetes Mellitus: The Framingham Heart Study. Circulation. 27 marzo. 2007;115(12):1544–50.
5.
go back to reference Preis SR, Hwang SJ, Coady S, Pencina MJ, D’Agostino RB, Savage PJ et al. Trends in All-Cause and Cardiovascular Disease Mortality Among Women and Men With and Without Diabetes Mellitus in the Framingham Heart Study, 1950 to 2005. Circulation. 7 aprile. 2009;119(13):1728–35. Preis SR, Hwang SJ, Coady S, Pencina MJ, D’Agostino RB, Savage PJ et al. Trends in All-Cause and Cardiovascular Disease Mortality Among Women and Men With and Without Diabetes Mellitus in the Framingham Heart Study, 1950 to 2005. Circulation. 7 aprile. 2009;119(13):1728–35.
6.
go back to reference Jia G, Hill MA, Sowers JR. Diabetic Cardiomyopathy: an update of mechanisms contributing to this clinical entity. Circ Res 16 Febbraio. 2018;122(4):624–38.CrossRef Jia G, Hill MA, Sowers JR. Diabetic Cardiomyopathy: an update of mechanisms contributing to this clinical entity. Circ Res 16 Febbraio. 2018;122(4):624–38.CrossRef
7.
go back to reference Brønden A, Christensen MB, Glintborg D, Snorgaard O, Kofoed-Enevoldsen A, Madsen GK, et al. Effects of DPP ‐4 inhibitors, GLP ‐1 receptor agonists, SGLT ‐2 inhibitors and sulphonylureas on mortality, cardiovascular and renal outcomes in type 2 diabetes: a network meta‐analyses‐driven approach. Diabet Med Agosto. 2023;40(8):e15157.CrossRef Brønden A, Christensen MB, Glintborg D, Snorgaard O, Kofoed-Enevoldsen A, Madsen GK, et al. Effects of DPP ‐4 inhibitors, GLP ‐1 receptor agonists, SGLT ‐2 inhibitors and sulphonylureas on mortality, cardiovascular and renal outcomes in type 2 diabetes: a network meta‐analyses‐driven approach. Diabet Med Agosto. 2023;40(8):e15157.CrossRef
8.
go back to reference Ernande L, Rietzschel ER, Bergerot C, De Buyzere ML, Schnell F, Groisne L, et al. Impaired myocardial radial function in asymptomatic patients with type 2 diabetes Mellitus: a speckle-tracking imaging study. J Am Soc Echocardiogr Dicembre. 2010;23(12):1266–72.CrossRef Ernande L, Rietzschel ER, Bergerot C, De Buyzere ML, Schnell F, Groisne L, et al. Impaired myocardial radial function in asymptomatic patients with type 2 diabetes Mellitus: a speckle-tracking imaging study. J Am Soc Echocardiogr Dicembre. 2010;23(12):1266–72.CrossRef
9.
go back to reference Palmer SC, Tendal B, Mustafa RA, Vandvik PO, Li S, Hao Q et al. Sodium-glucose cotransporter protein-2 (SGLT-2) inhibitors and glucagon-like peptide-1 (GLP-1) receptor agonists for type 2 diabetes: systematic review and network meta-analysis of randomised controlled trials. BMJ 13 gennaio 2021;m4573. Palmer SC, Tendal B, Mustafa RA, Vandvik PO, Li S, Hao Q et al. Sodium-glucose cotransporter protein-2 (SGLT-2) inhibitors and glucagon-like peptide-1 (GLP-1) receptor agonists for type 2 diabetes: systematic review and network meta-analysis of randomised controlled trials. BMJ 13 gennaio 2021;m4573.
10.
go back to reference McMurray JJV, Solomon SD, Inzucchi SE, Køber L, Kosiborod MN, Martinez FA et al. Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. N Engl J Med. 21 novembre. 2019;381(21):1995–2008. McMurray JJV, Solomon SD, Inzucchi SE, Køber L, Kosiborod MN, Martinez FA et al. Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. N Engl J Med. 21 novembre. 2019;381(21):1995–2008.
11.
go back to reference McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, et al. 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 21 Settembre. 2021;42(36):3599–726.CrossRef McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, et al. 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 21 Settembre. 2021;42(36):3599–726.CrossRef
12.
go back to reference McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, et al. 2023 focused update of the 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 1 Ottobre. 2023;44(37):3627–39.CrossRef McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, et al. 2023 focused update of the 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 1 Ottobre. 2023;44(37):3627–39.CrossRef
13.
go back to reference Solomon SD, McMurray JJV, Claggett B, De Boer RA, DeMets D, Hernandez AF et al. Dapagliflozin in Heart Failure with Mildly Reduced or Preserved Ejection Fraction. N Engl J Med. 22 settembre. 2022;387(12):1089–98. Solomon SD, McMurray JJV, Claggett B, De Boer RA, DeMets D, Hernandez AF et al. Dapagliflozin in Heart Failure with Mildly Reduced or Preserved Ejection Fraction. N Engl J Med. 22 settembre. 2022;387(12):1089–98.
14.
go back to reference Packer M, Anker SD, Butler J, Filippatos G, Pocock SJ, Carson P, et al. Cardiovascular and renal outcomes with Empagliflozin in Heart failure. N Engl J Med 8 Ottobre. 2020;383(15):1413–24.CrossRef Packer M, Anker SD, Butler J, Filippatos G, Pocock SJ, Carson P, et al. Cardiovascular and renal outcomes with Empagliflozin in Heart failure. N Engl J Med 8 Ottobre. 2020;383(15):1413–24.CrossRef
15.
go back to reference Anker SD, Butler J, Filippatos G, Ferreira JP, Bocchi E, Böhm M et al. Empagliflozin in Heart Failure with a Preserved Ejection Fraction. N Engl J Med. 14 ottobre. 2021;385(16):1451–61. Anker SD, Butler J, Filippatos G, Ferreira JP, Bocchi E, Böhm M et al. Empagliflozin in Heart Failure with a Preserved Ejection Fraction. N Engl J Med. 14 ottobre. 2021;385(16):1451–61.
16.
go back to reference Cohn JN, Ferrari R, Sharpe N. Cardiac remodeling—concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. J Am Coll Cardiol Marzo. 2000;35(3):569–82.CrossRef Cohn JN, Ferrari R, Sharpe N. Cardiac remodeling—concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. J Am Coll Cardiol Marzo. 2000;35(3):569–82.CrossRef
17.
go back to reference Aimo A, Gaggin HK, Barison A, Emdin M, Januzzi JL. Imaging, Biomarker, and clinical predictors of Cardiac Remodeling in Heart failure with reduced ejection fraction. JACC Heart Fail Settembre. 2019;7(9):782–94.CrossRef Aimo A, Gaggin HK, Barison A, Emdin M, Januzzi JL. Imaging, Biomarker, and clinical predictors of Cardiac Remodeling in Heart failure with reduced ejection fraction. JACC Heart Fail Settembre. 2019;7(9):782–94.CrossRef
18.
go back to reference Dhingra NK, Mistry N, Puar P, Verma R, Anker S, Mazer CD, et al. SGLT2 inhibitors and cardiac remodelling: a systematic review and meta-analysis of randomized cardiac magnetic resonance imaging trials. ESC Heart Fail Dicembre. 2021;8(6):4693–700.CrossRef Dhingra NK, Mistry N, Puar P, Verma R, Anker S, Mazer CD, et al. SGLT2 inhibitors and cardiac remodelling: a systematic review and meta-analysis of randomized cardiac magnetic resonance imaging trials. ESC Heart Fail Dicembre. 2021;8(6):4693–700.CrossRef
19.
go back to reference Withaar C, Meems LMG, Markousis-Mavrogenis G, Boogerd CJ, Silljé HHW, Schouten EM, et al. The effects of liraglutide and dapagliflozin on cardiac function and structure in a multi-hit mouse model of heart failure with preserved ejection fraction. Cardiovasc Res 27 Luglio. 2021;117(9):2108–24.CrossRef Withaar C, Meems LMG, Markousis-Mavrogenis G, Boogerd CJ, Silljé HHW, Schouten EM, et al. The effects of liraglutide and dapagliflozin on cardiac function and structure in a multi-hit mouse model of heart failure with preserved ejection fraction. Cardiovasc Res 27 Luglio. 2021;117(9):2108–24.CrossRef
20.
go back to reference Noyan-Ashraf MH, Shikatani EA, Schuiki I, Mukovozov I, Wu J, Li RK, et al. A Glucagon-Like Peptide-1 Analog reverses the Molecular Pathology and Cardiac Dysfunction of a mouse model of obesity. Circulation Gennaio. 2013;127(1):74–85.CrossRef Noyan-Ashraf MH, Shikatani EA, Schuiki I, Mukovozov I, Wu J, Li RK, et al. A Glucagon-Like Peptide-1 Analog reverses the Molecular Pathology and Cardiac Dysfunction of a mouse model of obesity. Circulation Gennaio. 2013;127(1):74–85.CrossRef
21.
go back to reference Kawel-Boehm N, Hetzel SJ, Ambale-Venkatesh B, Captur G, Francois CJ, Jerosch-Herold M, et al. Reference ranges (normal values) for cardiovascular magnetic resonance (CMR) in adults and children: 2020 update. J Cardiovasc Magn Reson Dicembre. 2020;22(1):87.CrossRef Kawel-Boehm N, Hetzel SJ, Ambale-Venkatesh B, Captur G, Francois CJ, Jerosch-Herold M, et al. Reference ranges (normal values) for cardiovascular magnetic resonance (CMR) in adults and children: 2020 update. J Cardiovasc Magn Reson Dicembre. 2020;22(1):87.CrossRef
22.
go back to reference Salerno M, Sharif B, Arheden H, Kumar A, Axel L, Li D, et al. Recent advances in Cardiovascular magnetic resonance: techniques and applications. Circ Cardiovasc Imaging Giugno. 2017;10(6):e003951.CrossRef Salerno M, Sharif B, Arheden H, Kumar A, Axel L, Li D, et al. Recent advances in Cardiovascular magnetic resonance: techniques and applications. Circ Cardiovasc Imaging Giugno. 2017;10(6):e003951.CrossRef
23.
go back to reference Leo I, Nakou E, Artico J, Androulakis E, Wong J, Moon JC, et al. Strengths and weaknesses of alternative noninvasive imaging approaches for microvascular ischemia. J Nucl Cardiol Febbraio. 2023;30(1):227–38.CrossRef Leo I, Nakou E, Artico J, Androulakis E, Wong J, Moon JC, et al. Strengths and weaknesses of alternative noninvasive imaging approaches for microvascular ischemia. J Nucl Cardiol Febbraio. 2023;30(1):227–38.CrossRef
24.
go back to reference Tsampasian V, Swift AJ, Assadi H, Chowdhary A, Swoboda P, Sammut E, et al. Myocardial inflammation and energetics by cardiac MRI: a review of emerging techniques. BMC Med Imaging Dicembre. 2021;21(1):164.CrossRef Tsampasian V, Swift AJ, Assadi H, Chowdhary A, Swoboda P, Sammut E, et al. Myocardial inflammation and energetics by cardiac MRI: a review of emerging techniques. BMC Med Imaging Dicembre. 2021;21(1):164.CrossRef
25.
