Skip to main content
Top
Published in: Diabetology & Metabolic Syndrome 1/2024

Open Access 01-12-2024 | Diabetes | Research

Remnant cholesterol, iron status and diabetes mellitus: a dose–response relationship and mediation analysis

Authors: Xiangming Hu, Yan Lin, Allison A. Appleton, Weimian Wang, Bingyan Yu, Langping Zhou, Guang Li, Yingling Zhou, Yanqiu Ou, Haojian Dong

Published in: Diabetology & Metabolic Syndrome | Issue 1/2024

Login to get access

Abstract

Background

Remnant cholesterol (RC) is recognized as a risk factor for diabetes mellitus (DM). Although iron status has been shown to be associated with cholesterol metabolism and DM, the association between RC, iron status, and DM remains unclear. We examined the relationship between RC and iron status and investigated the role of iron status in the association between RC and DM.

Methods

A total of 7308 patients were enrolled from the China Health and Nutrition Survey. RC was calculated as total cholesterol minus low-density lipoprotein cholesterol and high-density lipoprotein cholesterol. Iron status was assessed as serum ferritin (SF) and total body iron (TBI). DM was ascertained by self-reported physician diagnosis and/or antidiabetic drug use and/or fasting plasma glucose ≥ 126 mg/dL and/or glycated haemoglobin ≥ 6.5%. General linear models were used to evaluate the relationships between RC and iron status. Restricted cubic splines were used to assess the association between RC and DM. Mediation analysis was used to clarified the mediating role of iron status in the association between the RC and DM.

Results

The average age of the participants was 50.6 (standard deviation = 15.1) years. Higher RC was significantly associated with increased SF (β = 73.14, SE = 3.75, 95% confidence interval [CI] 65.79–80.49) and TBI (β = 1.61, SE = 0.08, 95% CI 1.44–1.78). J-shape relationships were found in the association between RC levels with DM, as well as iron status with DM. Significant indirect effects of SF and TBI in the association between RC and DM were found, with the index mediated at 9.58% and 6.37%, respectively.

