Skip to main content
Top
Published in:

30-04-2024 | Heart Failure | Review

SIRT6 in Regulation of Mitochondrial Damage and Associated Cardiac Dysfunctions: A Possible Therapeutic Target for CVDs

Authors: K. P. Divya, Navjot Kanwar, P. V. Anuranjana, Gautam Kumar, Fathima Beegum, Krupa Thankam George, Nitesh Kumar, K. Nandakumar, Abhinav Kanwal

Published in: Cardiovascular Toxicology | Issue 6/2024

Login to get access

Abstract

Cardiovascular diseases (CVDs) can be described as a global health emergency imploring possible prevention strategies. Although the pathogenesis of CVDs has been extensively studied, the role of mitochondrial dysfunction in CVD development has yet to be investigated. Diabetic cardiomyopathy, ischemic-reperfusion injury, and heart failure are some of the CVDs resulting from mitochondrial dysfunction Recent evidence from the research states that any dysfunction of mitochondria has an impact on metabolic alteration, eventually causes the death of a healthy cell and therefore, progressively directing to the predisposition of disease. Cardiovascular research investigating the targets that both protect and treat mitochondrial damage will help reduce the risk and increase the quality of life of patients suffering from various CVDs. One such target, i.e., nuclear sirtuin SIRT6 is strongly associated with cardiac function. However, the link between mitochondrial dysfunction and SIRT6 concerning cardiovascular pathologies remains poorly understood. Although the Role of SIRT6 in skeletal muscles and cardiomyocytes through mitochondrial regulation has been well understood, its specific role in mitochondrial maintenance in cardiomyocytes is poorly determined. The review aims to explore the domain-specific function of SIRT6 in cardiomyocytes and is an effort to know how SIRT6, mitochondria, and CVDs are related.
Literature
1.
go back to reference Deaton, C., Froelicher, E. S., Wu, L. H., Ho, C., Shishani, K., & Jaarsma, T. (2011). The Global burden of cardiovascular disease. European Journal of Cardiovascular Nursing, 10(2_Suppl), S5-13.PubMedCrossRef Deaton, C., Froelicher, E. S., Wu, L. H., Ho, C., Shishani, K., & Jaarsma, T. (2011). The Global burden of cardiovascular disease. European Journal of Cardiovascular Nursing, 10(2_Suppl), S5-13.PubMedCrossRef
2.
go back to reference World Health Organization. Regional Office for Europe. Global atlas on cardiovascular disease prevention and control: published by the World Health Organization in collaboration with the World Heart Federation and the World Stroke Organization [Internet]. Copenhagen: World Health Organization. Regional Office for Europe; 2011. 155 p. https://iris.who.int/handle/10665/329516. Accessed 20 Nov 2011. World Health Organization. Regional Office for Europe. Global atlas on cardiovascular disease prevention and control: published by the World Health Organization in collaboration with the World Heart Federation and the World Stroke Organization [Internet]. Copenhagen: World Health Organization. Regional Office for Europe; 2011. 155 p. https://​iris.​who.​int/​handle/​10665/​329516. Accessed 20 Nov 2011.
3.
go back to reference Zhu, L., Chen, Z., Han, K., Zhao, Y., Li, Y., Li, D., et al. (2020). Correlation between mitochondrial dysfunction, cardiovascular diseases, and traditional chinese medicine. Evidence-Based Complementary and Alternative Medicine, 2020, 2902136.PubMedPubMedCentralCrossRef Zhu, L., Chen, Z., Han, K., Zhao, Y., Li, Y., Li, D., et al. (2020). Correlation between mitochondrial dysfunction, cardiovascular diseases, and traditional chinese medicine. Evidence-Based Complementary and Alternative Medicine, 2020, 2902136.PubMedPubMedCentralCrossRef
4.
go back to reference Ruan, L., Wang, Y., Zhang, X., Tomaszewski, A., McNamara, J. T., & Li, R. (2020). Mitochondria-associated proteostasis. Annual Review of Biophysics, 6(49), 41–67.CrossRef Ruan, L., Wang, Y., Zhang, X., Tomaszewski, A., McNamara, J. T., & Li, R. (2020). Mitochondria-associated proteostasis. Annual Review of Biophysics, 6(49), 41–67.CrossRef
5.
go back to reference Siasos, G., Tsigkou, V., Kosmopoulos, M., Theodosiadis, D., Simantiris, S., Tagkou, N. M., et al. (2018). Mitochondria and cardiovascular diseases-from pathophysiology to treatment. Annals of Translational Medicine, 6(12), 256.PubMedPubMedCentralCrossRef Siasos, G., Tsigkou, V., Kosmopoulos, M., Theodosiadis, D., Simantiris, S., Tagkou, N. M., et al. (2018). Mitochondria and cardiovascular diseases-from pathophysiology to treatment. Annals of Translational Medicine, 6(12), 256.PubMedPubMedCentralCrossRef
6.
go back to reference Gorman, G. S., Chinnery, P. F., DiMauro, S., Hirano, M., Koga, Y., McFarland, R., et al. (2016). Mitochondrial diseases. Nature Reviews Disease Primers, 2(1), 16080.PubMedCrossRef Gorman, G. S., Chinnery, P. F., DiMauro, S., Hirano, M., Koga, Y., McFarland, R., et al. (2016). Mitochondrial diseases. Nature Reviews Disease Primers, 2(1), 16080.PubMedCrossRef
7.
go back to reference Qiao, X., Jia, S., Ye, J., Fang, X., Zhang, C., Cao, Y., et al. (2017). PTPIP51 regulates mouse cardiac ischemia/reperfusion through mediating the mitochondria-SR junction. Science and Reports, 7(1), 45379.CrossRef Qiao, X., Jia, S., Ye, J., Fang, X., Zhang, C., Cao, Y., et al. (2017). PTPIP51 regulates mouse cardiac ischemia/reperfusion through mediating the mitochondria-SR junction. Science and Reports, 7(1), 45379.CrossRef
8.