go back to reference Clar C, Gill JA, Court R, Waugh N. Systematic review of SGLT2 receptor inhibitors in dual or triple therapy in type 2 diabetes. BMJ Open. 2012;2(5):e001007.PubMedPubMedCentralCrossRef Clar C, Gill JA, Court R, Waugh N. Systematic review of SGLT2 receptor inhibitors in dual or triple therapy in type 2 diabetes. BMJ Open. 2012;2(5):e001007.PubMedPubMedCentralCrossRef
26.
go back to reference Xu B, Li S, Kang B, Zhou J. The current role of sodium-glucose cotransporter 2 inhibitors in type 2 diabetes mellitus management. Cardiovasc Diabetol Dicembre. 2022;21(1):83.CrossRef Xu B, Li S, Kang B, Zhou J. The current role of sodium-glucose cotransporter 2 inhibitors in type 2 diabetes mellitus management. Cardiovasc Diabetol Dicembre. 2022;21(1):83.CrossRef
27.
go back to reference Neumiller JJ, White JR, Campbell RK. Sodium-glucose co-transport inhibitors: progress and therapeutic potential in type 2 diabetes Mellitus. Drugs Marzo. 2010;70(4):377–85.CrossRef Neumiller JJ, White JR, Campbell RK. Sodium-glucose co-transport inhibitors: progress and therapeutic potential in type 2 diabetes Mellitus. Drugs Marzo. 2010;70(4):377–85.CrossRef
28.
go back to reference Zaccardi F, Webb DR, Htike ZZ, Youssef D, Khunti K, Davies MJ. Efficacy and safety of sodium-glucose co‐transporter‐2 inhibitors in type 2 diabetes mellitus: systematic review and network meta‐analysis. Diabetes Obes Metab Agosto. 2016;18(8):783–94.CrossRef Zaccardi F, Webb DR, Htike ZZ, Youssef D, Khunti K, Davies MJ. Efficacy and safety of sodium-glucose co‐transporter‐2 inhibitors in type 2 diabetes mellitus: systematic review and network meta‐analysis. Diabetes Obes Metab Agosto. 2016;18(8):783–94.CrossRef
29.
go back to reference Pereira MJ, Eriksson JW. Emerging role of SGLT-2 inhibitors for the treatment of obesity. Drugs Febbraio. 2019;79(3):219–30. Pereira MJ, Eriksson JW. Emerging role of SGLT-2 inhibitors for the treatment of obesity. Drugs Febbraio. 2019;79(3):219–30.
30.
go back to reference Bolinder J, Ljunggren Ö, Kullberg J, Johansson L, Wilding J, Langkilde AM, et al. Effects of Dapagliflozin on Body Weight, Total Fat Mass, and Regional Adipose tissue distribution in patients with type 2 diabetes Mellitus with inadequate Glycemic Control on Metformin. J Clin Endocrinol Metab 1 Marzo. 2012;97(3):1020–31.CrossRef Bolinder J, Ljunggren Ö, Kullberg J, Johansson L, Wilding J, Langkilde AM, et al. Effects of Dapagliflozin on Body Weight, Total Fat Mass, and Regional Adipose tissue distribution in patients with type 2 diabetes Mellitus with inadequate Glycemic Control on Metformin. J Clin Endocrinol Metab 1 Marzo. 2012;97(3):1020–31.CrossRef
31.
go back to reference Requena-Ibáñez JA, Santos-Gallego CG, Rodriguez Cordero AJ, Fardman B, Sartori S, Sanz J, et al. Not only how much, but also how to, when measuring epicardial adipose tissue. Magn Reson Imaging Febbraio. 2022;86:149–51.CrossRef Requena-Ibáñez JA, Santos-Gallego CG, Rodriguez Cordero AJ, Fardman B, Sartori S, Sanz J, et al. Not only how much, but also how to, when measuring epicardial adipose tissue. Magn Reson Imaging Febbraio. 2022;86:149–51.CrossRef
32.
go back to reference Santos-Gallego CG, Vargas-Delgado AP, Requena-Ibanez JA, Garcia-Ropero A, Mancini D, Pinney S, et al. Randomized Trial of Empagliflozin in nondiabetic patients with heart failure and reduced ejection fraction. J Am Coll Cardiol Gennaio. 2021;77(3):243–55.CrossRef Santos-Gallego CG, Vargas-Delgado AP, Requena-Ibanez JA, Garcia-Ropero A, Mancini D, Pinney S, et al. Randomized Trial of Empagliflozin in nondiabetic patients with heart failure and reduced ejection fraction. J Am Coll Cardiol Gennaio. 2021;77(3):243–55.CrossRef
33.
go back to reference Yagi S, Hirata Y, Ise T, Kusunose K, Yamada H, Fukuda D, et al. Canagliflozin reduces epicardial fat in patients with type 2 diabetes mellitus. Diabetol Metab Syndr Dicembre. 2017;9(1):78.CrossRef Yagi S, Hirata Y, Ise T, Kusunose K, Yamada H, Fukuda D, et al. Canagliflozin reduces epicardial fat in patients with type 2 diabetes mellitus. Diabetol Metab Syndr Dicembre. 2017;9(1):78.CrossRef
34.
go back to reference Xu L, Nagata N, Nagashimada M, Zhuge F, Ni Y, Chen G, et al. SGLT2 inhibition by Empagliflozin Promotes Fat Utilization and Browning and attenuates inflammation and insulin resistance by polarizing M2 macrophages in Diet-induced obese mice. EBioMedicine Giugno. 2017;20:137–49.CrossRef Xu L, Nagata N, Nagashimada M, Zhuge F, Ni Y, Chen G, et al. SGLT2 inhibition by Empagliflozin Promotes Fat Utilization and Browning and attenuates inflammation and insulin resistance by polarizing M2 macrophages in Diet-induced obese mice. EBioMedicine Giugno. 2017;20:137–49.CrossRef
35.
go back to reference Ansary TM, Nakano D, Nishiyama A. Diuretic effects of Sodium glucose cotransporter 2 inhibitors and their influence on the renin-angiotensin system. Int J Mol Sci 1 Febbraio. 2019;20(3):629.CrossRef Ansary TM, Nakano D, Nishiyama A. Diuretic effects of Sodium glucose cotransporter 2 inhibitors and their influence on the renin-angiotensin system. Int J Mol Sci 1 Febbraio. 2019;20(3):629.CrossRef
36.
go back to reference Ghanim H, Abuaysheh S, Hejna J, Green K, Batra M, Makdissi A, et al. Dapagliflozin suppresses Hepcidin and increases erythropoiesis. J Clin Endocrinol Metab 1 Aprile. 2020;105(4):e1056–63.CrossRef Ghanim H, Abuaysheh S, Hejna J, Green K, Batra M, Makdissi A, et al. Dapagliflozin suppresses Hepcidin and increases erythropoiesis. J Clin Endocrinol Metab 1 Aprile. 2020;105(4):e1056–63.CrossRef
37.
go back to reference Docherty KF, Welsh P, Verma S, De Boer RA, O’Meara E, Bengtsson O et al. Iron Deficiency in Heart Failure and Effect of Dapagliflozin: Findings From DAPA-HF. Circulation. 27 settembre. 2022;146(13):980–94. Docherty KF, Welsh P, Verma S, De Boer RA, O’Meara E, Bengtsson O et al. Iron Deficiency in Heart Failure and Effect of Dapagliflozin: Findings From DAPA-HF. Circulation. 27 settembre. 2022;146(13):980–94.
38.
go back to reference Inzucchi SE, Zinman B, Fitchett D, Wanner C, Ferrannini E, Schumacher M, et al. How does Empagliflozin reduce Cardiovascular Mortality? Insights from a mediation analysis of the EMPA-REG OUTCOME Trial. Diabetes Care 1 Febbraio. 2018;41(2):356–63.CrossRef Inzucchi SE, Zinman B, Fitchett D, Wanner C, Ferrannini E, Schumacher M, et al. How does Empagliflozin reduce Cardiovascular Mortality? Insights from a mediation analysis of the EMPA-REG OUTCOME Trial. Diabetes Care 1 Febbraio. 2018;41(2):356–63.CrossRef
39.
go back to reference Tanaka A, Shimabukuro M, Teragawa H, Okada Y, Takamura T, Taguchi I, et al. Reduction of estimated fluid volumes following initiation of empagliflozin in patients with type 2 diabetes and cardiovascular disease: a secondary analysis of the placebo-controlled, randomized EMBLEM trial. Cardiovasc Diabetol Dicembre. 2021;20(1):105.CrossRef Tanaka A, Shimabukuro M, Teragawa H, Okada Y, Takamura T, Taguchi I, et al. Reduction of estimated fluid volumes following initiation of empagliflozin in patients with type 2 diabetes and cardiovascular disease: a secondary analysis of the placebo-controlled, randomized EMBLEM trial. Cardiovasc Diabetol Dicembre. 2021;20(1):105.CrossRef
40.
go back to reference Swedberg K, Young JB, Anand IS, Cheng S, Desai AS, Diaz R et al. Treatment of Anemia with Darbepoetin Alfa in Systolic Heart Failure. N Engl J Med. 28 marzo. 2013;368(13):1210–9. Swedberg K, Young JB, Anand IS, Cheng S, Desai AS, Diaz R et al. Treatment of Anemia with Darbepoetin Alfa in Systolic Heart Failure. N Engl J Med. 28 marzo. 2013;368(13):1210–9.
41.
go back to reference Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S et al. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N Engl J Med. 26 novembre. 2015;373(22):2117–28. Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S et al. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N Engl J Med. 26 novembre. 2015;373(22):2117–28.
42.
go back to reference Neal B, Perkovic V, Mahaffey KW, De Zeeuw D, Fulcher G, Erondu N et al. Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. N Engl J Med. 17 agosto. 2017;377(7):644–57. Neal B, Perkovic V, Mahaffey KW, De Zeeuw D, Fulcher G, Erondu N et al. Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. N Engl J Med. 17 agosto. 2017;377(7):644–57.
43.
go back to reference Wiviott SD, Raz I, Bonaca MP, Mosenzon O, Kato ET, Cahn A et al. Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med. 24 gennaio. 2019;380(4):347–57. Wiviott SD, Raz I, Bonaca MP, Mosenzon O, Kato ET, Cahn A et al. Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med. 24 gennaio. 2019;380(4):347–57.