Conclusions

RC has a dose–response relationship with iron status. The association between RC and DM was mediated in part by iron status. Future studies are needed to confirm these findings and further clarify the underlying mechanism.
Appendix
Available only for authorised users
Literature
2.
go back to reference ID Federation. IDF Diabetes Atlas, 10th edn. IDF Diabetes Atlas. 10th ed. Brussels: International Diabetes Federation; 2021. ID Federation. IDF Diabetes Atlas, 10th edn. IDF Diabetes Atlas. 10th ed. Brussels: International Diabetes Federation; 2021.
3.
go back to reference Collins GS, Mallett S, Omar O, Yu LM. Developing risk prediction models for type 2 diabetes: a systematic review of methodology and reporting. BMC Med. 2011;9:103.PubMedPubMedCentralCrossRef Collins GS, Mallett S, Omar O, Yu LM. Developing risk prediction models for type 2 diabetes: a systematic review of methodology and reporting. BMC Med. 2011;9:103.PubMedPubMedCentralCrossRef
4.
go back to reference Nguyen HD. An evaluation of the effects of mixed heavy metals on prediabetes and type 2 diabetes: epidemiological and toxicogenomic analysis. Environ Sci Pollut Res Int. 2023;30(34):82437–57.PubMedCrossRef Nguyen HD. An evaluation of the effects of mixed heavy metals on prediabetes and type 2 diabetes: epidemiological and toxicogenomic analysis. Environ Sci Pollut Res Int. 2023;30(34):82437–57.PubMedCrossRef
5.
go back to reference Song Y, Liu J, Zhao K, Gao L, Zhao J. Cholesterol-induced toxicity: an integrated view of the role of cholesterol in multiple diseases. Cell Metab. 2021;33(10):1911–25.PubMedCrossRef Song Y, Liu J, Zhao K, Gao L, Zhao J. Cholesterol-induced toxicity: an integrated view of the role of cholesterol in multiple diseases. Cell Metab. 2021;33(10):1911–25.PubMedCrossRef
6.
go back to reference Peng J, Zhao F, Yang X, et al. Association between dyslipidemia and risk of type 2 diabetes mellitus in middle-aged and older Chinese adults: a secondary analysis of a nationwide cohort. BMJ Open. 2021;11(5): e042821.PubMedPubMedCentralCrossRef Peng J, Zhao F, Yang X, et al. Association between dyslipidemia and risk of type 2 diabetes mellitus in middle-aged and older Chinese adults: a secondary analysis of a nationwide cohort. BMJ Open. 2021;11(5): e042821.PubMedPubMedCentralCrossRef
7.
go back to reference He L, Zheng W, Li Z, Kong W, Zeng T. Association of four lipid-derived indicators with the risk of developing type 2 diabetes: a Chinese population-based cohort study. Lipids Health Dis. 2023;22(1):24.PubMedPubMedCentralCrossRef He L, Zheng W, Li Z, Kong W, Zeng T. Association of four lipid-derived indicators with the risk of developing type 2 diabetes: a Chinese population-based cohort study. Lipids Health Dis. 2023;22(1):24.PubMedPubMedCentralCrossRef
8.
go back to reference Jørgensen AB, Frikke-Schmidt R, West AS, Grande P, Nordestgaard BG, Tybjærg-Hansen A. Genetically elevated non-fasting triglycerides and calculated remnant cholesterol as causal risk factors for myocardial infarction. Eur Heart J. 2013;34(24):1826–33.PubMedCrossRef Jørgensen AB, Frikke-Schmidt R, West AS, Grande P, Nordestgaard BG, Tybjærg-Hansen A. Genetically elevated non-fasting triglycerides and calculated remnant cholesterol as causal risk factors for myocardial infarction. Eur Heart J. 2013;34(24):1826–33.PubMedCrossRef
9.
go back to reference Xie G, Zhong Y, Yang S, Zou Y. Remnant cholesterol is an independent predictor of new-onset diabetes: a single-center cohort study. Diabetes Metab Syndr Obes. 2021;14:4735–45.PubMedPubMedCentralCrossRef Xie G, Zhong Y, Yang S, Zou Y. Remnant cholesterol is an independent predictor of new-onset diabetes: a single-center cohort study. Diabetes Metab Syndr Obes. 2021;14:4735–45.PubMedPubMedCentralCrossRef
10.
go back to reference Li B, Zhou X, Wang W, et al. Remnant cholesterol is independently associated with diabetes, even if the traditional lipid is at the appropriate level: a report from the REACTION study. J Diabetes. 2023;15(3):204–14.PubMedPubMedCentralCrossRef Li B, Zhou X, Wang W, et al. Remnant cholesterol is independently associated with diabetes, even if the traditional lipid is at the appropriate level: a report from the REACTION study. J Diabetes. 2023;15(3):204–14.PubMedPubMedCentralCrossRef