go back to reference Hao, Y., Lu, Q., Yang, G., & Ma, A. (2016). Lin28a protects against postinfarction myocardial remodeling and dysfunction through Sirt1 activation and autophagy enhancement. Biochemical and Biophysical Research Communications, 479(4), 833–840.PubMedCrossRef Hao, Y., Lu, Q., Yang, G., & Ma, A. (2016). Lin28a protects against postinfarction myocardial remodeling and dysfunction through Sirt1 activation and autophagy enhancement. Biochemical and Biophysical Research Communications, 479(4), 833–840.PubMedCrossRef
9.
go back to reference Kennedy, B. K., Gotta, M., Sinclair, D. A., Mills, K., McNabb, D. S., Murthy, M., et al. (1997). Redistribution of silencing proteins from telomeres to the nucleolus Is associated with extension of life span in S. cerevisiae. Cell, 89(3), 381–391.PubMedCrossRef Kennedy, B. K., Gotta, M., Sinclair, D. A., Mills, K., McNabb, D. S., Murthy, M., et al. (1997). Redistribution of silencing proteins from telomeres to the nucleolus Is associated with extension of life span in S. cerevisiae. Cell, 89(3), 381–391.PubMedCrossRef
10.
go back to reference Kaeberlein, M., McVey, M., & Guarente, L. (1999). The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes & Development, 13(19), 2570–2580.CrossRef Kaeberlein, M., McVey, M., & Guarente, L. (1999). The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes & Development, 13(19), 2570–2580.CrossRef
11.
go back to reference Imai, S. I., Armstrong, C. M., Kaeberlein, M., & Guarente, L. (2000). Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature, 403(6771), 795–800.PubMedCrossRef Imai, S. I., Armstrong, C. M., Kaeberlein, M., & Guarente, L. (2000). Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature, 403(6771), 795–800.PubMedCrossRef
12.
go back to reference Landry, J., Sutton, A., Tafrov, S. T., Heller, R. C., Stebbins, J., Pillus, L., et al. (2000). The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases. Proceedings of the National Academy of Sciences, 97(11), 5807–5811.CrossRef Landry, J., Sutton, A., Tafrov, S. T., Heller, R. C., Stebbins, J., Pillus, L., et al. (2000). The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases. Proceedings of the National Academy of Sciences, 97(11), 5807–5811.CrossRef
13.
go back to reference Kumari, P., Tarighi, S., Braun, T., & Ianni, A. (2021). SIRT7 acts as a guardian of cellular integrity by controlling nucleolar and extra-nucleolar functions. Genes, 12(9), 1361.PubMedPubMedCentralCrossRef Kumari, P., Tarighi, S., Braun, T., & Ianni, A. (2021). SIRT7 acts as a guardian of cellular integrity by controlling nucleolar and extra-nucleolar functions. Genes, 12(9), 1361.PubMedPubMedCentralCrossRef
14.
go back to reference Ford, E., Voit, R., Liszt, G., Magin, C., Grummt, I., & Guarente, L. (2006). Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription. Genes & Development, 20(9), 1075–1080.CrossRef Ford, E., Voit, R., Liszt, G., Magin, C., Grummt, I., & Guarente, L. (2006). Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription. Genes & Development, 20(9), 1075–1080.CrossRef
15.
go back to reference Banks, A. S., Kon, N., Knight, C., Matsumoto, M., Gutiérrez-Juárez, R., Rossetti, L., et al. (2008). SirT1 gain of function increases energy efficiency and prevents diabetes in mice. Cell Metabolism, 8(4), 333–341.PubMedPubMedCentralCrossRef Banks, A. S., Kon, N., Knight, C., Matsumoto, M., Gutiérrez-Juárez, R., Rossetti, L., et al. (2008). SirT1 gain of function increases energy efficiency and prevents diabetes in mice. Cell Metabolism, 8(4), 333–341.PubMedPubMedCentralCrossRef
16.
go back to reference Bonkowski, M. S., & Sinclair, D. A. (2016). Slowing ageing by design: The rise of NAD+ and sirtuin-activating compounds. Nature Reviews Molecular Cell Biology, 17(11), 679–690.PubMedPubMedCentralCrossRef Bonkowski, M. S., & Sinclair, D. A. (2016). Slowing ageing by design: The rise of NAD+ and sirtuin-activating compounds. Nature Reviews Molecular Cell Biology, 17(11), 679–690.PubMedPubMedCentralCrossRef
17.
go back to reference Haigis, M. C., & Guarente, L. P. (2006). Mammalian sirtuins—emerging roles in physiology, aging, and calorie restriction. Genes & Development, 20(21), 2913–2921.CrossRef Haigis, M. C., & Guarente, L. P. (2006). Mammalian sirtuins—emerging roles in physiology, aging, and calorie restriction. Genes & Development, 20(21), 2913–2921.CrossRef
18.
go back to reference Hubbard, B. P., & Sinclair, D. A. (2014). Small molecule SIRT1 activators for the treatment of aging and age-related diseases. Trends in Pharmacological Sciences, 35(3), 146–154.PubMedPubMedCentralCrossRef Hubbard, B. P., & Sinclair, D. A. (2014). Small molecule SIRT1 activators for the treatment of aging and age-related diseases. Trends in Pharmacological Sciences, 35(3), 146–154.PubMedPubMedCentralCrossRef
20.
go back to reference Kanfi, Y., Naiman, S., Amir, G., Peshti, V., Zinman, G., Nahum, L., et al. (2012). The sirtuin SIRT6 regulates lifespan in male mice. Nature, 483(7388), 218–221.PubMedCrossRef Kanfi, Y., Naiman, S., Amir, G., Peshti, V., Zinman, G., Nahum, L., et al. (2012). The sirtuin SIRT6 regulates lifespan in male mice. Nature, 483(7388), 218–221.PubMedCrossRef
21.
go back to reference Kanfi, Y., Peshti, V., Gil, R., Naiman, S., Nahum, L., Levin, E., et al. (2010). SIRT6 protects against pathological damage caused by diet-induced obesity. Aging Cell, 9(2), 162–173.PubMedCrossRef Kanfi, Y., Peshti, V., Gil, R., Naiman, S., Nahum, L., Levin, E., et al. (2010). SIRT6 protects against pathological damage caused by diet-induced obesity. Aging Cell, 9(2), 162–173.PubMedCrossRef
22.
