Skip to main content
Top
Published in: Cardiovascular Toxicology 6/2024

01-05-2024 | Diabetes | Research

Linarin Ameliorates Restenosis After Vascular Injury in Type 2 Diabetes Mellitus via Regulating ADAM10-Mediated Notch Signaling Pathway

Authors: Aihua Jiang, Lin Liu, Jianping Wang, Yinglan Liu, Shanshan Deng, Tao Jiang

Published in: Cardiovascular Toxicology | Issue 6/2024

Login to get access

Abstract

Vascular lesions frequently arise as complication in patients diagnosed with diabetes mellitus (DM). Presently, percutaneous coronary intervention (PCI) and antithrombotic therapy serve as primary treatments. However, in-stent restenosis persists as a challenging clinical issue following PCI, lacking sustained and effective treatment. Linarin (LN) exhibits diverse pharmacological activities and is regarded as a potential drug for treating various diseases, including DM. But its specific role in restenosis after vascular injury in DM patients remains unclear. A rat model of diabetes-related restenosis was established to evaluate the role of LN on neointimal hyperplasia. Vascular smooth muscle cells (VSMCs) stimulated by high glucose (HG, 30 mM) underwent LN treatment. Additionally, an overexpression plasmid of A disintegrin and metalloproteinases (ADAM10) was constructed to transfect VSMCs. We employed CCK-8, Brdu, wound-healing scratch, and transwell migration assays to evaluate the proliferation and migration of VSMCs. Furthermore, western blot and immunofluorescence assays were utilized to investigate the expressions of ADAM10 and the downstream Notch signaling pathway in vivo and in vitro models. LN notably alleviated intimal hyperplasia after vascular injury in DM rats and reduced the protein expression of ADAM10, alongside its downstream Notch1 signaling pathway-related proteins (Notch1, NICD and Hes1) in rat carotid artery tissues. LN effectively suppressed the proliferation and migration of VSMCs induced by HG, downregulating the protein expression of ADAM10, Notch1, NICD and Hes1. Moreover, our findings indicated that ADAM10 overexpression significantly reversed LN’s effects on proliferation, migration, and the expression of Notch1 signaling pathway-related proteins in HG-treated VSMCs. LN demonstrates potential therapeutic efficacy in addressing restenosis after diabetic-related vascular injury, with the ADAM10 mediated Notch signaling pathway playing a pivotal role.
Literature
1.
go back to reference Li, Y., Liu, Y., Liu, S., Gao, M., Wang, W., Chen, K., Huang, L., & Liu, Y. (2023). Diabetic vascular diseases: Molecular mechanisms and therapeutic strategies. Signal Transduction and Targeted Therapy, 8, 152.CrossRefPubMedPubMedCentral Li, Y., Liu, Y., Liu, S., Gao, M., Wang, W., Chen, K., Huang, L., & Liu, Y. (2023). Diabetic vascular diseases: Molecular mechanisms and therapeutic strategies. Signal Transduction and Targeted Therapy, 8, 152.CrossRefPubMedPubMedCentral
2.
go back to reference Avogaro, A., & Fadini, G. P. (2019). Microvascular complications in diabetes: A growing concern for cardiologists. International Journal of Cardiology, 291, 29–35.CrossRefPubMed Avogaro, A., & Fadini, G. P. (2019). Microvascular complications in diabetes: A growing concern for cardiologists. International Journal of Cardiology, 291, 29–35.CrossRefPubMed
4.
go back to reference Giustino, G., Colombo, A., Camaj, A., Yasumura, K., Mehran, R., Stone, G. W., Kini, A., & Sharma, S. K. (2022). Coronary in-stent restenosis: JACC state-of-the-art review. Journal of the American College of Cardiology, 80, 348–372.CrossRefPubMed Giustino, G., Colombo, A., Camaj, A., Yasumura, K., Mehran, R., Stone, G. W., Kini, A., & Sharma, S. K. (2022). Coronary in-stent restenosis: JACC state-of-the-art review. Journal of the American College of Cardiology, 80, 348–372.CrossRefPubMed
5.