44.
go back to reference Von Lewinski D, Kolesnik E, Tripolt NJ, Pferschy PN, Benedikt M, Wallner M, et al. Empagliflozin in acute myocardial infarction: the EMMY trial. Eur Heart J 1 Novembre. 2022;43(41):4421–32.CrossRef Von Lewinski D, Kolesnik E, Tripolt NJ, Pferschy PN, Benedikt M, Wallner M, et al. Empagliflozin in acute myocardial infarction: the EMMY trial. Eur Heart J 1 Novembre. 2022;43(41):4421–32.CrossRef
45.
go back to reference Paolisso P, Bergamaschi L, Gragnano F, Gallinoro E, Cesaro A, Sardu C, et al. Outcomes in diabetic patients treated with SGLT2-Inhibitors with acute myocardial infarction undergoing PCI: the SGLT2-I AMI PROTECT Registry. Pharmacol Res Gennaio. 2023;187:106597.CrossRef Paolisso P, Bergamaschi L, Gragnano F, Gallinoro E, Cesaro A, Sardu C, et al. Outcomes in diabetic patients treated with SGLT2-Inhibitors with acute myocardial infarction undergoing PCI: the SGLT2-I AMI PROTECT Registry. Pharmacol Res Gennaio. 2023;187:106597.CrossRef
46.
go back to reference Harrington J, Udell JA, Jones WS, Anker SD, Bhatt DL, Petrie MC, et al. Empagliflozin in patients post myocardial infarction rationale and design of the EMPACT-MI trial. Am Heart J Novembre. 2022;253:86–98.CrossRef Harrington J, Udell JA, Jones WS, Anker SD, Bhatt DL, Petrie MC, et al. Empagliflozin in patients post myocardial infarction rationale and design of the EMPACT-MI trial. Am Heart J Novembre. 2022;253:86–98.CrossRef
47.
go back to reference Bhatt DL, Szarek M, Pitt B, Cannon CP, Leiter LA, McGuire DK et al. Sotagliflozin in Patients with Diabetes and Chronic Kidney Disease. N Engl J Med. 14 gennaio. 2021;384(2):129–39. Bhatt DL, Szarek M, Pitt B, Cannon CP, Leiter LA, McGuire DK et al. Sotagliflozin in Patients with Diabetes and Chronic Kidney Disease. N Engl J Med. 14 gennaio. 2021;384(2):129–39.
48.
go back to reference Bhatt DL, Szarek M, Steg PG, Cannon CP, Leiter LA, McGuire DK et al. Sotagliflozin in Patients with Diabetes and Recent Worsening Heart Failure. N Engl J Med. 14 gennaio. 2021;384(2):117–28. Bhatt DL, Szarek M, Steg PG, Cannon CP, Leiter LA, McGuire DK et al. Sotagliflozin in Patients with Diabetes and Recent Worsening Heart Failure. N Engl J Med. 14 gennaio. 2021;384(2):117–28.
49.
go back to reference Marino F, Salerno N, Scalise M, Salerno L, Torella A, Molinaro C, et al. Streptozotocin-Induced type 1 and 2 diabetes Mellitus Mouse models Show different functional, Cellular and molecular patterns of Diabetic Cardiomyopathy. Int J Mol Sci 6 Gennaio. 2023;24(2):1132.CrossRef Marino F, Salerno N, Scalise M, Salerno L, Torella A, Molinaro C, et al. Streptozotocin-Induced type 1 and 2 diabetes Mellitus Mouse models Show different functional, Cellular and molecular patterns of Diabetic Cardiomyopathy. Int J Mol Sci 6 Gennaio. 2023;24(2):1132.CrossRef
50.
go back to reference Shen X, Li L, Sun Z, Zang G, Zhang L, Shao C, et al. Gut microbiota and atherosclerosis-focusing on the Plaque Stability. Front Cardiovasc Med. 2021;8:668532.PubMedPubMedCentralCrossRef Shen X, Li L, Sun Z, Zang G, Zhang L, Shao C, et al. Gut microbiota and atherosclerosis-focusing on the Plaque Stability. Front Cardiovasc Med. 2021;8:668532.PubMedPubMedCentralCrossRef
51.
go back to reference Molinaro C, Salerno L, Marino F, Scalise M, Salerno N, Pagano L et al. Unraveling and Targeting Myocardial Regeneration Deficit in Diabetes. Antioxidants. 22 gennaio. 2022;11(2):208. Molinaro C, Salerno L, Marino F, Scalise M, Salerno N, Pagano L et al. Unraveling and Targeting Myocardial Regeneration Deficit in Diabetes. Antioxidants. 22 gennaio. 2022;11(2):208.
52.
go back to reference Soares RN, Ramirez-Perez FI, Cabral-Amador FJ, Morales-Quinones M, Foote CA, Ghiarone T, et al. SGLT2 inhibition attenuates arterial dysfunction and decreases vascular F-actin content and expression of proteins associated with oxidative stress in aged mice. GeroScience Giugno. 2022;44(3):1657–75.CrossRef Soares RN, Ramirez-Perez FI, Cabral-Amador FJ, Morales-Quinones M, Foote CA, Ghiarone T, et al. SGLT2 inhibition attenuates arterial dysfunction and decreases vascular F-actin content and expression of proteins associated with oxidative stress in aged mice. GeroScience Giugno. 2022;44(3):1657–75.CrossRef
53.
go back to reference Ugusman A, Kumar J, Aminuddin A. Endothelial function and dysfunction: impact of sodium-glucose cotransporter 2 inhibitors. Pharmacol Ther Agosto. 2021;224:107832.CrossRef Ugusman A, Kumar J, Aminuddin A. Endothelial function and dysfunction: impact of sodium-glucose cotransporter 2 inhibitors. Pharmacol Ther Agosto. 2021;224:107832.CrossRef
54.
go back to reference Mone P, Varzideh F, Jankauskas SS, Pansini A, Lombardi A, Frullone S, et al. SGLT2 inhibition via Empagliflozin improves endothelial function and reduces mitochondrial oxidative stress: insights from Frail Hypertensive and Diabetic patients. Hypertens Agosto. 2022;79(8):1633–43.CrossRef Mone P, Varzideh F, Jankauskas SS, Pansini A, Lombardi A, Frullone S, et al. SGLT2 inhibition via Empagliflozin improves endothelial function and reduces mitochondrial oxidative stress: insights from Frail Hypertensive and Diabetic patients. Hypertens Agosto. 2022;79(8):1633–43.CrossRef
55.
go back to reference Durante W, Behnammanesh G, Peyton KJ. Effects of Sodium-Glucose Co-Transporter 2 Inhibitors on Vascular Cell Function and Arterial Remodeling. Int J Mol Sci. 16 agosto. 2021;22(16):8786. Durante W, Behnammanesh G, Peyton KJ. Effects of Sodium-Glucose Co-Transporter 2 Inhibitors on Vascular Cell Function and Arterial Remodeling. Int J Mol Sci. 16 agosto. 2021;22(16):8786.
56.
go back to reference Irace C, Cutruzzolà A, Parise M, Fiorentino R, Frazzetto M, Gnasso C, et al. Effect of empagliflozin on brachial artery shear stress and endothelial function in subjects with type 2 diabetes: results from an exploratory study. Diab Vasc Dis Res Gennaio. 2020;17(1):147916411988354.CrossRef Irace C, Cutruzzolà A, Parise M, Fiorentino R, Frazzetto M, Gnasso C, et al. Effect of empagliflozin on brachial artery shear stress and endothelial function in subjects with type 2 diabetes: results from an exploratory study. Diab Vasc Dis Res Gennaio. 2020;17(1):147916411988354.CrossRef
57.
go back to reference Cappetta D, De Angelis A, Ciuffreda LP, Coppini R, Cozzolino A, Miccichè A, et al. Amelioration of diastolic dysfunction by dapagliflozin in a non-diabetic model involves coronary endothelium. Pharmacol Res Luglio. 2020;157:104781.CrossRef Cappetta D, De Angelis A, Ciuffreda LP, Coppini R, Cozzolino A, Miccichè A, et al. Amelioration of diastolic dysfunction by dapagliflozin in a non-diabetic model involves coronary endothelium. Pharmacol Res Luglio. 2020;157:104781.CrossRef
58.
go back to reference Torella D, Iaconetti C, Tarallo R, Marino F, Giurato G, Veneziano C et al. miRNA Regulation of the Hyperproliferative Phenotype of Vascular Smooth Muscle Cells in Diabetes. Diabetes. 1 dicembre. 2018;67(12):2554–68. Torella D, Iaconetti C, Tarallo R, Marino F, Giurato G, Veneziano C et al. miRNA Regulation of the Hyperproliferative Phenotype of Vascular Smooth Muscle Cells in Diabetes. Diabetes. 1 dicembre. 2018;67(12):2554–68.
59.
go back to reference Urbanek K, Cappetta D, Bellocchio G, Coppola MA, Imbrici P, Telesca M, et al. Dapagliflozin protects the kidney in a non-diabetic model of cardiorenal syndrome. Pharmacol Res Febbraio. 2023;188:106659.CrossRef Urbanek K, Cappetta D, Bellocchio G, Coppola MA, Imbrici P, Telesca M, et al. Dapagliflozin protects the kidney in a non-diabetic model of cardiorenal syndrome. Pharmacol Res Febbraio. 2023;188:106659.CrossRef
60.
go back to reference Herat LY, Magno AL, Rudnicka C, Hricova J, Carnagarin R, Ward NC, et al. SGLT2 inhibitor–Induced Sympathoinhibition. JACC Basic Transl Sci Febbraio. 2020;5(2):169–79.CrossRef Herat LY, Magno AL, Rudnicka C, Hricova J, Carnagarin R, Ward NC, et al. SGLT2 inhibitor–Induced Sympathoinhibition. JACC Basic Transl Sci Febbraio. 2020;5(2):169–79.CrossRef
61.
go back to reference Gager GM, Von Lewinski D, Sourij H, Jilma B, Eyileten C, Filipiak K, et al. Effects of SGLT2 inhibitors on Ion Homeostasis and oxidative stress associated mechanisms in Heart failure. Biomed Pharmacother Novembre. 2021;143:112169.CrossRef Gager GM, Von Lewinski D, Sourij H, Jilma B, Eyileten C, Filipiak K, et al. Effects of SGLT2 inhibitors on Ion Homeostasis and oxidative stress associated mechanisms in Heart failure. Biomed Pharmacother Novembre. 2021;143:112169.CrossRef
62.
go back to reference Rau M, Thiele K, Hartmann NUK, Möllmann J, Wied S, Hohl M, et al. Effects of empagliflozin on markers of calcium and phosphate homeostasis in patients with type 2 diabetes – data from a randomized, placebo-controlled study. Bone Rep Giugno. 2022;16:101175.CrossRef Rau M, Thiele K, Hartmann NUK, Möllmann J, Wied S, Hohl M, et al. Effects of empagliflozin on markers of calcium and phosphate homeostasis in patients with type 2 diabetes – data from a randomized, placebo-controlled study. Bone Rep Giugno. 2022;16:101175.CrossRef
63.
go back to reference Yurista SR, Silljé HHW, Oberdorf-Maass SU, Schouten E, Pavez Giani MG, Hillebrands J, et al. Sodium–glucose co‐transporter 2 inhibition with empagliflozin improves cardiac function in non‐diabetic rats with left ventricular dysfunction after myocardial infarction. Eur J Heart Fail Luglio. 2019;21(7):862–73.CrossRef Yurista SR, Silljé HHW, Oberdorf-Maass SU, Schouten E, Pavez Giani MG, Hillebrands J, et al. Sodium–glucose co‐transporter 2 inhibition with empagliflozin improves cardiac function in non‐diabetic rats with left ventricular dysfunction after myocardial infarction. Eur J Heart Fail Luglio. 2019;21(7):862–73.CrossRef
64.
go back to reference Santos-Gallego CG, Mayr M, Badimon J. SGLT2 Inhibitors in Heart Failure: Targeted Metabolomics and Energetic Metabolism. Circulation. 13 settembre. 2022;146(11):819–21. Santos-Gallego CG, Mayr M, Badimon J. SGLT2 Inhibitors in Heart Failure: Targeted Metabolomics and Energetic Metabolism. Circulation. 13 settembre. 2022;146(11):819–21.