go back to reference Kugel, S., Sebastián, C., Fitamant, J., Ross, K. N., Saha, S. K., Jain, E., et al. (2016). SIRT6 suppresses pancreatic cancer through control of Lin28b. Cell, 165(6), 1401–1415.PubMedPubMedCentralCrossRef Kugel, S., Sebastián, C., Fitamant, J., Ross, K. N., Saha, S. K., Jain, E., et al. (2016). SIRT6 suppresses pancreatic cancer through control of Lin28b. Cell, 165(6), 1401–1415.PubMedPubMedCentralCrossRef
23.
go back to reference Mitchell, S. J., Martin-Montalvo, A., Mercken, E. M., Palacios, H. H., Ward, T. M., Abulwerdi, G., et al. (2014). The SIRT1 activator SRT1720 extends lifespan and improves health of mice fed a standard diet. Cell Reports, 6(5), 836–843.PubMedCrossRef Mitchell, S. J., Martin-Montalvo, A., Mercken, E. M., Palacios, H. H., Ward, T. M., Abulwerdi, G., et al. (2014). The SIRT1 activator SRT1720 extends lifespan and improves health of mice fed a standard diet. Cell Reports, 6(5), 836–843.PubMedCrossRef
24.
go back to reference Pfluger, P. T., Herranz, D., Velasco-Miguel, S., Serrano, M., & Tschop, M. H. (2008). Sirt1 protects against high-fat diet-induced metabolic damage. Proceedings of the National Academy of Sciences, 105(28), 9793–9798.CrossRef Pfluger, P. T., Herranz, D., Velasco-Miguel, S., Serrano, M., & Tschop, M. H. (2008). Sirt1 protects against high-fat diet-induced metabolic damage. Proceedings of the National Academy of Sciences, 105(28), 9793–9798.CrossRef
25.
go back to reference Satoh, A., Brace, C. S., Rensing, N., Cliften, P., Wozniak, D. F., Herzog, E. D., et al. (2013). Sirt1 extends life span and delays aging in mice through the regulation of Nk2 homeobox 1 in the DMH and LH. Cell Metabolism, 18(3), 416–430.PubMedPubMedCentralCrossRef Satoh, A., Brace, C. S., Rensing, N., Cliften, P., Wozniak, D. F., Herzog, E. D., et al. (2013). Sirt1 extends life span and delays aging in mice through the regulation of Nk2 homeobox 1 in the DMH and LH. Cell Metabolism, 18(3), 416–430.PubMedPubMedCentralCrossRef
26.
go back to reference Borradaile, N. M., & Pickering, J. G. (2009). Nicotinamide phosphoribosyltransferase imparts human endothelial cells with extended replicative lifespan and enhanced angiogenic capacity in a high glucose environment. Aging Cell, 8(2), 100–112.PubMedCrossRef Borradaile, N. M., & Pickering, J. G. (2009). Nicotinamide phosphoribosyltransferase imparts human endothelial cells with extended replicative lifespan and enhanced angiogenic capacity in a high glucose environment. Aging Cell, 8(2), 100–112.PubMedCrossRef
27.
go back to reference Kane, A. E., & Sinclair, D. A. (2018). Sirtuins and NAD + in the development and treatment of metabolic and cardiovascular diseases. Circulation Research, 123(7), 868–885.PubMedPubMedCentralCrossRef Kane, A. E., & Sinclair, D. A. (2018). Sirtuins and NAD + in the development and treatment of metabolic and cardiovascular diseases. Circulation Research, 123(7), 868–885.PubMedPubMedCentralCrossRef
28.
go back to reference Hou, T., Cao, Z., Zhang, J., Tang, M., Tian, Y., Li, Y., et al. (2020). SIRT6 coordinates with CHD4 to promote chromatin relaxation and DNA repair. Nucleic Acids Research, 48(6), 2982–3000.PubMedPubMedCentralCrossRef Hou, T., Cao, Z., Zhang, J., Tang, M., Tian, Y., Li, Y., et al. (2020). SIRT6 coordinates with CHD4 to promote chromatin relaxation and DNA repair. Nucleic Acids Research, 48(6), 2982–3000.PubMedPubMedCentralCrossRef
29.
go back to reference Mao, Z., Hine, C., Tian, X., Van Meter, M., Au, M., Vaidya, A., et al. (2011). SIRT6 promotes DNA repair under stress by activating PARP1. Science, 332(6036), 1443–1446.PubMedPubMedCentralCrossRef Mao, Z., Hine, C., Tian, X., Van Meter, M., Au, M., Vaidya, A., et al. (2011). SIRT6 promotes DNA repair under stress by activating PARP1. Science, 332(6036), 1443–1446.PubMedPubMedCentralCrossRef
30.
go back to reference Zhong, L., D’Urso, A., Toiber, D., Sebastian, C., Henry, R. E., Vadysirisack, D. D., et al. (2010). The histone deacetylase SIRT6 regulates glucose homeostasis via Hif1α. Cell, 140(2), 280–293.PubMedPubMedCentralCrossRef Zhong, L., D’Urso, A., Toiber, D., Sebastian, C., Henry, R. E., Vadysirisack, D. D., et al. (2010). The histone deacetylase SIRT6 regulates glucose homeostasis via Hif1α. Cell, 140(2), 280–293.PubMedPubMedCentralCrossRef
31.
go back to reference Guarente, L. (2011). Sirtuins, aging, and medicine. New England Journal of Medicine, 364(23), 2235–2244.PubMedCrossRef Guarente, L. (2011). Sirtuins, aging, and medicine. New England Journal of Medicine, 364(23), 2235–2244.PubMedCrossRef
32.
go back to reference Winnik, S., Auwerx, J., Sinclair, D. A., & Matter, C. M. (2015). Protective effects of sirtuins in cardiovascular diseases: From bench to bedside. European Heart Journal, 36(48), 3404–3412.PubMedPubMedCentralCrossRef Winnik, S., Auwerx, J., Sinclair, D. A., & Matter, C. M. (2015). Protective effects of sirtuins in cardiovascular diseases: From bench to bedside. European Heart Journal, 36(48), 3404–3412.PubMedPubMedCentralCrossRef
33.