go back to reference Pepe, M., Napoli, G., Carulli, E., Moscarelli, M., Forleo, C., Nestola, P. L., Biondi-Zoccai, G., Giordano, A., & Favale, S. (2021). Autoimmune diseases in patients undergoing percutaneous coronary intervention: A risk factor for in-stent restenosis? Atherosclerosis, 333, 24–31.CrossRefPubMed Pepe, M., Napoli, G., Carulli, E., Moscarelli, M., Forleo, C., Nestola, P. L., Biondi-Zoccai, G., Giordano, A., & Favale, S. (2021). Autoimmune diseases in patients undergoing percutaneous coronary intervention: A risk factor for in-stent restenosis? Atherosclerosis, 333, 24–31.CrossRefPubMed
6.
go back to reference Chevalier, B., Moulichon, R., Teiger, E., Brunel, P., Metzger, J. P., Pansieri, M., Carrie, D., Stoll, H. P., Wittebols, K., Spaulding, C., & Fajadet, J. (2012). One-year results of the CRISTAL Trial, a randomized comparison of cypher sirolimus-eluting coronary stents versus balloon angioplasty for restenosis of drug-eluting stents. Journal of Interventional Cardiology, 25, 586–595.CrossRefPubMed Chevalier, B., Moulichon, R., Teiger, E., Brunel, P., Metzger, J. P., Pansieri, M., Carrie, D., Stoll, H. P., Wittebols, K., Spaulding, C., & Fajadet, J. (2012). One-year results of the CRISTAL Trial, a randomized comparison of cypher sirolimus-eluting coronary stents versus balloon angioplasty for restenosis of drug-eluting stents. Journal of Interventional Cardiology, 25, 586–595.CrossRefPubMed
7.
go back to reference Pan, H., Zhang, Q., Cui, K., Chen, G., Liu, X., & Wang, L. (2017). Optimization of extraction of linarin from Flos chrysanthemi indici by response surface methodology and artificial neural network. Journal of Separation Science, 40, 2062–2070.CrossRefPubMed Pan, H., Zhang, Q., Cui, K., Chen, G., Liu, X., & Wang, L. (2017). Optimization of extraction of linarin from Flos chrysanthemi indici by response surface methodology and artificial neural network. Journal of Separation Science, 40, 2062–2070.CrossRefPubMed
8.
go back to reference Mottaghipisheh, J., Taghrir, H., Boveiri Dehsheikh, A., Zomorodian, K., Irajie, C., Mahmoodi Sourestani, M., & Iraji, A. (2021). Linarin, a glycosylated flavonoid, with potential therapeutic attributes: A comprehensive review. Pharmaceuticals (Basel), 14(11), 1104. https://doi.org/10.3390/ph14111104CrossRefPubMed Mottaghipisheh, J., Taghrir, H., Boveiri Dehsheikh, A., Zomorodian, K., Irajie, C., Mahmoodi Sourestani, M., & Iraji, A. (2021). Linarin, a glycosylated flavonoid, with potential therapeutic attributes: A comprehensive review. Pharmaceuticals (Basel), 14(11), 1104. https://​doi.​org/​10.​3390/​ph14111104CrossRefPubMed
9.
go back to reference Xie, G., Yang, J., Wei, X., Xu, Q., & Qin, M. (2020). Separation of acteoside and linarin from Buddlejae flos by high-speed countercurrent chromatography and their anti-inflammatory activities. Journal of Separation Science, 43, 1450–1457.CrossRefPubMed Xie, G., Yang, J., Wei, X., Xu, Q., & Qin, M. (2020). Separation of acteoside and linarin from Buddlejae flos by high-speed countercurrent chromatography and their anti-inflammatory activities. Journal of Separation Science, 43, 1450–1457.CrossRefPubMed
11.
go back to reference Yu, Q., Li, X., & Cao, X. (2017). Linarin could protect myocardial tissue from the injury of Ischemia-reperfusion through activating Nrf-2. Biomedicine & Pharmacotherapy, 90, 1–7.CrossRef Yu, Q., Li, X., & Cao, X. (2017). Linarin could protect myocardial tissue from the injury of Ischemia-reperfusion through activating Nrf-2. Biomedicine & Pharmacotherapy, 90, 1–7.CrossRef
12.