11.
go back to reference Huh JH, Roh E, Lee SJ, Ihm SH, Han KD, Kang JG. Remnant cholesterol is an independent predictor of type 2 diabetes: a nationwide population-based cohort study. Diabetes Care. 2023;46(2):305–12.PubMedCrossRef Huh JH, Roh E, Lee SJ, Ihm SH, Han KD, Kang JG. Remnant cholesterol is an independent predictor of type 2 diabetes: a nationwide population-based cohort study. Diabetes Care. 2023;46(2):305–12.PubMedCrossRef
12.
go back to reference Hilton C, Sabaratnam R, Drakesmith H, Karpe F. Iron, glucose and fat metabolism and obesity: an intertwined relationship. Int J Obes. 2023;47(7):554–63.CrossRef Hilton C, Sabaratnam R, Drakesmith H, Karpe F. Iron, glucose and fat metabolism and obesity: an intertwined relationship. Int J Obes. 2023;47(7):554–63.CrossRef
13.
go back to reference Satoh A, Adachi H, Tsuruta M, et al. High plasma level of remnant-like particle cholesterol in the metabolic syndrome. Diabetes Care. 2005;28(10):2514–8.PubMedCrossRef Satoh A, Adachi H, Tsuruta M, et al. High plasma level of remnant-like particle cholesterol in the metabolic syndrome. Diabetes Care. 2005;28(10):2514–8.PubMedCrossRef
14.
go back to reference Orban E, Schwab S, Thorand B, Huth C. Association of iron indices and type 2 diabetes: a meta-analysis of observational studies. Diabetes Metab Res Rev. 2014;30(5):372–94.PubMedCrossRef Orban E, Schwab S, Thorand B, Huth C. Association of iron indices and type 2 diabetes: a meta-analysis of observational studies. Diabetes Metab Res Rev. 2014;30(5):372–94.PubMedCrossRef
15.
go back to reference Rajapurkar MM, Shah SV, Lele SS, et al. Association of catalytic iron with cardiovascular disease. Am J Cardiol. 2012;109(3):438–42.PubMedCrossRef Rajapurkar MM, Shah SV, Lele SS, et al. Association of catalytic iron with cardiovascular disease. Am J Cardiol. 2012;109(3):438–42.PubMedCrossRef
16.
go back to reference Kunutsor SK, Apekey TA, Walley J, Kain K. Ferritin levels and risk of type 2 diabetes mellitus: an updated systematic review and meta-analysis of prospective evidence. Diabetes Metab Res Rev. 2013;29(4):308–18.PubMedCrossRef Kunutsor SK, Apekey TA, Walley J, Kain K. Ferritin levels and risk of type 2 diabetes mellitus: an updated systematic review and meta-analysis of prospective evidence. Diabetes Metab Res Rev. 2013;29(4):308–18.PubMedCrossRef
17.
go back to reference Sun L, Franco OH, Hu FB, et al. Ferritin concentrations, metabolic syndrome, and type 2 diabetes in middle-aged and elderly Chinese. J Clin Endocrinol Metab. 2008;93(12):4690–6.PubMedCrossRef Sun L, Franco OH, Hu FB, et al. Ferritin concentrations, metabolic syndrome, and type 2 diabetes in middle-aged and elderly Chinese. J Clin Endocrinol Metab. 2008;93(12):4690–6.PubMedCrossRef
18.
19.
go back to reference Zhang H, Wang L, Li S, et al. Association of iron storage markers with metabolic syndrome and its components in chinese rural 6–12 years old children: the 2010–2012 China national nutrition and health survey. Nutrients. 2020;12(5):1486.PubMedPubMedCentralCrossRef Zhang H, Wang L, Li S, et al. Association of iron storage markers with metabolic syndrome and its components in chinese rural 6–12 years old children: the 2010–2012 China national nutrition and health survey. Nutrients. 2020;12(5):1486.PubMedPubMedCentralCrossRef
20.
go back to reference Fisher AL, Srole DN, Palaskas NJ, Meriwether D, Reddy ST, Ganz T, Nemeth E. Iron loading induces cholesterol synthesis and sensitizes endothelial cells to TNFα-mediated apoptosis. J Biol Chem. 2021;297(4): 101156.PubMedPubMedCentralCrossRef Fisher AL, Srole DN, Palaskas NJ, Meriwether D, Reddy ST, Ganz T, Nemeth E. Iron loading induces cholesterol synthesis and sensitizes endothelial cells to TNFα-mediated apoptosis. J Biol Chem. 2021;297(4): 101156.PubMedPubMedCentralCrossRef
21.