65.
go back to reference Santos-Gallego CG, Requena-Ibanez JA, San Antonio R, Ishikawa K, Watanabe S, Picatoste B, et al. Empagliflozin ameliorates adverse left ventricular remodeling in nondiabetic heart failure by enhancing myocardial energetics. J Am Coll Cardiol Aprile. 2019;73(15):1931–44.CrossRef Santos-Gallego CG, Requena-Ibanez JA, San Antonio R, Ishikawa K, Watanabe S, Picatoste B, et al. Empagliflozin ameliorates adverse left ventricular remodeling in nondiabetic heart failure by enhancing myocardial energetics. J Am Coll Cardiol Aprile. 2019;73(15):1931–44.CrossRef
66.
go back to reference Thirunavukarasu S, Jex N, Chowdhary A, Hassan IU, Straw S, Craven TP, et al. Empagliflozin Treatment is Associated with improvements in Cardiac energetics and function and reductions in Myocardial Cellular volume in patients with type 2 diabetes. Diabetes 1 Dicembre. 2021;70(12):2810–22.CrossRef Thirunavukarasu S, Jex N, Chowdhary A, Hassan IU, Straw S, Craven TP, et al. Empagliflozin Treatment is Associated with improvements in Cardiac energetics and function and reductions in Myocardial Cellular volume in patients with type 2 diabetes. Diabetes 1 Dicembre. 2021;70(12):2810–22.CrossRef
67.
go back to reference Verma S, Rawat S, Ho KL, Wagg CS, Zhang L, Teoh H, et al. Empagliflozin Increases Cardiac Energy Production in diabetes. JACC Basic Transl Sci Ottobre. 2018;3(5):575–87.CrossRef Verma S, Rawat S, Ho KL, Wagg CS, Zhang L, Teoh H, et al. Empagliflozin Increases Cardiac Energy Production in diabetes. JACC Basic Transl Sci Ottobre. 2018;3(5):575–87.CrossRef
68.
go back to reference Youm YH, Nguyen KY, Grant RW, Goldberg EL, Bodogai M, Kim D, et al. The ketone metabolite β-hydroxybutyrate blocks NLRP3 inflammasome–mediated inflammatory disease. Nat Med Marzo. 2015;21(3):263–9.CrossRef Youm YH, Nguyen KY, Grant RW, Goldberg EL, Bodogai M, Kim D, et al. The ketone metabolite β-hydroxybutyrate blocks NLRP3 inflammasome–mediated inflammatory disease. Nat Med Marzo. 2015;21(3):263–9.CrossRef
69.
go back to reference Yu X, Tesiram YA, Towner RA, Abbott A, Patterson E, Huang S, et al. Early myocardial dysfunction in streptozotocin-induced diabetic mice: a study using in vivo magnetic resonance imaging (MRI). Cardiovasc Diabetol. 2007;6(1):6.PubMedPubMedCentralCrossRef Yu X, Tesiram YA, Towner RA, Abbott A, Patterson E, Huang S, et al. Early myocardial dysfunction in streptozotocin-induced diabetic mice: a study using in vivo magnetic resonance imaging (MRI). Cardiovasc Diabetol. 2007;6(1):6.PubMedPubMedCentralCrossRef
70.
go back to reference Naresh NK, Butcher JT, Lye RJ, Chen X, Isakson BE, Gan LM, et al. Cardiovascular magnetic resonance detects the progression of impaired myocardial perfusion reserve and increased left-ventricular mass in mice fed a high-fat diet. J Cardiovasc Magn Reson Dicembre. 2016;18(1):53.CrossRef Naresh NK, Butcher JT, Lye RJ, Chen X, Isakson BE, Gan LM, et al. Cardiovascular magnetic resonance detects the progression of impaired myocardial perfusion reserve and increased left-ventricular mass in mice fed a high-fat diet. J Cardiovasc Magn Reson Dicembre. 2016;18(1):53.CrossRef
71.
go back to reference Marciniak C, Marechal X, Montaigne D, Neviere R, Lancel S. Cardiac contractile function and mitochondrial respiration in diabetes-related mouse models. Cardiovasc Diabetol Dicembre. 2014;13(1):118.CrossRef Marciniak C, Marechal X, Montaigne D, Neviere R, Lancel S. Cardiac contractile function and mitochondrial respiration in diabetes-related mouse models. Cardiovasc Diabetol Dicembre. 2014;13(1):118.CrossRef
72.
go back to reference Shi L, Zhu D, Wang S, Jiang A, Li F. Dapagliflozin attenuates Cardiac Remodeling in mice Model of Cardiac pressure overload. Am J Hypertens 22 Aprile. 2019;32(5):452–9.CrossRef Shi L, Zhu D, Wang S, Jiang A, Li F. Dapagliflozin attenuates Cardiac Remodeling in mice Model of Cardiac pressure overload. Am J Hypertens 22 Aprile. 2019;32(5):452–9.CrossRef
73.
go back to reference Lee HC, Shiou YL, Jhuo SJ, Chang CY, Liu PL, Jhuang WJ, et al. The sodium–glucose co-transporter 2 inhibitor empagliflozin attenuates cardiac fibrosis and improves ventricular hemodynamics in hypertensive heart failure rats. Cardiovasc Diabetol Dicembre. 2019;18(1):45.CrossRef Lee HC, Shiou YL, Jhuo SJ, Chang CY, Liu PL, Jhuang WJ, et al. The sodium–glucose co-transporter 2 inhibitor empagliflozin attenuates cardiac fibrosis and improves ventricular hemodynamics in hypertensive heart failure rats. Cardiovasc Diabetol Dicembre. 2019;18(1):45.CrossRef
74.
go back to reference Sabatino J, De Rosa S, Tammè L, Iaconetti C, Sorrentino S, Polimeni A, et al. Empagliflozin prevents doxorubicin-induced myocardial dysfunction. Cardiovasc Diabetol Dicembre. 2020;19(1):66.CrossRef Sabatino J, De Rosa S, Tammè L, Iaconetti C, Sorrentino S, Polimeni A, et al. Empagliflozin prevents doxorubicin-induced myocardial dysfunction. Cardiovasc Diabetol Dicembre. 2020;19(1):66.CrossRef
75.
go back to reference Santos-Gallego CG, Requena-Ibanez JA, San Antonio R, Garcia-Ropero A, Ishikawa K, Watanabe S, et al. Empagliflozin ameliorates diastolic dysfunction and left ventricular Fibrosis/Stiffness in nondiabetic heart failure. JACC Cardiovasc Imaging Febbraio. 2021;14(2):393–407.CrossRef Santos-Gallego CG, Requena-Ibanez JA, San Antonio R, Garcia-Ropero A, Ishikawa K, Watanabe S, et al. Empagliflozin ameliorates diastolic dysfunction and left ventricular Fibrosis/Stiffness in nondiabetic heart failure. JACC Cardiovasc Imaging Febbraio. 2021;14(2):393–407.CrossRef
76.
go back to reference Kawaji K, Codella NCF, Prince MR, Chu CW, Shakoor A, LaBounty TM, et al. Automated segmentation of Routine Clinical Cardiac magnetic resonance imaging for Assessment of Left Ventricular Diastolic Dysfunction. Circ Cardiovasc Imaging Novembre. 2009;2(6):476–84.CrossRef Kawaji K, Codella NCF, Prince MR, Chu CW, Shakoor A, LaBounty TM, et al. Automated segmentation of Routine Clinical Cardiac magnetic resonance imaging for Assessment of Left Ventricular Diastolic Dysfunction. Circ Cardiovasc Imaging Novembre. 2009;2(6):476–84.CrossRef
77.
go back to reference Pabel S, Wagner S, Bollenberg H, Bengel P, Kovács Á, Schach C, et al. Empagliflozin directly improves diastolic function in human heart failure. Eur J Heart Fail Dicembre. 2018;20(12):1690–700.CrossRef Pabel S, Wagner S, Bollenberg H, Bengel P, Kovács Á, Schach C, et al. Empagliflozin directly improves diastolic function in human heart failure. Eur J Heart Fail Dicembre. 2018;20(12):1690–700.CrossRef
78.
go back to reference Baartscheer A. Increased Na+/H+-exchange activity is the cause of increased [Na+]i and underlies disturbed calcium handling in the rabbit pressure and volume overload heart failure model. Cardiovasc Res 15 Marzo. 2003;57(4):1015–24.CrossRef Baartscheer A. Increased Na+/H+-exchange activity is the cause of increased [Na+]i and underlies disturbed calcium handling in the rabbit pressure and volume overload heart failure model. Cardiovasc Res 15 Marzo. 2003;57(4):1015–24.CrossRef
79.
go back to reference Croteau D, Luptak I, Chambers JM, Hobai I, Panagia M, Pimentel DR et al. Effects of Sodium-Glucose Linked Transporter 2 Inhibition With Ertugliflozin on Mitochondrial Function, Energetics, and Metabolic Gene Expression in the Presence and Absence of Diabetes Mellitus in Mice. J Am Heart Assoc. 6 luglio. 2021;10(13):e019995. Croteau D, Luptak I, Chambers JM, Hobai I, Panagia M, Pimentel DR et al. Effects of Sodium-Glucose Linked Transporter 2 Inhibition With Ertugliflozin on Mitochondrial Function, Energetics, and Metabolic Gene Expression in the Presence and Absence of Diabetes Mellitus in Mice. J Am Heart Assoc. 6 luglio. 2021;10(13):e019995.
80.
go back to reference Croteau D, Baka T, Young S, He H, Chambers JM, Qin F, et al. SGLT2 inhibitor ertugliflozin decreases elevated intracellular sodium, and improves energetics and contractile function in diabetic cardiomyopathy. Biomed Pharmacother Aprile. 2023;160:114310.CrossRef Croteau D, Baka T, Young S, He H, Chambers JM, Qin F, et al. SGLT2 inhibitor ertugliflozin decreases elevated intracellular sodium, and improves energetics and contractile function in diabetic cardiomyopathy. Biomed Pharmacother Aprile. 2023;160:114310.CrossRef
81.
go back to reference Doliba NM, Babsky AM, Osbakken MD. The Role of Sodium in Diabetic Cardiomyopathy. Front Physiol. 24 ottobre. 2018;9:1473. Doliba NM, Babsky AM, Osbakken MD. The Role of Sodium in Diabetic Cardiomyopathy. Front Physiol. 24 ottobre. 2018;9:1473.