go back to reference Xie, C., Yue, S., Li, X., Li, Z., Li, W., Huang, G., Ma, G., Liu, W., Wang, Y., & Zhang, Y. (2022). A linarin derivative protects against ischemia-induced neuronal injury in mice by promoting cerebral blood flow recovery via KDELR-dependent CSPG4 activation. Oxidative Medicine and Cellular Longevity, 2022, 6434086.CrossRefPubMedPubMedCentral Xie, C., Yue, S., Li, X., Li, Z., Li, W., Huang, G., Ma, G., Liu, W., Wang, Y., & Zhang, Y. (2022). A linarin derivative protects against ischemia-induced neuronal injury in mice by promoting cerebral blood flow recovery via KDELR-dependent CSPG4 activation. Oxidative Medicine and Cellular Longevity, 2022, 6434086.CrossRefPubMedPubMedCentral
13.
go back to reference Wang, Z., Bai, Z., Yan, J., Liu, T., Li, Y., Xu, J., Meng, X., & Bi, Y. (2022). Anti-diabetic effects of linarin from Chrysanthemi indici Flos via AMPK activation. Chinese Herbal Medicines, 14, 97–103.CrossRefPubMed Wang, Z., Bai, Z., Yan, J., Liu, T., Li, Y., Xu, J., Meng, X., & Bi, Y. (2022). Anti-diabetic effects of linarin from Chrysanthemi indici Flos via AMPK activation. Chinese Herbal Medicines, 14, 97–103.CrossRefPubMed
14.
go back to reference Kim, S. J., Cho, H. I., Kim, S. J., Park, J. H., Kim, J. S., Kim, Y. H., Lee, S. K., Kwak, J. H., & Lee, S. M. (2014). Protective effect of linarin against D-galactosamine and lipopolysaccharide-induced fulminant hepatic failure. European Journal of Pharmacology, 738, 66–73.CrossRefPubMed Kim, S. J., Cho, H. I., Kim, S. J., Park, J. H., Kim, J. S., Kim, Y. H., Lee, S. K., Kwak, J. H., & Lee, S. M. (2014). Protective effect of linarin against D-galactosamine and lipopolysaccharide-induced fulminant hepatic failure. European Journal of Pharmacology, 738, 66–73.CrossRefPubMed
15.
go back to reference Zhen, Z. G., Ren, S. H., Ji, H. M., Ma, J. H., Ding, X. M., Feng, F. Q., Chen, S. L., Zou, P., Ren, J. R., & Jia, L. (2017). Linarin suppresses glioma through inhibition of NF-kappaB/p65 and up-regulating p53 expression in vitro and in vivo. Biomedicine & Pharmacotherapy, 95, 363–374.CrossRef Zhen, Z. G., Ren, S. H., Ji, H. M., Ma, J. H., Ding, X. M., Feng, F. Q., Chen, S. L., Zou, P., Ren, J. R., & Jia, L. (2017). Linarin suppresses glioma through inhibition of NF-kappaB/p65 and up-regulating p53 expression in vitro and in vivo. Biomedicine & Pharmacotherapy, 95, 363–374.CrossRef
17.
go back to reference Elsworthy, R. J., Hill, E. J., Dunleavy, C., & Aldred, S. (2022). The role of ADAM10 in astrocytes: Implications for Alzheimer’s disease. Frontiers in Aging Neuroscience, 14, 1056507.CrossRefPubMedPubMedCentral Elsworthy, R. J., Hill, E. J., Dunleavy, C., & Aldred, S. (2022). The role of ADAM10 in astrocytes: Implications for Alzheimer’s disease. Frontiers in Aging Neuroscience, 14, 1056507.CrossRefPubMedPubMedCentral
19.