go back to reference Kraml PJ, Klein RL, Huang Y, Nareika A, Lopes-Virella MF. Iron loading increases cholesterol accumulation and macrophage scavenger receptor I expression in THP-1 mononuclear phagocytes. Metabolism. 2005;54(4):453–9.PubMedCrossRef Kraml PJ, Klein RL, Huang Y, Nareika A, Lopes-Virella MF. Iron loading increases cholesterol accumulation and macrophage scavenger receptor I expression in THP-1 mononuclear phagocytes. Metabolism. 2005;54(4):453–9.PubMedCrossRef
22.
go back to reference Demetz E, Tymoszuk P, Hilbe R, et al. The haemochromatosis gene Hfe and Kupffer cells control LDL cholesterol homeostasis and impact on atherosclerosis development. Eur Heart J. 2020;41(40):3949–59.PubMedCrossRef Demetz E, Tymoszuk P, Hilbe R, et al. The haemochromatosis gene Hfe and Kupffer cells control LDL cholesterol homeostasis and impact on atherosclerosis development. Eur Heart J. 2020;41(40):3949–59.PubMedCrossRef
23.
go back to reference Zhang B, Zhai FY, Du SF, Popkin BM. The China health and nutrition survey, 1989–2011. Obes Rev. 2014;15:2–7.PubMedCrossRef Zhang B, Zhai FY, Du SF, Popkin BM. The China health and nutrition survey, 1989–2011. Obes Rev. 2014;15:2–7.PubMedCrossRef
24.
go back to reference Martin SS, Blaha MJ, Elshazly MB, et al. Comparison of a novel method vs the Friedewald equation for estimating low-density lipoprotein cholesterol levels from the standard lipid profile. JAMA. 2013;310(19):2061–8.PubMedPubMedCentralCrossRef Martin SS, Blaha MJ, Elshazly MB, et al. Comparison of a novel method vs the Friedewald equation for estimating low-density lipoprotein cholesterol levels from the standard lipid profile. JAMA. 2013;310(19):2061–8.PubMedPubMedCentralCrossRef
25.
go back to reference Suchdev PS, Williams AM, Mei Z, Flores-Ayala R, Pasricha SR, Rogers LM, Namaste SM. Assessment of iron status in settings of inflammation: challenges and potential approaches. Am J Clin Nutr. 2017;106(Suppl 6):1626S-1633S.PubMedPubMedCentralCrossRef Suchdev PS, Williams AM, Mei Z, Flores-Ayala R, Pasricha SR, Rogers LM, Namaste SM. Assessment of iron status in settings of inflammation: challenges and potential approaches. Am J Clin Nutr. 2017;106(Suppl 6):1626S-1633S.PubMedPubMedCentralCrossRef
26.
go back to reference Hastka J, Lasserre JJ, Schwarzbeck A, Reiter A, Hehlmann R. Laboratory tests of iron status: correlation or common sense? Clin Chem. 1996;42(5):718–24.PubMedCrossRef Hastka J, Lasserre JJ, Schwarzbeck A, Reiter A, Hehlmann R. Laboratory tests of iron status: correlation or common sense? Clin Chem. 1996;42(5):718–24.PubMedCrossRef
27.
28.
go back to reference Horio M, Imai E, Yasuda Y, Watanabe T, Matsuo S. Modification of the CKD epidemiology collaboration (CKD-EPI) equation for Japanese: accuracy and use for population estimates. Am J Kidney Dis. 2010;56(1):32–8.PubMedCrossRef Horio M, Imai E, Yasuda Y, Watanabe T, Matsuo S. Modification of the CKD epidemiology collaboration (CKD-EPI) equation for Japanese: accuracy and use for population estimates. Am J Kidney Dis. 2010;56(1):32–8.PubMedCrossRef
29.
go back to reference Yokoyama M, Watanabe T, Otaki Y, et al. Association of the aspartate aminotransferase to alanine aminotransferase ratio with BNP level and cardiovascular mortality in the general population: the yamagata study 10-year follow-up. Dis Markers. 2016;2016:4857917.PubMedPubMedCentralCrossRef Yokoyama M, Watanabe T, Otaki Y, et al. Association of the aspartate aminotransferase to alanine aminotransferase ratio with BNP level and cardiovascular mortality in the general population: the yamagata study 10-year follow-up. Dis Markers. 2016;2016:4857917.PubMedPubMedCentralCrossRef
30.
go back to reference Sobel ME. Asymptotic confidence intervals for indirect effects in structural equation models. Sociol Methodol. 1982;13:290–312.CrossRef Sobel ME. Asymptotic confidence intervals for indirect effects in structural equation models. Sociol Methodol. 1982;13:290–312.CrossRef
31.