go back to reference Jiang, H., Khan, S., Wang, Y., Charron, G., He, B., Sebastian, C., et al. (2013). SIRT6 regulates TNF-α secretion through hydrolysis of long-chain fatty acyl lysine. Nature, 496(7443), 110–113.PubMedPubMedCentralCrossRef Jiang, H., Khan, S., Wang, Y., Charron, G., He, B., Sebastian, C., et al. (2013). SIRT6 regulates TNF-α secretion through hydrolysis of long-chain fatty acyl lysine. Nature, 496(7443), 110–113.PubMedPubMedCentralCrossRef
34.
go back to reference Ardestani, P. M., & Liang, F. (2012). Sub-cellular localization, expression and functions of SIRT6 during the cell cycle in HeLa cells. Nucleus, 3(5), 442–451.PubMedPubMedCentralCrossRef Ardestani, P. M., & Liang, F. (2012). Sub-cellular localization, expression and functions of SIRT6 during the cell cycle in HeLa cells. Nucleus, 3(5), 442–451.PubMedPubMedCentralCrossRef
35.
go back to reference Michishita, E., McCord, R. A., Berber, E., Kioi, M., Padilla-Nash, H., Damian, M., et al. (2008). SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin. Nature, 452(7186), 492–496.PubMedPubMedCentralCrossRef Michishita, E., McCord, R. A., Berber, E., Kioi, M., Padilla-Nash, H., Damian, M., et al. (2008). SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin. Nature, 452(7186), 492–496.PubMedPubMedCentralCrossRef
36.
go back to reference Xu, F., Zhang, Q., Zhang, K., Xie, W., & Grunstein, M. (2007). Sir2 deacetylates histone H3 lysine 56 to regulate telomeric heterochromatin structure in yeast. Molecular Cell, 27(6), 890–900.PubMedPubMedCentralCrossRef Xu, F., Zhang, Q., Zhang, K., Xie, W., & Grunstein, M. (2007). Sir2 deacetylates histone H3 lysine 56 to regulate telomeric heterochromatin structure in yeast. Molecular Cell, 27(6), 890–900.PubMedPubMedCentralCrossRef
37.
go back to reference Dang, W., Steffen, K. K., Perry, R., Dorsey, J. A., Johnson, F. B., Shilatifard, A., et al. (2009). Histone H4 lysine 16 acetylation regulates cellular lifespan. Nature, 459(7248), 802–807.PubMedPubMedCentralCrossRef Dang, W., Steffen, K. K., Perry, R., Dorsey, J. A., Johnson, F. B., Shilatifard, A., et al. (2009). Histone H4 lysine 16 acetylation regulates cellular lifespan. Nature, 459(7248), 802–807.PubMedPubMedCentralCrossRef
39.
go back to reference Rezazadeh, S., Yang, D., Biashad, S. A., Firsanov, D., Takasugi, M., Gilbert, M., et al. (2020). SIRT6 mono-ADP ribosylates KDM2A to locally increase H3K36me2 at DNA damage sites to inhibit transcription and promote repair. Aging, 12(12), 11165–11184.PubMedPubMedCentralCrossRef Rezazadeh, S., Yang, D., Biashad, S. A., Firsanov, D., Takasugi, M., Gilbert, M., et al. (2020). SIRT6 mono-ADP ribosylates KDM2A to locally increase H3K36me2 at DNA damage sites to inhibit transcription and promote repair. Aging, 12(12), 11165–11184.PubMedPubMedCentralCrossRef
40.
go back to reference Lombard, D. B., Schwer, B., Alt, F. W., & Mostoslavsky, R. (2008). SIRT6 in DNA repair, metabolism and ageing. Journal of Internal Medicine, 263(2), 128–141.PubMedPubMedCentralCrossRef Lombard, D. B., Schwer, B., Alt, F. W., & Mostoslavsky, R. (2008). SIRT6 in DNA repair, metabolism and ageing. Journal of Internal Medicine, 263(2), 128–141.PubMedPubMedCentralCrossRef
41.
go back to reference McCord, R. A., Michishita, E., Hong, T., Berber, E., Boxer, L. D., Kusumoto, R., et al. (2009). SIRT6 stabilizes DNA-dependent protein kinase at chromatin for DNA double-strand break repair. Aging, 1(1), 109–121.PubMedPubMedCentralCrossRef McCord, R. A., Michishita, E., Hong, T., Berber, E., Boxer, L. D., Kusumoto, R., et al. (2009). SIRT6 stabilizes DNA-dependent protein kinase at chromatin for DNA double-strand break repair. Aging, 1(1), 109–121.PubMedPubMedCentralCrossRef
42.
go back to reference Klein, M. A., & Denu, J. M. (2020). Biological and catalytic functions of sirtuin 6 as targets for small-molecule modulators. Journal of Biological Chemistry, 295(32), 11021–11041.PubMedPubMedCentralCrossRef Klein, M. A., & Denu, J. M. (2020). Biological and catalytic functions of sirtuin 6 as targets for small-molecule modulators. Journal of Biological Chemistry, 295(32), 11021–11041.PubMedPubMedCentralCrossRef
43.
go back to reference Pan, P. W., Feldman, J. L., Devries, M. K., Dong, A., Edwards, A. M., & Denu, J. M. (2011). Structure and biochemical functions of SIRT6. Journal of Biological Chemistry, 286(16), 14575–14587.PubMedPubMedCentralCrossRef Pan, P. W., Feldman, J. L., Devries, M. K., Dong, A., Edwards, A. M., & Denu, J. M. (2011). Structure and biochemical functions of SIRT6. Journal of Biological Chemistry, 286(16), 14575–14587.PubMedPubMedCentralCrossRef
44.
go back to reference Onn, L., Portillo, M., Ilic, S., Cleitman, G., Stein, D., Kaluski, S., et al. (2020). SIRT6 is a DNA double-strand break sensor. eLife, 29(9), e51636.CrossRef Onn, L., Portillo, M., Ilic, S., Cleitman, G., Stein, D., Kaluski, S., et al. (2020). SIRT6 is a DNA double-strand break sensor. eLife, 29(9), e51636.CrossRef
45.