go back to reference Maas, S. L., Donners, M., & van der Vorst, E. P. C. (2023). ADAM10 and ADAM17, major regulators of chronic kidney disease induced atherosclerosis? International Journal of Molecular Sciences, 24(8), 7309.CrossRefPubMedPubMedCentral Maas, S. L., Donners, M., & van der Vorst, E. P. C. (2023). ADAM10 and ADAM17, major regulators of chronic kidney disease induced atherosclerosis? International Journal of Molecular Sciences, 24(8), 7309.CrossRefPubMedPubMedCentral
20.
go back to reference Lam, S., Shiu, S. W., Wong, Y., & Tan, K. C. (2022). Effect of type 2 diabetes on A disintegrin and metalloprotease 10. Journal of Diabetes, 14, 394–400.CrossRefPubMedPubMedCentral Lam, S., Shiu, S. W., Wong, Y., & Tan, K. C. (2022). Effect of type 2 diabetes on A disintegrin and metalloprotease 10. Journal of Diabetes, 14, 394–400.CrossRefPubMedPubMedCentral
21.
go back to reference Shao, M., Yu, M., Zhao, J., Mei, J., Pan, Y., Zhang, J., Wu, H., Yu, M., Liu, F., & Chen, G. (2020). miR-21-3p regulates AGE/RAGE signalling and improves diabetic atherosclerosis. Cell Biochemistry and Function, 38, 965–975.CrossRefPubMed Shao, M., Yu, M., Zhao, J., Mei, J., Pan, Y., Zhang, J., Wu, H., Yu, M., Liu, F., & Chen, G. (2020). miR-21-3p regulates AGE/RAGE signalling and improves diabetic atherosclerosis. Cell Biochemistry and Function, 38, 965–975.CrossRefPubMed
22.
go back to reference Yang, K., Lu, L., Liu, Y., Zhang, Q., Pu, L. J., Wang, L. J., Zhu, Z. B., Wang, Y. N., Meng, H., Zhang, X. J., Du, R., Chen, Q. J., & Shen, W. F. (2013). Increase of ADAM10 level in coronary artery in-stent restenosis segments in diabetic minipigs: High ADAM10 expression promoting growth and migration in human vascular smooth muscle cells via Notch 1 and 3. PLoS ONE, 8, e83853.CrossRefPubMedPubMedCentral Yang, K., Lu, L., Liu, Y., Zhang, Q., Pu, L. J., Wang, L. J., Zhu, Z. B., Wang, Y. N., Meng, H., Zhang, X. J., Du, R., Chen, Q. J., & Shen, W. F. (2013). Increase of ADAM10 level in coronary artery in-stent restenosis segments in diabetic minipigs: High ADAM10 expression promoting growth and migration in human vascular smooth muscle cells via Notch 1 and 3. PLoS ONE, 8, e83853.CrossRefPubMedPubMedCentral
23.
go back to reference Feng, L., Wang, J., & Ma, X. (2018). Exogenous SERP1 attenuates restenosis by restoring GLP-1 receptor activity in diabetic rats following vascular injury. Biomedicine & Pharmacotherapy, 103, 290–300.CrossRef Feng, L., Wang, J., & Ma, X. (2018). Exogenous SERP1 attenuates restenosis by restoring GLP-1 receptor activity in diabetic rats following vascular injury. Biomedicine & Pharmacotherapy, 103, 290–300.CrossRef
24.
go back to reference Wang, X., Li, T., Ma, B., Zhao, Z., Ni, L., Zhang, R., Niu, S., & Liu, C. (2021). Melatonin attenuates restenosis after vascular injury in diabetic rats through activation of the Nrf2 signaling pathway. Biochemical and Biophysical Research Communications, 548, 127–133.CrossRefPubMed Wang, X., Li, T., Ma, B., Zhao, Z., Ni, L., Zhang, R., Niu, S., & Liu, C. (2021). Melatonin attenuates restenosis after vascular injury in diabetic rats through activation of the Nrf2 signaling pathway. Biochemical and Biophysical Research Communications, 548, 127–133.CrossRefPubMed
25.