go back to reference Ahmed U, Latham PS, Oates PS. Interactions between hepatic iron and lipid metabolism with possible relevance to steatohepatitis. World J Gastroenterol. 2012;18(34):4651–8.PubMedPubMedCentralCrossRef Ahmed U, Latham PS, Oates PS. Interactions between hepatic iron and lipid metabolism with possible relevance to steatohepatitis. World J Gastroenterol. 2012;18(34):4651–8.PubMedPubMedCentralCrossRef
33.
go back to reference Yuan L, Liu J, Huang Z, et al. Elevated remnant cholesterol increase 6-year type 2 diabetes mellitus onset risk. Clin Chim Acta. 2023;541: 117253.PubMedCrossRef Yuan L, Liu J, Huang Z, et al. Elevated remnant cholesterol increase 6-year type 2 diabetes mellitus onset risk. Clin Chim Acta. 2023;541: 117253.PubMedCrossRef
34.
go back to reference Feng J, Shan X, Wang L, Lu J, Cao Y, Yang L. Association of Body Iron Metabolism with Type 2 Diabetes Mellitus in Chinese Women of Childbearing Age: Results from the China Adult Chronic Disease and Nutrition Surveillance (2015). Nutrients. 2023;15(8):1935.PubMedPubMedCentralCrossRef Feng J, Shan X, Wang L, Lu J, Cao Y, Yang L. Association of Body Iron Metabolism with Type 2 Diabetes Mellitus in Chinese Women of Childbearing Age: Results from the China Adult Chronic Disease and Nutrition Surveillance (2015). Nutrients. 2023;15(8):1935.PubMedPubMedCentralCrossRef
35.
go back to reference Ashourpour M, Djalali M, Djazayery A, Eshraghian MR, Taghdir M, Saedisomeolia A. Relationship between serum ferritin and inflammatory biomarkers with insulin resistance in a Persian population with type 2 diabetes and healthy people. Int J Food Sci Nutr. 2010;61(3):316–23.PubMedCrossRef Ashourpour M, Djalali M, Djazayery A, Eshraghian MR, Taghdir M, Saedisomeolia A. Relationship between serum ferritin and inflammatory biomarkers with insulin resistance in a Persian population with type 2 diabetes and healthy people. Int J Food Sci Nutr. 2010;61(3):316–23.PubMedCrossRef
36.
go back to reference Kraml PJ, Klein RL, Huang Y, Nareika A, Lopes-Virella MF. Iron loading increases cholesterol accumulation and macrophage scavenger receptor I expression in THP-1 mononuclear phagocytes. Metabolism. 2005;54:453–9.PubMedCrossRef Kraml PJ, Klein RL, Huang Y, Nareika A, Lopes-Virella MF. Iron loading increases cholesterol accumulation and macrophage scavenger receptor I expression in THP-1 mononuclear phagocytes. Metabolism. 2005;54:453–9.PubMedCrossRef
37.
go back to reference Gill D, Benyamin B, Moore LSP, Monori G, Zhou A, Koskeridis F, et al. Associations of genetically determined iron status across the phenome: a mendelian randomization study. PLoS Med. 2019;16(6): e1002833.PubMedPubMedCentralCrossRef Gill D, Benyamin B, Moore LSP, Monori G, Zhou A, Koskeridis F, et al. Associations of genetically determined iron status across the phenome: a mendelian randomization study. PLoS Med. 2019;16(6): e1002833.PubMedPubMedCentralCrossRef
38.
go back to reference Tuomainen TP, Diczfalusy U, Kaikkonen J, Nyyssönen K, Salonen JT. Serum ferritin concentration is associated with plasma levels of cholesterol oxidation products in man. Free Radic Biol Med. 2003;35(8):922–8.PubMedCrossRef Tuomainen TP, Diczfalusy U, Kaikkonen J, Nyyssönen K, Salonen JT. Serum ferritin concentration is associated with plasma levels of cholesterol oxidation products in man. Free Radic Biol Med. 2003;35(8):922–8.PubMedCrossRef
39.
go back to reference Sullivan JL. Are menstruating women protected from heart disease because of, or in spite of, estrogen? Relevance to the iron hypothesis. Am Heart J. 2003;145:190–4.PubMedCrossRef Sullivan JL. Are menstruating women protected from heart disease because of, or in spite of, estrogen? Relevance to the iron hypothesis. Am Heart J. 2003;145:190–4.PubMedCrossRef
40.
go back to reference Bailey-Wood R, Blayney LM, Muir JR, Jacobs A. The effects of iron deficiency on rat liver enzymes. Br J Exp Pathol. 1975;56:193–8.PubMedPubMedCentral Bailey-Wood R, Blayney LM, Muir JR, Jacobs A. The effects of iron deficiency on rat liver enzymes. Br J Exp Pathol. 1975;56:193–8.PubMedPubMedCentral
41.