go back to reference Raghu, S., Prabhashankar, A. B., Shivanaiah, B., Tripathi, E., & Sundaresan, N. R. (2022). Sirtuin 6 Is a Critical Epigenetic Regulator of Cancer. In T. K. Kundu & C. Das (Eds.), Metabolism and Epigenetic Regulation: Implications in Cancer (Vol. 100, pp. 337–360). Springer International Publishing. https://doi.org/10.1007/978-3-031-07634-3_10CrossRef Raghu, S., Prabhashankar, A. B., Shivanaiah, B., Tripathi, E., & Sundaresan, N. R. (2022). Sirtuin 6 Is a Critical Epigenetic Regulator of Cancer. In T. K. Kundu & C. Das (Eds.), Metabolism and Epigenetic Regulation: Implications in Cancer (Vol. 100, pp. 337–360). Springer International Publishing. https://​doi.​org/​10.​1007/​978-3-031-07634-3_​10CrossRef
46.
go back to reference Michishita, E., Park, J. Y., Burneskis, J. M., Barrett, J. C., & Horikawa, I. (2005). Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. MBoC, 16(10), 4623–4635.PubMedPubMedCentralCrossRef Michishita, E., Park, J. Y., Burneskis, J. M., Barrett, J. C., & Horikawa, I. (2005). Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. MBoC, 16(10), 4623–4635.PubMedPubMedCentralCrossRef
47.
go back to reference Vaquero, A., Scher, M. B., Lee, D. H., Sutton, A., Cheng, H. L., Alt, F. W., et al. (2006). SirT2 is a histone deacetylase with preference for histone H4 Lys 16 during mitosis. Genes & Development, 20(10), 1256–1261.CrossRef Vaquero, A., Scher, M. B., Lee, D. H., Sutton, A., Cheng, H. L., Alt, F. W., et al. (2006). SirT2 is a histone deacetylase with preference for histone H4 Lys 16 during mitosis. Genes & Development, 20(10), 1256–1261.CrossRef
48.
go back to reference Huang, J. Y., Hirschey, M. D., Shimazu, T., Ho, L., & Verdin, E. (2010). Mitochondrial sirtuins. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1804(8), 1645–1651.PubMedCrossRef Huang, J. Y., Hirschey, M. D., Shimazu, T., Ho, L., & Verdin, E. (2010). Mitochondrial sirtuins. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1804(8), 1645–1651.PubMedCrossRef
49.
go back to reference Kawahara, T. L. A., Michishita, E., Adler, A. S., Damian, M., Berber, E., Lin, M., et al. (2009). SIRT6 links histone H3 lysine 9 deacetylation to NF-κB-dependent gene expression and organismal life span. Cell, 136(1), 62–74.PubMedPubMedCentralCrossRef Kawahara, T. L. A., Michishita, E., Adler, A. S., Damian, M., Berber, E., Lin, M., et al. (2009). SIRT6 links histone H3 lysine 9 deacetylation to NF-κB-dependent gene expression and organismal life span. Cell, 136(1), 62–74.PubMedPubMedCentralCrossRef
50.
go back to reference Barber, M. F., Michishita-Kioi, E., Xi, Y., Tasselli, L., Kioi, M., Moqtaderi, Z., et al. (2012). SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation. Nature, 487(7405), 114–118.PubMedPubMedCentralCrossRef Barber, M. F., Michishita-Kioi, E., Xi, Y., Tasselli, L., Kioi, M., Moqtaderi, Z., et al. (2012). SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation. Nature, 487(7405), 114–118.PubMedPubMedCentralCrossRef
51.
go back to reference Li, L., Shi, L., Yang, S., Yan, R., Zhang, D., Yang, J., et al. (2016). SIRT7 is a histone desuccinylase that functionally links to chromatin compaction and genome stability. Nature Communications, 7(1), 12235.PubMedPubMedCentralCrossRef Li, L., Shi, L., Yang, S., Yan, R., Zhang, D., Yang, J., et al. (2016). SIRT7 is a histone desuccinylase that functionally links to chromatin compaction and genome stability. Nature Communications, 7(1), 12235.PubMedPubMedCentralCrossRef
52.
go back to reference Wang, M., Zhang, Y., Komaniecki, G. P., Lu, X., Cao, J., Zhang, M., et al. (2022). Golgi stress induces SIRT2 to counteract Shigella infection via defatty-acylation. Nature Communications, 13(1), 4494.PubMedPubMedCentralCrossRef Wang, M., Zhang, Y., Komaniecki, G. P., Lu, X., Cao, J., Zhang, M., et al. (2022). Golgi stress induces SIRT2 to counteract Shigella infection via defatty-acylation. Nature Communications, 13(1), 4494.PubMedPubMedCentralCrossRef
53.
go back to reference Yu, A. Q., Wang, J., Jiang, S. T., Yuan, L. Q., Ma, H. Y., Hu, Y. M., et al. (2021). SIRT7-induced PHF5A decrotonylation regulates aging progress through alternative splicing-mediated downregulation of CDK2. Frontiers in Cell and Developmental Biology, 17(9), 710479. Yu, A. Q., Wang, J., Jiang, S. T., Yuan, L. Q., Ma, H. Y., Hu, Y. M., et al. (2021). SIRT7-induced PHF5A decrotonylation regulates aging progress through alternative splicing-mediated downregulation of CDK2. Frontiers in Cell and Developmental Biology, 17(9), 710479.