82.
go back to reference Vettor R, Inzucchi SE, Fioretto P. The cardiovascular benefits of empagliflozin: SGLT2-dependent and -independent effects. Diabetologia Marzo. 2017;60(3):395–8.CrossRef Vettor R, Inzucchi SE, Fioretto P. The cardiovascular benefits of empagliflozin: SGLT2-dependent and -independent effects. Diabetologia Marzo. 2017;60(3):395–8.CrossRef
83.
go back to reference Athithan L, Gulsin GS, McCann GP, Levelt E. Diabetic cardiomyopathy: pathophysiology, theories and evidence to date. World J Diabetes 15 Ottobre. 2019;10(10):490–510.CrossRef Athithan L, Gulsin GS, McCann GP, Levelt E. Diabetic cardiomyopathy: pathophysiology, theories and evidence to date. World J Diabetes 15 Ottobre. 2019;10(10):490–510.CrossRef
84.
go back to reference Towner RA, Smith N, Saunders D, Carrizales J, Lupu F, Silasi-Mansat R, et al. In vivo targeted molecular magnetic resonance imaging of free radicals in diabetic cardiomyopathy within mice. Free Radic Res 2 Settembre. 2015;49(9):1140–6.CrossRef Towner RA, Smith N, Saunders D, Carrizales J, Lupu F, Silasi-Mansat R, et al. In vivo targeted molecular magnetic resonance imaging of free radicals in diabetic cardiomyopathy within mice. Free Radic Res 2 Settembre. 2015;49(9):1140–6.CrossRef
85.
go back to reference Levelt E, Rodgers CT, Clarke WT, Mahmod M, Ariga R, Francis JM, et al. Cardiac energetics, oxygenation, and perfusion during increased workload in patients with type 2 diabetes mellitus. Eur Heart J 7 Dicembre. 2016;37(46):3461–9.CrossRef Levelt E, Rodgers CT, Clarke WT, Mahmod M, Ariga R, Francis JM, et al. Cardiac energetics, oxygenation, and perfusion during increased workload in patients with type 2 diabetes mellitus. Eur Heart J 7 Dicembre. 2016;37(46):3461–9.CrossRef
86.
go back to reference Scheuermann-Freestone M, Madsen PL, Manners D, Blamire AM, Buckingham RE, Styles P et al. Abnormal Cardiac and Skeletal Muscle Energy Metabolism in Patients With Type 2 Diabetes. Circulation. 24 giugno. 2003;107(24):3040–6. Scheuermann-Freestone M, Madsen PL, Manners D, Blamire AM, Buckingham RE, Styles P et al. Abnormal Cardiac and Skeletal Muscle Energy Metabolism in Patients With Type 2 Diabetes. Circulation. 24 giugno. 2003;107(24):3040–6.
87.
go back to reference Joubert M, Jagu B, Montaigne D, Marechal X, Tesse A, Ayer A, et al. The sodium–glucose cotransporter 2 inhibitor Dapagliflozin prevents cardiomyopathy in a Diabetic Lipodystrophic Mouse Model. Diabetes 1 Aprile. 2017;66(4):1030–40.CrossRef Joubert M, Jagu B, Montaigne D, Marechal X, Tesse A, Ayer A, et al. The sodium–glucose cotransporter 2 inhibitor Dapagliflozin prevents cardiomyopathy in a Diabetic Lipodystrophic Mouse Model. Diabetes 1 Aprile. 2017;66(4):1030–40.CrossRef
88.
go back to reference Abdurrachim D, Teo XQ, Woo CC, Chan WX, Lalic J, Lam CSP, et al. Empagliflozin reduces myocardial ketone utilization while preserving glucose utilization in diabetic hypertensive heart disease: a hyperpolarized 13 C magnetic resonance spectroscopy study. Diabetes Obes Metab Febbraio. 2019;21(2):357–65.CrossRef Abdurrachim D, Teo XQ, Woo CC, Chan WX, Lalic J, Lam CSP, et al. Empagliflozin reduces myocardial ketone utilization while preserving glucose utilization in diabetic hypertensive heart disease: a hyperpolarized 13 C magnetic resonance spectroscopy study. Diabetes Obes Metab Febbraio. 2019;21(2):357–65.CrossRef
91.
go back to reference Brown AJM, Gandy S, McCrimmon R, Houston JG, Struthers AD, Lang CC. A randomized controlled trial of dapagliflozin on left ventricular hypertrophy in people with type two diabetes: the DAPA-LVH trial. Eur Heart J 21 Settembre. 2020;41(36):3421–32.CrossRef Brown AJM, Gandy S, McCrimmon R, Houston JG, Struthers AD, Lang CC. A randomized controlled trial of dapagliflozin on left ventricular hypertrophy in people with type two diabetes: the DAPA-LVH trial. Eur Heart J 21 Settembre. 2020;41(36):3421–32.CrossRef
92.
go back to reference Carluccio E, Biagioli P, Reboldi G, Mengoni A, Lauciello R, Zuchi C, et al. Left ventricular remodeling response to SGLT2 inhibitors in heart failure: an updated meta-analysis of randomized controlled studies. Cardiovasc Diabetol 2 Settembre. 2023;22(1):235.CrossRef Carluccio E, Biagioli P, Reboldi G, Mengoni A, Lauciello R, Zuchi C, et al. Left ventricular remodeling response to SGLT2 inhibitors in heart failure: an updated meta-analysis of randomized controlled studies. Cardiovasc Diabetol 2 Settembre. 2023;22(1):235.CrossRef
93.
go back to reference Moroney M, Verma R, Hibino M, Mazer CD, Connelly KA, Yan AT, et al. Impact of diabetes duration on left ventricular mass regression with empagliflozin. ESC Heart Fail Giugno. 2023;10(3):2134–40.CrossRef Moroney M, Verma R, Hibino M, Mazer CD, Connelly KA, Yan AT, et al. Impact of diabetes duration on left ventricular mass regression with empagliflozin. ESC Heart Fail Giugno. 2023;10(3):2134–40.CrossRef
94.
go back to reference Connelly KA, Mazer CD, Puar P, Teoh H, Wang CH, Mason T et al. Empagliflozin and Left Ventricular Remodeling in People Without Diabetes: Primary Results of the EMPA-HEART 2 CardioLink-7 Randomized Clinical Trial. Circulation. 24 gennaio. 2023;147(4):284–95. Connelly KA, Mazer CD, Puar P, Teoh H, Wang CH, Mason T et al. Empagliflozin and Left Ventricular Remodeling in People Without Diabetes: Primary Results of the EMPA-HEART 2 CardioLink-7 Randomized Clinical Trial. Circulation. 24 gennaio. 2023;147(4):284–95.
95.
go back to reference Mason T, Coelho-Filho OR, Verma S, Chowdhury B, Zuo F, Quan A, et al. Empagliflozin reduces myocardial extracellular volume in patients with type 2 diabetes and coronary artery disease. JACC Cardiovasc Imaging Giugno. 2021;14(6):1164–73.CrossRef Mason T, Coelho-Filho OR, Verma S, Chowdhury B, Zuo F, Quan A, et al. Empagliflozin reduces myocardial extracellular volume in patients with type 2 diabetes and coronary artery disease. JACC Cardiovasc Imaging Giugno. 2021;14(6):1164–73.CrossRef
96.
go back to reference Cohen ND, Gutman SJ, Briganti EM, Taylor AJ. Effects of empagliflozin treatment on cardiac function and structure in patients with type 2 diabetes: a cardiac magnetic resonance study. Intern Med J Agosto. 2019;49(8):1006–10.CrossRef Cohen ND, Gutman SJ, Briganti EM, Taylor AJ. Effects of empagliflozin treatment on cardiac function and structure in patients with type 2 diabetes: a cardiac magnetic resonance study. Intern Med J Agosto. 2019;49(8):1006–10.CrossRef
97.
go back to reference Hsu JC, Wang CY, Su MYM, Lin LY, Yang WS. Effect of Empagliflozin on Cardiac function, adiposity, and diffuse fibrosis in patients with type 2 diabetes Mellitus. Sci Rep 25 Ottobre. 2019;9(1):15348.CrossRefADS Hsu JC, Wang CY, Su MYM, Lin LY, Yang WS. Effect of Empagliflozin on Cardiac function, adiposity, and diffuse fibrosis in patients with type 2 diabetes Mellitus. Sci Rep 25 Ottobre. 2019;9(1):15348.CrossRefADS
98.
go back to reference Oldgren J, Laurila S, Åkerblom A, Latva-Rasku A, Rebelos E, Isackson H, et al. Effects of 6 weeks of treatment with dapagliflozin, a sodium‐glucose co‐transporter‐2 inhibitor, on myocardial function and metabolism in patients with type 2 diabetes: a randomized, placebo‐controlled, exploratory study. Diabetes Obes Metab Luglio. 2021;23(7):1505–17.CrossRef Oldgren J, Laurila S, Åkerblom A, Latva-Rasku A, Rebelos E, Isackson H, et al. Effects of 6 weeks of treatment with dapagliflozin, a sodium‐glucose co‐transporter‐2 inhibitor, on myocardial function and metabolism in patients with type 2 diabetes: a randomized, placebo‐controlled, exploratory study. Diabetes Obes Metab Luglio. 2021;23(7):1505–17.CrossRef
99.
go back to reference Verma S, Mazer CD, Yan AT, Mason T, Garg V, Teoh H et al. Effect of Empagliflozin on Left Ventricular Mass in Patients With Type 2 Diabetes Mellitus and Coronary Artery Disease: The EMPA-HEART CardioLink-6 Randomized Clinical Trial. Circulation. 19 novembre. 2019;140(21):1693–702. Verma S, Mazer CD, Yan AT, Mason T, Garg V, Teoh H et al. Effect of Empagliflozin on Left Ventricular Mass in Patients With Type 2 Diabetes Mellitus and Coronary Artery Disease: The EMPA-HEART CardioLink-6 Randomized Clinical Trial. Circulation. 19 novembre. 2019;140(21):1693–702.
100.
go back to reference Wong TC, Piehler KM, Kang IA, Kadakkal A, Kellman P, Schwartzman DS, et al. Myocardial extracellular volume fraction quantified by cardiovascular magnetic resonance is increased in diabetes and associated with mortality and incident heart failure admission. Eur Heart J 2 Marzo. 2014;35(10):657–64.CrossRef Wong TC, Piehler KM, Kang IA, Kadakkal A, Kellman P, Schwartzman DS, et al. Myocardial extracellular volume fraction quantified by cardiovascular magnetic resonance is increased in diabetes and associated with mortality and incident heart failure admission. Eur Heart J 2 Marzo. 2014;35(10):657–64.CrossRef
101.
go back to reference Hundertmark MJ, Adler A, Antoniades C, Coleman R, Griffin JL, Holman RR et al. Assessment of Cardiac Energy Metabolism, Function, and Physiology in Patients With Heart Failure Taking Empagliflozin: The Randomized, Controlled EMPA-VISION Trial. Circulation. 30 maggio. 2023;147(22):1654–69. Hundertmark MJ, Adler A, Antoniades C, Coleman R, Griffin JL, Holman RR et al. Assessment of Cardiac Energy Metabolism, Function, and Physiology in Patients With Heart Failure Taking Empagliflozin: The Randomized, Controlled EMPA-VISION Trial. Circulation. 30 maggio. 2023;147(22):1654–69.
102.
go back to reference Masson W, Lavalle-Cobo A, Nogueira JP. Effect of SGLT2-Inhibitors on Epicardial Adipose tissue: a Meta-analysis. Cells 20 Agosto. 2021;10(8):2150. Masson W, Lavalle-Cobo A, Nogueira JP. Effect of SGLT2-Inhibitors on Epicardial Adipose tissue: a Meta-analysis. Cells 20 Agosto. 2021;10(8):2150.