go back to reference Fields M, Lewis CG. Hepatic iron overload may contribute to hypertriglyceridemia and hypercholesterolemia in copper-deficient rats. Metabolism. 1997;46(4):377–81.PubMedCrossRef Fields M, Lewis CG. Hepatic iron overload may contribute to hypertriglyceridemia and hypercholesterolemia in copper-deficient rats. Metabolism. 1997;46(4):377–81.PubMedCrossRef
42.
go back to reference Dongiovanni P, Lanti C, Gatti S, et al. High fat diet subverts hepatocellular iron uptake determining dysmetabolic iron overload. PLoS ONE. 2015;10(2): e0116855.PubMedPubMedCentralCrossRef Dongiovanni P, Lanti C, Gatti S, et al. High fat diet subverts hepatocellular iron uptake determining dysmetabolic iron overload. PLoS ONE. 2015;10(2): e0116855.PubMedPubMedCentralCrossRef
43.
go back to reference Huang J, Simcox J, Mitchell TC, et al. Iron regulates glucose homeostasis in liver and muscle via AMP-activated protein kinase in mice. FASEB J. 2013;27(7):2845–54.PubMedPubMedCentralCrossRef Huang J, Simcox J, Mitchell TC, et al. Iron regulates glucose homeostasis in liver and muscle via AMP-activated protein kinase in mice. FASEB J. 2013;27(7):2845–54.PubMedPubMedCentralCrossRef
44.
go back to reference Simcox JA, Mitchell TC, Gao Y, et al. Dietary iron controls circadian hepatic glucose metabolism through heme synthesis. Diabetes. 2015;64(4):1108–19.PubMedCrossRef Simcox JA, Mitchell TC, Gao Y, et al. Dietary iron controls circadian hepatic glucose metabolism through heme synthesis. Diabetes. 2015;64(4):1108–19.PubMedCrossRef
45.
go back to reference Fisher AL, Srole DN, Palaskas NJ, et al. Iron loading induces cholesterol synthesis and sensitizes endothelial cells to TNFα-mediated apoptosis. J Biol Chem. 2021;297(4): 101156.PubMedPubMedCentralCrossRef Fisher AL, Srole DN, Palaskas NJ, et al. Iron loading induces cholesterol synthesis and sensitizes endothelial cells to TNFα-mediated apoptosis. J Biol Chem. 2021;297(4): 101156.PubMedPubMedCentralCrossRef
46.
go back to reference Ong WY, Halliwell B. Iron, atherosclerosis, and neurodegeneration: a key role for cholesterol in promoting iron-dependent oxidative damage? Ann N Y Acad Sci. 2004;1012:51–64.ADSPubMedCrossRef Ong WY, Halliwell B. Iron, atherosclerosis, and neurodegeneration: a key role for cholesterol in promoting iron-dependent oxidative damage? Ann N Y Acad Sci. 2004;1012:51–64.ADSPubMedCrossRef
47.
go back to reference Ohnishi H, Saitoh S, Takagi S, et al. Relationship between insulin-resistance and remnant-like particle cholesterol. Atherosclerosis. 2002;164(1):167–70.PubMedCrossRef Ohnishi H, Saitoh S, Takagi S, et al. Relationship between insulin-resistance and remnant-like particle cholesterol. Atherosclerosis. 2002;164(1):167–70.PubMedCrossRef
48.
go back to reference Hattori S. Empagliflozin decreases remnant-like particle cholesterol in type 2 diabetes patients with insulin resistance. J Diabetes Investig. 2018;9(4):870–4.PubMedCrossRef Hattori S. Empagliflozin decreases remnant-like particle cholesterol in type 2 diabetes patients with insulin resistance. J Diabetes Investig. 2018;9(4):870–4.PubMedCrossRef
49.
go back to reference Mensà E, Giuliani A, Matacchione G, et al. Circulating miR-146a in healthy aging and type 2 diabetes: age- and gender-specific trajectories. Mech Ageing Dev. 2019;180:1–10.PubMedCrossRef Mensà E, Giuliani A, Matacchione G, et al. Circulating miR-146a in healthy aging and type 2 diabetes: age- and gender-specific trajectories. Mech Ageing Dev. 2019;180:1–10.PubMedCrossRef
Metadata
Title
Remnant cholesterol, iron status and diabetes mellitus: a dose–response relationship and mediation analysis
Authors
Xiangming Hu
Yan Lin
Allison A. Appleton
Weimian Wang
Bingyan Yu
Langping Zhou
Guang Li
Yingling Zhou
Yanqiu Ou
Haojian Dong
Publication date
01-12-2024
Publisher
BioMed Central
Keyword
Diabetes
Published in
Diabetology & Metabolic Syndrome / Issue 1/2024
Electronic ISSN: 1758-5996
DOI
https://doi.org/10.1186/s13098-024-01304-0

Other articles of this Issue 1/2024

Diabetology & Metabolic Syndrome 1/2024 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.