54.
go back to reference Houtkooper, R. H., Pirinen, E., & Auwerx, J. (2012). Sirtuins as regulators of metabolism and healthspan. Nature Reviews Molecular Cell Biology, 13(4), 225–238.PubMedPubMedCentralCrossRef Houtkooper, R. H., Pirinen, E., & Auwerx, J. (2012). Sirtuins as regulators of metabolism and healthspan. Nature Reviews Molecular Cell Biology, 13(4), 225–238.PubMedPubMedCentralCrossRef
55.
go back to reference Amat, R., Planavila, A., Chen, S. L., Iglesias, R., Giralt, M., & Villarroya, F. (2009). SIRT1 controls the transcription of the peroxisome proliferator-activated receptor-γ co-activator-1α (PGC-1α) gene in skeletal muscle through the PGC-1α autoregulatory loop and interaction with MyoD. Journal of Biological Chemistry, 284(33), 21872–21880.PubMedPubMedCentralCrossRef Amat, R., Planavila, A., Chen, S. L., Iglesias, R., Giralt, M., & Villarroya, F. (2009). SIRT1 controls the transcription of the peroxisome proliferator-activated receptor-γ co-activator-1α (PGC-1α) gene in skeletal muscle through the PGC-1α autoregulatory loop and interaction with MyoD. Journal of Biological Chemistry, 284(33), 21872–21880.PubMedPubMedCentralCrossRef
56.
go back to reference Olmos, Y., Sánchez-Gómez, F. J., Wild, B., García-Quintans, N., Cabezudo, S., Lamas, S., et al. (2013). SirT1 regulation of antioxidant genes is dependent on the formation of a FoxO3a/PGC-1α complex. Antioxidants & Redox Signaling, 19(13), 1507–1521.CrossRef Olmos, Y., Sánchez-Gómez, F. J., Wild, B., García-Quintans, N., Cabezudo, S., Lamas, S., et al. (2013). SirT1 regulation of antioxidant genes is dependent on the formation of a FoxO3a/PGC-1α complex. Antioxidants & Redox Signaling, 19(13), 1507–1521.CrossRef
57.
go back to reference Lagouge, M., Argmann, C., Gerhart-Hines, Z., Meziane, H., Lerin, C., Daussin, F., et al. (2006). Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α. Cell, 127(6), 1109–1122.PubMedCrossRef Lagouge, M., Argmann, C., Gerhart-Hines, Z., Meziane, H., Lerin, C., Daussin, F., et al. (2006). Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α. Cell, 127(6), 1109–1122.PubMedCrossRef
58.
go back to reference Lee, I. H., Cao, L., Mostoslavsky, R., Lombard, D. B., Liu, J., Bruns, N. E., et al. (2008). A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proceedings of the National academy of Sciences of the United States of America, 105(9), 3374–3379.PubMedPubMedCentralCrossRef Lee, I. H., Cao, L., Mostoslavsky, R., Lombard, D. B., Liu, J., Bruns, N. E., et al. (2008). A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proceedings of the National academy of Sciences of the United States of America, 105(9), 3374–3379.PubMedPubMedCentralCrossRef
59.
go back to reference Liu, T., Yang, Q., Zhang, X., Qin, R., Shan, W., Zhang, H., et al. (2020). Quercetin alleviates kidney fibrosis by reducing renal tubular epithelial cell senescence through the SIRT1/PINK1/mitophagy axis. Life Sciences, 257, 118116.PubMedCrossRef Liu, T., Yang, Q., Zhang, X., Qin, R., Shan, W., Zhang, H., et al. (2020). Quercetin alleviates kidney fibrosis by reducing renal tubular epithelial cell senescence through the SIRT1/PINK1/mitophagy axis. Life Sciences, 257, 118116.PubMedCrossRef
60.
go back to reference Oanh, N. T. K., Park, Y. Y., & Cho, H. (2017). Mitochondria elongation is mediated through SIRT1-mediated MFN1 stabilization. Cellular Signalling, 38, 67–75.PubMedCrossRef Oanh, N. T. K., Park, Y. Y., & Cho, H. (2017). Mitochondria elongation is mediated through SIRT1-mediated MFN1 stabilization. Cellular Signalling, 38, 67–75.PubMedCrossRef
61.
go back to reference Song, S. B., Park, J. S., Jang, S. Y., & Hwang, E. S. (2021). Nicotinamide treatment facilitates mitochondrial fission through Drp1 activation mediated by SIRT1-induced changes in cellular levels of cAMP and Ca2+. Cells, 10(3), 612.PubMedPubMedCentralCrossRef Song, S. B., Park, J. S., Jang, S. Y., & Hwang, E. S. (2021). Nicotinamide treatment facilitates mitochondrial fission through Drp1 activation mediated by SIRT1-induced changes in cellular levels of cAMP and Ca2+. Cells, 10(3), 612.PubMedPubMedCentralCrossRef
62.
go back to reference Lemos, V., De Oliveira, R. M., Naia, L., Szegö, É., Ramos, E., Pinho, S., et al. (2017). The NAD+-dependent deacetylase SIRT2 attenuates oxidative stress and mitochondrial dysfunction and improves insulin sensitivity in hepatocytes. Human Molecular Genetics, 26(21), 4105–4117.PubMedCrossRef Lemos, V., De Oliveira, R. M., Naia, L., Szegö, É., Ramos, E., Pinho, S., et al. (2017). The NAD+-dependent deacetylase SIRT2 attenuates oxidative stress and mitochondrial dysfunction and improves insulin sensitivity in hepatocytes. Human Molecular Genetics, 26(21), 4105–4117.PubMedCrossRef
63.
go back to reference Fourcade, S., Morató, L., Parameswaran, J., Ruiz, M., Ruiz-Cortés, T., Jové, M., et al. (2017). Loss of SIRT 2 leads to axonal degeneration and locomotor disability associated with redox and energy imbalance. Aging Cell, 16(6), 1404–1413.PubMedPubMedCentralCrossRef Fourcade, S., Morató, L., Parameswaran, J., Ruiz, M., Ruiz-Cortés, T., Jové, M., et al. (2017). Loss of SIRT 2 leads to axonal degeneration and locomotor disability associated with redox and energy imbalance. Aging Cell, 16(6), 1404–1413.PubMedPubMedCentralCrossRef
64.
go back to reference Cha, Y., Kim, T., Jeon, J., Jang, Y., Kim, P. B., Lopes, C., et al. (2021). SIRT2 regulates mitochondrial dynamics and reprogramming via MEK1-ERK-DRP1 and AKT1-DRP1 axes. Cell Reports, 37(13), 110155.PubMedCrossRef Cha, Y., Kim, T., Jeon, J., Jang, Y., Kim, P. B., Lopes, C., et al. (2021). SIRT2 regulates mitochondrial dynamics and reprogramming via MEK1-ERK-DRP1 and AKT1-DRP1 axes. Cell Reports, 37(13), 110155.PubMedCrossRef
65.