go back to reference Pavic, G., Grandoch, M., Dangwal, S., Jobi, K., Rauch, B. H., Doller, A., Oberhuber, A., Akhyari, P., Schrör, K., Fischer, J. W., & Fender, A. C. (2014). Thrombin receptor protease-activated receptor 4 is a key regulator of exaggerated intimal thickening in diabetes mellitus. Circulation, 130, 1700–1711.CrossRefPubMed Pavic, G., Grandoch, M., Dangwal, S., Jobi, K., Rauch, B. H., Doller, A., Oberhuber, A., Akhyari, P., Schrör, K., Fischer, J. W., & Fender, A. C. (2014). Thrombin receptor protease-activated receptor 4 is a key regulator of exaggerated intimal thickening in diabetes mellitus. Circulation, 130, 1700–1711.CrossRefPubMed
26.
go back to reference Li, B., Zhu, C., Dong, L., Qin, J., Xiang, W., Davidson, A. J., Feng, S., Wang, Y., Shen, X., Weng, C., Wang, C., Zhu, T., Teng, L., Wang, J., Englert, C., Chen, J., & Jiang, H. (2020). ADAM10 mediates ectopic proximal tubule development and renal fibrosis through Notch signalling. The Journal of Pathology, 252, 274–289.CrossRefPubMed Li, B., Zhu, C., Dong, L., Qin, J., Xiang, W., Davidson, A. J., Feng, S., Wang, Y., Shen, X., Weng, C., Wang, C., Zhu, T., Teng, L., Wang, J., Englert, C., Chen, J., & Jiang, H. (2020). ADAM10 mediates ectopic proximal tubule development and renal fibrosis through Notch signalling. The Journal of Pathology, 252, 274–289.CrossRefPubMed
27.
go back to reference Meng, H., Li, B., Xu, W., Ding, R., Xu, S., Wu, Q., & Zhang, Y. (2022). miR-140-3p enhances the sensitivity of LUAD cells to antitumor agents by targeting the ADAM10/Notch pathway. Journal of Cancer, 13, 3660–3673.CrossRefPubMedPubMedCentral Meng, H., Li, B., Xu, W., Ding, R., Xu, S., Wu, Q., & Zhang, Y. (2022). miR-140-3p enhances the sensitivity of LUAD cells to antitumor agents by targeting the ADAM10/Notch pathway. Journal of Cancer, 13, 3660–3673.CrossRefPubMedPubMedCentral
29.
go back to reference van Tetering, G., van Diest, P., Verlaan, I., van der Wall, E., Kopan, R., & Vooijs, M. (2009). Metalloprotease ADAM10 is required for Notch1 site 2 cleavage. Journal of Biological Chemistry, 284, 31018–31027.CrossRefPubMedPubMedCentral van Tetering, G., van Diest, P., Verlaan, I., van der Wall, E., Kopan, R., & Vooijs, M. (2009). Metalloprotease ADAM10 is required for Notch1 site 2 cleavage. Journal of Biological Chemistry, 284, 31018–31027.CrossRefPubMedPubMedCentral
30.
go back to reference Alabi, R. O., Glomski, K., Haxaire, C., Weskamp, G., Monette, S., & Blobel, C. P. (2016). ADAM10-dependent signaling through Notch1 and Notch4 controls development of organ-specific vascular beds. Circulation Research, 119, 519–531.CrossRefPubMedPubMedCentral Alabi, R. O., Glomski, K., Haxaire, C., Weskamp, G., Monette, S., & Blobel, C. P. (2016). ADAM10-dependent signaling through Notch1 and Notch4 controls development of organ-specific vascular beds. Circulation Research, 119, 519–531.CrossRefPubMedPubMedCentral
31.
go back to reference Seo, H. H., Kim, S. W., Lee, C. Y., Lim, K. H., Lee, J., Lim, S., Lee, S., & Hwang, K. C. (2017). 7-cyclopentyl-5-(4-phenoxyphenyl)-7H-pyrrolo[2,3-d] pyrimidin-4-ylamine inhibits the proliferation and migration of vascular smooth muscle cells by suppressing ERK and Akt pathways. European Journal of Pharmacology, 798, 35–42.CrossRefPubMed Seo, H. H., Kim, S. W., Lee, C. Y., Lim, K. H., Lee, J., Lim, S., Lee, S., & Hwang, K. C. (2017). 7-cyclopentyl-5-(4-phenoxyphenyl)-7H-pyrrolo[2,3-d] pyrimidin-4-ylamine inhibits the proliferation and migration of vascular smooth muscle cells by suppressing ERK and Akt pathways. European Journal of Pharmacology, 798, 35–42.CrossRefPubMed
32.