104.
go back to reference Gaborit B, Ancel P, Abdullah AE, Maurice F, Abdesselam I, Calen A, et al. Effect of empagliflozin on ectopic fat stores and myocardial energetics in type 2 diabetes: the EMPACEF study. Cardiovasc Diabetol Dicembre. 2021;20(1):57.CrossRef Gaborit B, Ancel P, Abdullah AE, Maurice F, Abdesselam I, Calen A, et al. Effect of empagliflozin on ectopic fat stores and myocardial energetics in type 2 diabetes: the EMPACEF study. Cardiovasc Diabetol Dicembre. 2021;20(1):57.CrossRef
106.
go back to reference Lee MMY, Brooksbank KJM, Wetherall K, Mangion K, Roditi G, Campbell RT et al. Effect of Empagliflozin on Left Ventricular Volumes in Patients With Type 2 Diabetes, or Prediabetes, and Heart Failure With Reduced Ejection Fraction (SUGAR-DM-HF). Circulation. 9 febbraio. 2021;143(6):516–25. Lee MMY, Brooksbank KJM, Wetherall K, Mangion K, Roditi G, Campbell RT et al. Effect of Empagliflozin on Left Ventricular Volumes in Patients With Type 2 Diabetes, or Prediabetes, and Heart Failure With Reduced Ejection Fraction (SUGAR-DM-HF). Circulation. 9 febbraio. 2021;143(6):516–25.
107.
go back to reference Singh JSS, Mordi IR, Vickneson K, Fathi A, Donnan PT, Mohan M, et al. Dapagliflozin Versus Placebo on Left ventricular remodeling in patients with diabetes and heart failure: the REFORM Trial. Diabetes Care 1 Giugno. 2020;43(6):1356–9.CrossRef Singh JSS, Mordi IR, Vickneson K, Fathi A, Donnan PT, Mohan M, et al. Dapagliflozin Versus Placebo on Left ventricular remodeling in patients with diabetes and heart failure: the REFORM Trial. Diabetes Care 1 Giugno. 2020;43(6):1356–9.CrossRef
108.
go back to reference Kolterman OG, Kim DD, Shen L, Ruggles JA, Nielsen LL, Fineman MS, et al. Pharmacokinetics, pharmacodynamics, and safety of exenatide in patients with type 2 diabetes mellitus. Am J Health Syst Pharm 15 Gennaio. 2005;62(2):173–81.CrossRef Kolterman OG, Kim DD, Shen L, Ruggles JA, Nielsen LL, Fineman MS, et al. Pharmacokinetics, pharmacodynamics, and safety of exenatide in patients with type 2 diabetes mellitus. Am J Health Syst Pharm 15 Gennaio. 2005;62(2):173–81.CrossRef
109.
go back to reference Davies M, Pieber TR, Hartoft-Nielsen ML, Hansen OKH, Jabbour S, Rosenstock J. Effect of Oral Semaglutide Compared With Placebo and Subcutaneous Semaglutide on Glycemic Control in Patients With Type 2 Diabetes: A Randomized Clinical Trial. JAMA. 17 ottobre. 2017;318(15):1460. Davies M, Pieber TR, Hartoft-Nielsen ML, Hansen OKH, Jabbour S, Rosenstock J. Effect of Oral Semaglutide Compared With Placebo and Subcutaneous Semaglutide on Glycemic Control in Patients With Type 2 Diabetes: A Randomized Clinical Trial. JAMA. 17 ottobre. 2017;318(15):1460.
110.
go back to reference Jimenez-Solem E, Rasmussen MH, Christensen M, Knop FK. Dulaglutide, a long-acting GLP-1 analog fused with an fc antibody fragment for the potential treatment of type 2 diabetes. Curr Opin Mol Ther Dicembre. 2010;12(6):790–7. Jimenez-Solem E, Rasmussen MH, Christensen M, Knop FK. Dulaglutide, a long-acting GLP-1 analog fused with an fc antibody fragment for the potential treatment of type 2 diabetes. Curr Opin Mol Ther Dicembre. 2010;12(6):790–7.
111.
go back to reference Aroda VR, Rosenstock J, Terauchi Y, Altuntas Y, Lalic NM, Morales Villegas EC, et al. PIONEER 1: Randomized Clinical Trial of the efficacy and safety of oral Semaglutide Monotherapy in Comparison with Placebo in patients with type 2 diabetes. Diabetes Care 1 Settembre. 2019;42(9):1724–32.CrossRef Aroda VR, Rosenstock J, Terauchi Y, Altuntas Y, Lalic NM, Morales Villegas EC, et al. PIONEER 1: Randomized Clinical Trial of the efficacy and safety of oral Semaglutide Monotherapy in Comparison with Placebo in patients with type 2 diabetes. Diabetes Care 1 Settembre. 2019;42(9):1724–32.CrossRef
112.
go back to reference Baggio LL, Drucker DJ. Biology of incretins: GLP-1 and GIP. Gastroenterol Maggio. 2007;132(6):2131–57.CrossRef Baggio LL, Drucker DJ. Biology of incretins: GLP-1 and GIP. Gastroenterol Maggio. 2007;132(6):2131–57.CrossRef
113.
go back to reference Drucker DJ. Incretin Action in the pancreas: potential Promise, possible perils, and Pathological Pitfalls. Diabetes 1 Ottobre. 2013;62(10):3316–23. Drucker DJ. Incretin Action in the pancreas: potential Promise, possible perils, and Pathological Pitfalls. Diabetes 1 Ottobre. 2013;62(10):3316–23.
114.
go back to reference Nogueiras R, Pérez-Tilve D, Veyrat-Durebex C, Morgan DA, Varela L, Haynes WG, et al. Direct Control of Peripheral Lipid Deposition by CNS GLP-1 receptor signaling is mediated by the sympathetic nervous system and blunted in Diet-Induced obesity. J Neurosci 6 Maggio. 2009;29(18):5916–25.CrossRef Nogueiras R, Pérez-Tilve D, Veyrat-Durebex C, Morgan DA, Varela L, Haynes WG, et al. Direct Control of Peripheral Lipid Deposition by CNS GLP-1 receptor signaling is mediated by the sympathetic nervous system and blunted in Diet-Induced obesity. J Neurosci 6 Maggio. 2009;29(18):5916–25.CrossRef
115.
go back to reference Sattar N, Lee MMY, Kristensen SL, Branch KRH, Del Prato S, Khurmi NS, et al. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of randomised trials. Lancet Diabetes Endocrinol Ottobre. 2021;9(10):653–62.CrossRef Sattar N, Lee MMY, Kristensen SL, Branch KRH, Del Prato S, Khurmi NS, et al. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of randomised trials. Lancet Diabetes Endocrinol Ottobre. 2021;9(10):653–62.CrossRef
116.
go back to reference Zhao N, Wang X, Wang Y, Yao J, Shi C, Du J, et al. The Effect of Liraglutide on Epicardial Adipose tissue in type 2 diabetes. Marfella R, curatore. J Diabetes Res 16 Novembre. 2021;2021:1–6. Zhao N, Wang X, Wang Y, Yao J, Shi C, Du J, et al. The Effect of Liraglutide on Epicardial Adipose tissue in type 2 diabetes. Marfella R, curatore. J Diabetes Res 16 Novembre. 2021;2021:1–6.
117.
go back to reference Røder ME. Major adverse cardiovascular event reduction with GLP-1 and SGLT2 agents: evidence and clinical potential. Ther Adv Chronic Dis Gennaio. 2018;9(1):33–50.CrossRef Røder ME. Major adverse cardiovascular event reduction with GLP-1 and SGLT2 agents: evidence and clinical potential. Ther Adv Chronic Dis Gennaio. 2018;9(1):33–50.CrossRef
118.
go back to reference Neves JS, Vasques-Nóvoa F, Borges‐Canha M, Leite AR, Sharma A, Carvalho D, et al. Risk of adverse events with liraglutide in heart failure with reduced ejection fraction: a post hoc analysis of the FIGHT trial. Diabetes Obes Metab Gennaio. 2023;25(1):189–97.CrossRef Neves JS, Vasques-Nóvoa F, Borges‐Canha M, Leite AR, Sharma A, Carvalho D, et al. Risk of adverse events with liraglutide in heart failure with reduced ejection fraction: a post hoc analysis of the FIGHT trial. Diabetes Obes Metab Gennaio. 2023;25(1):189–97.CrossRef
119.
go back to reference Nauck MA, Meier JJ, Cavender MA, Abd El Aziz M, Drucker DJ. Cardiovascular Actions and Clinical Outcomes With Glucagon-Like Peptide-1 Receptor Agonists and Dipeptidyl Peptidase-4 Inhibitors. Circulation. 29 agosto. 2017;136(9):849–70. Nauck MA, Meier JJ, Cavender MA, Abd El Aziz M, Drucker DJ. Cardiovascular Actions and Clinical Outcomes With Glucagon-Like Peptide-1 Receptor Agonists and Dipeptidyl Peptidase-4 Inhibitors. Circulation. 29 agosto. 2017;136(9):849–70.
120.
go back to reference Sabouret P, Ecarnot F, De Rosa S, Ray KK. What about glucagon-like peptide-1 receptor agonist for all? Recent data and perspectives. Eur Heart J. 14 novembre. 2023;44(43):4499–502. Sabouret P, Ecarnot F, De Rosa S, Ray KK. What about glucagon-like peptide-1 receptor agonist for all? Recent data and perspectives. Eur Heart J. 14 novembre. 2023;44(43):4499–502.
121.
go back to reference Jorsal A, Kistorp C, Holmager P, Tougaard RS, Nielsen R, Hänselmann A, et al. Effect of liraglutide, a glucagon-like peptide‐1 analogue, on left ventricular function in stable chronic heart failure patients with and without diabetes (LIVE)—a multicentre, double‐blind, randomised, placebo‐controlled trial. Eur J Heart Fail Gennaio. 2017;19(1):69–77.CrossRef Jorsal A, Kistorp C, Holmager P, Tougaard RS, Nielsen R, Hänselmann A, et al. Effect of liraglutide, a glucagon-like peptide‐1 analogue, on left ventricular function in stable chronic heart failure patients with and without diabetes (LIVE)—a multicentre, double‐blind, randomised, placebo‐controlled trial. Eur J Heart Fail Gennaio. 2017;19(1):69–77.CrossRef
122.
go back to reference Margulies KB, Hernandez AF, Redfield MM, Givertz MM, Oliveira GH, Cole R, et al. Effects of Liraglutide on Clinical Stability among patients with Advanced Heart failure and reduced ejection fraction: a Randomized Clinical Trial. JAMA 2 Agosto. 2016;316(5):500.CrossRef Margulies KB, Hernandez AF, Redfield MM, Givertz MM, Oliveira GH, Cole R, et al. Effects of Liraglutide on Clinical Stability among patients with Advanced Heart failure and reduced ejection fraction: a Randomized Clinical Trial. JAMA 2 Agosto. 2016;316(5):500.CrossRef
123.
go back to reference Gerstein HC, Colhoun HM, Dagenais GR, Diaz R, Lakshmanan M, Pais P, et al. Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double-blind, randomised placebo-controlled trial. Lancet Luglio. 2019;394(10193):121–30.CrossRef Gerstein HC, Colhoun HM, Dagenais GR, Diaz R, Lakshmanan M, Pais P, et al. Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double-blind, randomised placebo-controlled trial. Lancet Luglio. 2019;394(10193):121–30.CrossRef
124.
go back to reference Kosiborod MN, Abildstrøm SZ, Borlaug BA, Butler J, Rasmussen S, Davies M et al. Semaglutide in Patients with Heart Failure with Preserved Ejection Fraction and Obesity. N Engl J Med. 21 settembre. 2023;389(12):1069–84. Kosiborod MN, Abildstrøm SZ, Borlaug BA, Butler J, Rasmussen S, Davies M et al. Semaglutide in Patients with Heart Failure with Preserved Ejection Fraction and Obesity. N Engl J Med. 21 settembre. 2023;389(12):1069–84.