go back to reference Xin, T., & Lu, C. (2020). SirT3 activates AMPK-related mitochondrial biogenesis and ameliorates sepsis-induced myocardial injury. Aging, 12(16), 16224–16237.PubMedPubMedCentralCrossRef Xin, T., & Lu, C. (2020). SirT3 activates AMPK-related mitochondrial biogenesis and ameliorates sepsis-induced myocardial injury. Aging, 12(16), 16224–16237.PubMedPubMedCentralCrossRef
66.
go back to reference Tseng, A. H. H., Shieh, S. S., & Wang, D. L. (2013). SIRT3 deacetylates FOXO3 to protect mitochondria against oxidative damage. Free Radical Biology and Medicine, 63, 222–234.PubMedCrossRef Tseng, A. H. H., Shieh, S. S., & Wang, D. L. (2013). SIRT3 deacetylates FOXO3 to protect mitochondria against oxidative damage. Free Radical Biology and Medicine, 63, 222–234.PubMedCrossRef
67.
go back to reference Zhou, Z. D., & Tan, E. K. (2020). Oxidized nicotinamide adenine dinucleotide-dependent mitochondrial deacetylase sirtuin-3 as a potential therapeutic target of Parkinson’s disease. Ageing Research Reviews, 62, 101107.PubMedCrossRef Zhou, Z. D., & Tan, E. K. (2020). Oxidized nicotinamide adenine dinucleotide-dependent mitochondrial deacetylase sirtuin-3 as a potential therapeutic target of Parkinson’s disease. Ageing Research Reviews, 62, 101107.PubMedCrossRef
68.
go back to reference Samant, S. A., Zhang, H. J., Hong, Z., Pillai, V. B., Sundaresan, N. R., Wolfgeher, D., et al. (2014). SIRT3 deacetylates and activates OPA1 to regulate mitochondrial dynamics during stress. Molecular and Cellular Biology, 34(5), 807–819.PubMedPubMedCentralCrossRef Samant, S. A., Zhang, H. J., Hong, Z., Pillai, V. B., Sundaresan, N. R., Wolfgeher, D., et al. (2014). SIRT3 deacetylates and activates OPA1 to regulate mitochondrial dynamics during stress. Molecular and Cellular Biology, 34(5), 807–819.PubMedPubMedCentralCrossRef
69.
go back to reference Lang, A., Anand, R., Altinoluk-Hambüchen, S., Ezzahoini, H., Stefanski, A., Iram, A., et al. (2018). Correction: SIRT4 interacts with OPA1 and regulates mitochondrial quality control and mitophagy. Aging (Albany NY), 10(9), 2536c.PubMedCrossRef Lang, A., Anand, R., Altinoluk-Hambüchen, S., Ezzahoini, H., Stefanski, A., Iram, A., et al. (2018). Correction: SIRT4 interacts with OPA1 and regulates mitochondrial quality control and mitophagy. Aging (Albany NY), 10(9), 2536c.PubMedCrossRef
70.
go back to reference Buler, M., Aatsinki, S., Izzi, V., Uusimaa, J., & Hakkola, A. J. (2014). SIRT5 is under the control of PGC-1α and AMPK and is involved in regulation of mitochondrial energy metabolism. The FASEB Journal, 28(7), 3225–3237.PubMedCrossRef Buler, M., Aatsinki, S., Izzi, V., Uusimaa, J., & Hakkola, A. J. (2014). SIRT5 is under the control of PGC-1α and AMPK and is involved in regulation of mitochondrial energy metabolism. The FASEB Journal, 28(7), 3225–3237.PubMedCrossRef
71.
go back to reference Haschler, T. N., Horsley, H., Balys, M., Anderson, G., Taanman, J. W., Unwin, R. J., et al. (2021). Sirtuin 5 depletion impairs mitochondrial function in human proximal tubular epithelial cells. Science and Reports, 11(1), 15510.CrossRef Haschler, T. N., Horsley, H., Balys, M., Anderson, G., Taanman, J. W., Unwin, R. J., et al. (2021). Sirtuin 5 depletion impairs mitochondrial function in human proximal tubular epithelial cells. Science and Reports, 11(1), 15510.CrossRef
72.
go back to reference Zhang, M., Wu, J., Sun, R., Tao, X., Wang, X., Kang, Q., et al. (2019). SIRT5 deficiency suppresses mitochondrial ATP production and promotes AMPK activation in response to energy stress. PLoS ONE, 14(2), e0211796.PubMedPubMedCentralCrossRef Zhang, M., Wu, J., Sun, R., Tao, X., Wang, X., Kang, Q., et al. (2019). SIRT5 deficiency suppresses mitochondrial ATP production and promotes AMPK activation in response to energy stress. PLoS ONE, 14(2), e0211796.PubMedPubMedCentralCrossRef
73.
go back to reference Guedouari, H., Daigle, T., Scorrano, L., & Hebert-Chatelain, E. (2017). Sirtuin 5 protects mitochondria from fragmentation and degradation during starvation. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1864(1), 169–176.PubMedCrossRef Guedouari, H., Daigle, T., Scorrano, L., & Hebert-Chatelain, E. (2017). Sirtuin 5 protects mitochondria from fragmentation and degradation during starvation. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1864(1), 169–176.PubMedCrossRef
74.
go back to reference Yu, L., Dong, X., Xue, X., Xu, S., Zhang, X., Xu, Y., et al. (2021). Melatonin attenuates diabetic cardiomyopathy and reduces myocardial vulnerability to ischemia-reperfusion injury by improving mitochondrial quality control: Role of SIRT6. Journal of Pineal Research, 70(1), e12698.PubMedCrossRef Yu, L., Dong, X., Xue, X., Xu, S., Zhang, X., Xu, Y., et al. (2021). Melatonin attenuates diabetic cardiomyopathy and reduces myocardial vulnerability to ischemia-reperfusion injury by improving mitochondrial quality control: Role of SIRT6. Journal of Pineal Research, 70(1), e12698.PubMedCrossRef
75.