go back to reference Liu, H., Dong, W., Lin, Z., Lu, J., Wan, H., Zhou, Z., & Liu, Z. (2013). CCN4 regulates vascular smooth muscle cell migration and proliferation. Molecules and Cells, 36, 112–118.CrossRefPubMedPubMedCentral Liu, H., Dong, W., Lin, Z., Lu, J., Wan, H., Zhou, Z., & Liu, Z. (2013). CCN4 regulates vascular smooth muscle cell migration and proliferation. Molecules and Cells, 36, 112–118.CrossRefPubMedPubMedCentral
33.
go back to reference Xu, Y., Lai, Y., Cao, L., Li, Y., Chen, G., Chen, L., Weng, H., Chen, T., Wang, L., & Ye, Y. (2021). Human umbilical cord mesenchymal stem cells-derived exosomal microRNA-451a represses epithelial-mesenchymal transition of hepatocellular carcinoma cells by inhibiting ADAM10. RNA Biology, 18, 1408–1423.CrossRefPubMed Xu, Y., Lai, Y., Cao, L., Li, Y., Chen, G., Chen, L., Weng, H., Chen, T., Wang, L., & Ye, Y. (2021). Human umbilical cord mesenchymal stem cells-derived exosomal microRNA-451a represses epithelial-mesenchymal transition of hepatocellular carcinoma cells by inhibiting ADAM10. RNA Biology, 18, 1408–1423.CrossRefPubMed
34.
go back to reference Cheng, Y., Lin, L., Li, X., Lu, A., Hou, C., Wu, Q., Hu, X., Zhou, Z., Chen, Z., & Tang, F. (2021). ADAM10 is involved in the oncogenic process and chemo-resistance of triple-negative breast cancer via regulating Notch1 signaling pathway, CD44 and PrPc. Cancer Cell International, 21, 32.CrossRefPubMedPubMedCentral Cheng, Y., Lin, L., Li, X., Lu, A., Hou, C., Wu, Q., Hu, X., Zhou, Z., Chen, Z., & Tang, F. (2021). ADAM10 is involved in the oncogenic process and chemo-resistance of triple-negative breast cancer via regulating Notch1 signaling pathway, CD44 and PrPc. Cancer Cell International, 21, 32.CrossRefPubMedPubMedCentral
35.
go back to reference Guo, D., Huang, F., Xue, R., Ma, Y., Xiao, L., Lou, H., & Pan, S. (2023). A disintegrin and metalloproteinase 10 (ADAM10) is essential for oligodendrocyte precursor development and myelination in the mouse brain. Molecular Neurobiology, 60, 1675–1689.CrossRefPubMed Guo, D., Huang, F., Xue, R., Ma, Y., Xiao, L., Lou, H., & Pan, S. (2023). A disintegrin and metalloproteinase 10 (ADAM10) is essential for oligodendrocyte precursor development and myelination in the mouse brain. Molecular Neurobiology, 60, 1675–1689.CrossRefPubMed
Metadata
Title
Linarin Ameliorates Restenosis After Vascular Injury in Type 2 Diabetes Mellitus via Regulating ADAM10-Mediated Notch Signaling Pathway
Authors
Aihua Jiang
Lin Liu
Jianping Wang
Yinglan Liu
Shanshan Deng
Tao Jiang
Publication date
01-05-2024
Publisher
Springer US
Keyword
Diabetes
Published in
Cardiovascular Toxicology / Issue 6/2024
Print ISSN: 1530-7905
Electronic ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-024-09863-4

Other articles of this Issue 6/2024

Cardiovascular Toxicology 6/2024 Go to the issue