125.
go back to reference Nikolaidis LA, Mankad S, Sokos GG, Miske G, Shah A, Elahi D, et al. Effects of Glucagon-Like Peptide-1 in patients with Acute myocardial infarction and left ventricular dysfunction after successful reperfusion. Circulation 2 Marzo. 2004;109(8):962–5.CrossRef Nikolaidis LA, Mankad S, Sokos GG, Miske G, Shah A, Elahi D, et al. Effects of Glucagon-Like Peptide-1 in patients with Acute myocardial infarction and left ventricular dysfunction after successful reperfusion. Circulation 2 Marzo. 2004;109(8):962–5.CrossRef
126.
go back to reference Cosentino F, Grant PJ, Aboyans V, Bailey CJ, Ceriello A, Delgado V et al. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J. 7 gennaio. 2020;41(2):255–323. Cosentino F, Grant PJ, Aboyans V, Bailey CJ, Ceriello A, Delgado V et al. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J. 7 gennaio. 2020;41(2):255–323.
127.
go back to reference Visseren FLJ, Mach F, Smulders YM, Carballo D, Koskinas KC, Bäck M et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur Heart J. 7 settembre. 2021;42(34):3227–337. Visseren FLJ, Mach F, Smulders YM, Carballo D, Koskinas KC, Bäck M et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur Heart J. 7 settembre. 2021;42(34):3227–337.
128.
go back to reference Buse JB, Bain SC, Mann JFE, Nauck MA, Nissen SE, Pocock S, et al. Cardiovascular Risk Reduction with Liraglutide: an exploratory mediation analysis of the LEADER Trial. Diabetes Care 1 Luglio. 2020;43(7):1546–52.CrossRef Buse JB, Bain SC, Mann JFE, Nauck MA, Nissen SE, Pocock S, et al. Cardiovascular Risk Reduction with Liraglutide: an exploratory mediation analysis of the LEADER Trial. Diabetes Care 1 Luglio. 2020;43(7):1546–52.CrossRef
129.
go back to reference Sanada J, Obata A, Obata Y, Fushimi Y, Shimoda M, Kohara K, et al. Dulaglutide exerts beneficial anti atherosclerotic effects in ApoE knockout mice with diabetes: the earlier, the better. Sci Rep 14 Gennaio. 2021;11(1):1425.CrossRef Sanada J, Obata A, Obata Y, Fushimi Y, Shimoda M, Kohara K, et al. Dulaglutide exerts beneficial anti atherosclerotic effects in ApoE knockout mice with diabetes: the earlier, the better. Sci Rep 14 Gennaio. 2021;11(1):1425.CrossRef
130.
go back to reference Rakipovski G, Rolin B, Nøhr J, Klewe I, Frederiksen KS, Augustin R, et al. The GLP-1 analogs Liraglutide and Semaglutide reduce atherosclerosis in ApoE–/– and LDLr–/– mice by a mechanism that includes inflammatory pathways. JACC Basic Transl Sci Dicembre. 2018;3(6):844–57.CrossRef Rakipovski G, Rolin B, Nøhr J, Klewe I, Frederiksen KS, Augustin R, et al. The GLP-1 analogs Liraglutide and Semaglutide reduce atherosclerosis in ApoE–/– and LDLr–/– mice by a mechanism that includes inflammatory pathways. JACC Basic Transl Sci Dicembre. 2018;3(6):844–57.CrossRef
131.
go back to reference Edin C, Ekstedt M, Scheffel T, Karlsson M, Swahn E, Östgren CJ et al. Ectopic fat is associated with cardiac remodeling—A comprehensive assessment of regional fat depots in type 2 diabetes using multi-parametric MRI. Front Cardiovasc Med. 28 luglio. 2022;9:813427. Edin C, Ekstedt M, Scheffel T, Karlsson M, Swahn E, Östgren CJ et al. Ectopic fat is associated with cardiac remodeling—A comprehensive assessment of regional fat depots in type 2 diabetes using multi-parametric MRI. Front Cardiovasc Med. 28 luglio. 2022;9:813427.
132.
go back to reference Marino F, Scalise M, Salerno N, Salerno L, Molinaro C, Cappetta D, et al. Diabetes-Induced Cellular Senescence and Senescence-Associated Secretory phenotype impair Cardiac regeneration and function independently of age. Diabetes 1 Maggio. 2022;71(5):1081–98.CrossRef Marino F, Scalise M, Salerno N, Salerno L, Molinaro C, Cappetta D, et al. Diabetes-Induced Cellular Senescence and Senescence-Associated Secretory phenotype impair Cardiac regeneration and function independently of age. Diabetes 1 Maggio. 2022;71(5):1081–98.CrossRef
133.
go back to reference Masenga SK, Kabwe LS, Chakulya M, Kirabo A. Mechanisms of oxidative stress in metabolic syndrome. Int J Mol Sci 26 Aprile. 2023;24(9):7898.CrossRef Masenga SK, Kabwe LS, Chakulya M, Kirabo A. Mechanisms of oxidative stress in metabolic syndrome. Int J Mol Sci 26 Aprile. 2023;24(9):7898.CrossRef
134.
go back to reference Oneglia AP, Szczepaniak LS, Jaffery MF, Cipher DJ, McDonald JG, Haykowsky MJ, et al. Myocardial steatosis impairs left ventricular diastolic–systolic coupling in healthy humans. J Physiol Aprile. 2023;601(8):1371–82.CrossRef Oneglia AP, Szczepaniak LS, Jaffery MF, Cipher DJ, McDonald JG, Haykowsky MJ, et al. Myocardial steatosis impairs left ventricular diastolic–systolic coupling in healthy humans. J Physiol Aprile. 2023;601(8):1371–82.CrossRef
135.
go back to reference Szczepaniak LS, Dobbins RL, Metzger GJ, Sartoni-D’Ambrosia G, Arbique D, Vongpatanasin W, et al. Myocardial triglycerides and systolic function in humans: in vivo evaluation by localized proton spectroscopy and cardiac imaging. Magn Reson Med Marzo. 2003;49(3):417–23.CrossRef Szczepaniak LS, Dobbins RL, Metzger GJ, Sartoni-D’Ambrosia G, Arbique D, Vongpatanasin W, et al. Myocardial triglycerides and systolic function in humans: in vivo evaluation by localized proton spectroscopy and cardiac imaging. Magn Reson Med Marzo. 2003;49(3):417–23.CrossRef
136.
go back to reference Hammer S, Snel M, Lamb HJ, Jazet IM, Van Der Meer RW, Pijl H, et al. Prolonged caloric restriction in obese patients with type 2 diabetes Mellitus decreases myocardial triglyceride content and improves myocardial function. J Am Coll Cardiol Settembre. 2008;52(12):1006–12.CrossRef Hammer S, Snel M, Lamb HJ, Jazet IM, Van Der Meer RW, Pijl H, et al. Prolonged caloric restriction in obese patients with type 2 diabetes Mellitus decreases myocardial triglyceride content and improves myocardial function. J Am Coll Cardiol Settembre. 2008;52(12):1006–12.CrossRef
137.
go back to reference Kellman P, Hansen MS, Nielles-Vallespin S, Nickander J, Themudo R, Ugander M, et al. Myocardial perfusion cardiovascular magnetic resonance: optimized dual sequence and reconstruction for quantification. J Cardiovasc Magn Reson Dicembre. 2017;19(1):43.CrossRef Kellman P, Hansen MS, Nielles-Vallespin S, Nickander J, Themudo R, Ugander M, et al. Myocardial perfusion cardiovascular magnetic resonance: optimized dual sequence and reconstruction for quantification. J Cardiovasc Magn Reson Dicembre. 2017;19(1):43.CrossRef
138.
go back to reference Knott KD, Seraphim A, Augusto JB, Xue H, Chacko L, Aung N et al. The Prognostic significance of quantitative myocardial perfusion: an Artificial Intelligence Based Approach using perfusion mapping. Circulation. 14 febbraio 2020;CIRCULATIONAHA.119.044666. Knott KD, Seraphim A, Augusto JB, Xue H, Chacko L, Aung N et al. The Prognostic significance of quantitative myocardial perfusion: an Artificial Intelligence Based Approach using perfusion mapping. Circulation. 14 febbraio 2020;CIRCULATIONAHA.119.044666.
139.
go back to reference Kober F, Jao T, Troalen T, Nayak KS. Myocardial arterial spin labeling. J Cardiovasc Magn Reson Dicembre. 2016;18(1):22.CrossRef Kober F, Jao T, Troalen T, Nayak KS. Myocardial arterial spin labeling. J Cardiovasc Magn Reson Dicembre. 2016;18(1):22.CrossRef
140.
go back to reference Abdesselam I, Pepino P, Troalen T, Macia M, Ancel P, Masi B, et al. Time course of cardiometabolic alterations in a high fat high sucrose diet mice model and improvement after GLP-1 analog treatment using multimodal cardiovascular magnetic resonance. J Cardiovasc Magn Reson Dicembre. 2015;17(1):95.CrossRef Abdesselam I, Pepino P, Troalen T, Macia M, Ancel P, Masi B, et al. Time course of cardiometabolic alterations in a high fat high sucrose diet mice model and improvement after GLP-1 analog treatment using multimodal cardiovascular magnetic resonance. J Cardiovasc Magn Reson Dicembre. 2015;17(1):95.CrossRef
141.
go back to reference Noyan-Ashraf MH, Momen MA, Ban K, Sadi AM, Zhou YQ, Riazi AM, et al. GLP-1R agonist Liraglutide activates Cytoprotective pathways and improves outcomes after experimental myocardial infarction in mice. Diabetes 1 Aprile. 2009;58(4):975–83.CrossRef Noyan-Ashraf MH, Momen MA, Ban K, Sadi AM, Zhou YQ, Riazi AM, et al. GLP-1R agonist Liraglutide activates Cytoprotective pathways and improves outcomes after experimental myocardial infarction in mice. Diabetes 1 Aprile. 2009;58(4):975–83.CrossRef
142.
go back to reference Saleh MG, Sharp SK, Alhamud A, Spottiswoode BS, Van Der Kouwe AJW, Davies NH, et al. Long-term left ventricular remodelling in Rat Model of Nonreperfused myocardial infarction: sequential MR Imaging using a 3T clinical scanner. J Biomed Biotechnol. 2012;2012:1–10.CrossRef Saleh MG, Sharp SK, Alhamud A, Spottiswoode BS, Van Der Kouwe AJW, Davies NH, et al. Long-term left ventricular remodelling in Rat Model of Nonreperfused myocardial infarction: sequential MR Imaging using a 3T clinical scanner. J Biomed Biotechnol. 2012;2012:1–10.CrossRef
143.
go back to reference Ussher JR, Drucker DJ. Cardiovascular actions of incretin-based therapies. Circ Res 23 Maggio. 2014;114(11):1788–803.CrossRef Ussher JR, Drucker DJ. Cardiovascular actions of incretin-based therapies. Circ Res 23 Maggio. 2014;114(11):1788–803.CrossRef
144.
go back to reference Ussher JR, Greenwell AA, Nguyen MA, Mulvihill EE. Cardiovascular effects of Incretin-based therapies: integrating mechanisms with Cardiovascular Outcome trials. Diabetes 1 Febbraio. 2022;71(2):173–83. Ussher JR, Greenwell AA, Nguyen MA, Mulvihill EE. Cardiovascular effects of Incretin-based therapies: integrating mechanisms with Cardiovascular Outcome trials. Diabetes 1 Febbraio. 2022;71(2):173–83.
145.
go back to reference Kurian GA, Rajagopal R, Vedantham S, Rajesh M. The role of oxidative stress in Myocardial Ischemia and Reperfusion Injury and Remodeling: Revisited. Oxid Med Cell Longev. 2016;2016:1–14.CrossRef Kurian GA, Rajagopal R, Vedantham S, Rajesh M. The role of oxidative stress in Myocardial Ischemia and Reperfusion Injury and Remodeling: Revisited. Oxid Med Cell Longev. 2016;2016:1–14.CrossRef
146.
go back to reference Pfeffer JM, Pfeffer MA, Fletcher PJ, Braunwald E. Progressive ventricular remodeling in rat with myocardial infarction. Am J Physiol-Heart Circ Physiol 1 Maggio. 1991;260(5):H1406–14.CrossRef Pfeffer JM, Pfeffer MA, Fletcher PJ, Braunwald E. Progressive ventricular remodeling in rat with myocardial infarction. Am J Physiol-Heart Circ Physiol 1 Maggio. 1991;260(5):H1406–14.CrossRef
147.
go back to reference Timmers L, Henriques JPS, De Kleijn DPV, DeVries JH, Kemperman H, Steendijk P, et al. Exenatide reduces infarct size and improves cardiac function in a Porcine Model of Ischemia and Reperfusion Injury. J Am Coll Cardiol Febbraio. 2009;53(6):501–10.CrossRef Timmers L, Henriques JPS, De Kleijn DPV, DeVries JH, Kemperman H, Steendijk P, et al. Exenatide reduces infarct size and improves cardiac function in a Porcine Model of Ischemia and Reperfusion Injury. J Am Coll Cardiol Febbraio. 2009;53(6):501–10.CrossRef
148.
go back to reference Demkes EJ, Wenker S, Silvis MJM, Van Nieuwburg MMJ, Visser MJ, Jansen MS et al. Neutral Effects of Combined Treatment With GLP-1R Agonist Exenatide and MR Antagonist Potassium Canrenoate on Cardiac Function in Porcine and Murine Chronic Heart Failure Models. Front Pharmacol. 26 luglio. 2021;12:702326. Demkes EJ, Wenker S, Silvis MJM, Van Nieuwburg MMJ, Visser MJ, Jansen MS et al. Neutral Effects of Combined Treatment With GLP-1R Agonist Exenatide and MR Antagonist Potassium Canrenoate on Cardiac Function in Porcine and Murine Chronic Heart Failure Models. Front Pharmacol. 26 luglio. 2021;12:702326.
149.
go back to reference Kyhl K, Lønborg J, Hartmann B, Kissow H, Poulsen SS, Ali HE, et al. Lack of effect of prolonged treatment with liraglutide on cardiac remodeling in rats after acute myocardial infarction. Peptides Luglio. 2017;93:1–12.CrossRef Kyhl K, Lønborg J, Hartmann B, Kissow H, Poulsen SS, Ali HE, et al. Lack of effect of prolonged treatment with liraglutide on cardiac remodeling in rats after acute myocardial infarction. Peptides Luglio. 2017;93:1–12.CrossRef
150.
go back to reference Aravindhan K, Bao W, Harpel MR, Willette RN, Lepore JJ, Jucker BM. Cardioprotection Resulting from Glucagon-Like Peptide-1 Administration Involves Shifting Metabolic Substrate Utilization to Increase Energy Efficiency in the Rat Heart. Ma XL, curatore. PLOS ONE. 22 giugno. 2015;10(6):e0130894. Aravindhan K, Bao W, Harpel MR, Willette RN, Lepore JJ, Jucker BM. Cardioprotection Resulting from Glucagon-Like Peptide-1 Administration Involves Shifting Metabolic Substrate Utilization to Increase Energy Efficiency in the Rat Heart. Ma XL, curatore. PLOS ONE. 22 giugno. 2015;10(6):e0130894.
151.
go back to reference Del García B, Otaegui I, Rodríguez-Palomares JF, Bayés-Genis A, Fernández-Nofrerías E, Del Vilalta V, et al. Effect of COMBinAtion therapy with remote ischemic conditioning and exenatide on the myocardial infarct size: a two-by-two factorial randomized trial (COMBAT-MI). Basic Res Cardiol Dicembre. 2021;116(1):4.CrossRef Del García B, Otaegui I, Rodríguez-Palomares JF, Bayés-Genis A, Fernández-Nofrerías E, Del Vilalta V, et al. Effect of COMBinAtion therapy with remote ischemic conditioning and exenatide on the myocardial infarct size: a two-by-two factorial randomized trial (COMBAT-MI). Basic Res Cardiol Dicembre. 2021;116(1):4.CrossRef
152.
go back to reference Chen WJY, Diamant M, De Boer K, Harms HJ, Robbers LFHJ, Van Rossum AC, et al. Effects of Exenatide on cardiac function, perfusion, and energetics in type 2 diabetic patients with cardiomyopathy: a randomized controlled trial against insulin glargine. Cardiovasc Diabetol Dicembre. 2017;16(1):67.CrossRef Chen WJY, Diamant M, De Boer K, Harms HJ, Robbers LFHJ, Van Rossum AC, et al. Effects of Exenatide on cardiac function, perfusion, and energetics in type 2 diabetic patients with cardiomyopathy: a randomized controlled trial against insulin glargine. Cardiovasc Diabetol Dicembre. 2017;16(1):67.CrossRef
153.
go back to reference Nozue T, Yamada M, Tsunoda T, Katoh H, Ito S, Iwaki T, et al. Effects of liraglutide, a glucagon-like peptide-1 analog, on left ventricular remodeling assessed by cardiac magnetic resonance imaging in patients with acute myocardial infarction undergoing primary percutaneous coronary intervention. Heart Vessels Agosto. 2016;31(8):1239–46.CrossRef Nozue T, Yamada M, Tsunoda T, Katoh H, Ito S, Iwaki T, et al. Effects of liraglutide, a glucagon-like peptide-1 analog, on left ventricular remodeling assessed by cardiac magnetic resonance imaging in patients with acute myocardial infarction undergoing primary percutaneous coronary intervention. Heart Vessels Agosto. 2016;31(8):1239–46.CrossRef
154.
go back to reference Bizino MB, Jazet IM, De Heer P, Van Eyk HJ, Dekkers IA, Rensen PCN, et al. Placebo-controlled randomised trial with liraglutide on magnetic resonance endpoints in individuals with type 2 diabetes: a pre-specified secondary study on ectopic fat accumulation. Diabetologia Gennaio. 2020;63(1):65–74.CrossRef Bizino MB, Jazet IM, De Heer P, Van Eyk HJ, Dekkers IA, Rensen PCN, et al. Placebo-controlled randomised trial with liraglutide on magnetic resonance endpoints in individuals with type 2 diabetes: a pre-specified secondary study on ectopic fat accumulation. Diabetologia Gennaio. 2020;63(1):65–74.CrossRef
155.
go back to reference Dutour A, Abdesselam I, Ancel P, Kober F, Mrad G, Darmon P, et al. Exenatide decreases liver fat content and epicardial adipose tissue in patients with obesity and type 2 diabetes: a prospective randomized clinical trial using magnetic resonance imaging and spectroscopy. Diabetes Obes Metab Settembre. 2016;18(9):882–91.CrossRef Dutour A, Abdesselam I, Ancel P, Kober F, Mrad G, Darmon P, et al. Exenatide decreases liver fat content and epicardial adipose tissue in patients with obesity and type 2 diabetes: a prospective randomized clinical trial using magnetic resonance imaging and spectroscopy. Diabetes Obes Metab Settembre. 2016;18(9):882–91.CrossRef
156.
go back to reference Iacobellis G, Mohseni M, Bianco SD, Banga PK. Liraglutide causes large and rapid epicardial fat reduction. Obes Febbraio. 2017;25(2):311–6. Iacobellis G, Mohseni M, Bianco SD, Banga PK. Liraglutide causes large and rapid epicardial fat reduction. Obes Febbraio. 2017;25(2):311–6.
157.
go back to reference Lønborg J, Vejlstrup N, Kelbæk H, Bøtker HE, Kim WY, Mathiasen AB, et al. Exenatide reduces reperfusion injury in patients with ST-segment elevation myocardial infarction. Eur Heart J Giugno. 2012;33(12):1491–9.CrossRef Lønborg J, Vejlstrup N, Kelbæk H, Bøtker HE, Kim WY, Mathiasen AB, et al. Exenatide reduces reperfusion injury in patients with ST-segment elevation myocardial infarction. Eur Heart J Giugno. 2012;33(12):1491–9.CrossRef
158.
go back to reference Bizino MB, Jazet IM, Westenberg JJM, Van Eyk HJ, Paiman EHM, Smit JWA, et al. Effect of liraglutide on cardiac function in patients with type 2 diabetes mellitus: randomized placebo-controlled trial. Cardiovasc Diabetol Dicembre. 2019;18(1):55.CrossRef Bizino MB, Jazet IM, Westenberg JJM, Van Eyk HJ, Paiman EHM, Smit JWA, et al. Effect of liraglutide on cardiac function in patients with type 2 diabetes mellitus: randomized placebo-controlled trial. Cardiovasc Diabetol Dicembre. 2019;18(1):55.CrossRef
Metadata
Title
Underlying mechanisms and cardioprotective effects of SGLT2i and GLP-1Ra: insights from cardiovascular magnetic resonance
Authors
Angelica Cersosimo
Nadia Salerno
Jolanda Sabatino
Alessandra Scatteia
Giandomenico Bisaccia
Salvatore De Rosa
Santo Dellegrottaglie
Chiara Bucciarelli-Ducci
Daniele Torella
Isabella Leo
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Cardiovascular Diabetology / Issue 1/2024
Electronic ISSN: 1475-2840
DOI
https://doi.org/10.1186/s12933-024-02181-7

Other articles of this Issue 1/2024

Cardiovascular Diabetology 1/2024 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.