go back to reference Hong, Y. X., Wu, W. Y., Song, F., Wu, C., Li, G. R., & Wang, Y. (2021). Cardiac senescence is alleviated by the natural flavone acacetin via enhancing mitophagy. Aging, 13(12), 16381–16403.PubMedPubMedCentralCrossRef Hong, Y. X., Wu, W. Y., Song, F., Wu, C., Li, G. R., & Wang, Y. (2021). Cardiac senescence is alleviated by the natural flavone acacetin via enhancing mitophagy. Aging, 13(12), 16381–16403.PubMedPubMedCentralCrossRef
76.
go back to reference Chen, Z., Liang, W., Hu, J., Zhu, Z., Feng, J., Ma, Y., et al. (2022). SIRT6 deficiency contributes to mitochondrial fission and oxidative damage in podocytes via ROCK1-Drp1 signalling pathway. Cell Proliferation, 55(10), e13296.PubMedPubMedCentralCrossRef Chen, Z., Liang, W., Hu, J., Zhu, Z., Feng, J., Ma, Y., et al. (2022). SIRT6 deficiency contributes to mitochondrial fission and oxidative damage in podocytes via ROCK1-Drp1 signalling pathway. Cell Proliferation, 55(10), e13296.PubMedPubMedCentralCrossRef
77.
go back to reference Smirnov, D., Eremenko, E., Stein, D., Kaluski, S., Jasinska, W., Cosentino, C., et al. (2023). SIRT6 is a key regulator of mitochondrial function in the brain. Cell Death & Disease, 14(1), 35.CrossRef Smirnov, D., Eremenko, E., Stein, D., Kaluski, S., Jasinska, W., Cosentino, C., et al. (2023). SIRT6 is a key regulator of mitochondrial function in the brain. Cell Death & Disease, 14(1), 35.CrossRef
78.
go back to reference Yan, W., Liang, Y., Zhang, Q., Wang, D., Lei, M., Qu, J., et al. (2018). Arginine methylation of SIRT 7 couples glucose sensing with mitochondria biogenesis. EMBO Reports, 19(12), e46377.PubMedPubMedCentralCrossRef Yan, W., Liang, Y., Zhang, Q., Wang, D., Lei, M., Qu, J., et al. (2018). Arginine methylation of SIRT 7 couples glucose sensing with mitochondria biogenesis. EMBO Reports, 19(12), e46377.PubMedPubMedCentralCrossRef
79.
go back to reference Vakhrusheva, O., Smolka, C., Gajawada, P., Kostin, S., Boettger, T., Kubin, T., et al. (2008). Sirt7 increases stress resistance of cardiomyocytes and prevents apoptosis and inflammatory cardiomyopathy in mice. Circulation Research, 102(6), 703–710.PubMedCrossRef Vakhrusheva, O., Smolka, C., Gajawada, P., Kostin, S., Boettger, T., Kubin, T., et al. (2008). Sirt7 increases stress resistance of cardiomyocytes and prevents apoptosis and inflammatory cardiomyopathy in mice. Circulation Research, 102(6), 703–710.PubMedCrossRef
80.
go back to reference Mohrin, M., Shin, J., Liu, Y., Brown, K., Luo, H., Xi, Y., et al. (2015). A mitochondrial UPR-mediated metabolic checkpoint regulates hematopoietic stem cell aging. Science, 347(6228), 1374–1377.PubMedPubMedCentralCrossRef Mohrin, M., Shin, J., Liu, Y., Brown, K., Luo, H., Xi, Y., et al. (2015). A mitochondrial UPR-mediated metabolic checkpoint regulates hematopoietic stem cell aging. Science, 347(6228), 1374–1377.PubMedPubMedCentralCrossRef
81.
go back to reference Dominy, J. E., Lee, Y., Jedrychowski, M. P., Chim, H., Jurczak, M. J., Camporez, J. P., et al. (2012). The deacetylase SIRT6 activates the acetyltransferase GCN5 and suppresses hepatic gluconeogenesis. Molecular Cell, 48(6), 900–913.PubMedPubMedCentralCrossRef Dominy, J. E., Lee, Y., Jedrychowski, M. P., Chim, H., Jurczak, M. J., Camporez, J. P., et al. (2012). The deacetylase SIRT6 activates the acetyltransferase GCN5 and suppresses hepatic gluconeogenesis. Molecular Cell, 48(6), 900–913.PubMedPubMedCentralCrossRef
82.
go back to reference Zhang, P., Tu, B., Wang, H., Cao, Z., Tang, M., Zhang, C., et al. (2014). Tumor suppressor p53 cooperates with SIRT6 to regulate gluconeogenesis by promoting FoxO1 nuclear exclusion. Proceedings of the National academy of Sciences of the United States of America, 111(29), 10684–10689.PubMedPubMedCentralCrossRef Zhang, P., Tu, B., Wang, H., Cao, Z., Tang, M., Zhang, C., et al. (2014). Tumor suppressor p53 cooperates with SIRT6 to regulate gluconeogenesis by promoting FoxO1 nuclear exclusion. Proceedings of the National academy of Sciences of the United States of America, 111(29), 10684–10689.PubMedPubMedCentralCrossRef
83.
go back to reference Qin, K., Zhang, N., Zhang, Z., Nipper, M., Zhu, Z., Leighton, J., et al. (2018). SIRT6-mediated transcriptional suppression of Txnip is critical for pancreatic beta cell function and survival in mice. Diabetologia, 61(4), 906–918.PubMedPubMedCentralCrossRef Qin, K., Zhang, N., Zhang, Z., Nipper, M., Zhu, Z., Leighton, J., et al. (2018). SIRT6-mediated transcriptional suppression of Txnip is critical for pancreatic beta cell function and survival in mice. Diabetologia, 61(4), 906–918.PubMedPubMedCentralCrossRef
84.
go back to reference van Heemst, D. (2010). Insulin, IGF-1 and longevity. Aging & Disease, 1(2), 147–157. van Heemst, D. (2010). Insulin, IGF-1 and longevity. Aging & Disease, 1(2), 147–157.
85.
go back to reference Sundaresan, N. R., Vasudevan, P., Zhong, L., Kim, G., Samant, S., Parekh, V., et al. (2012). The sirtuin SIRT6 blocks IGF-Akt signaling and development of cardiac hypertrophy by targeting c-Jun. Nature Medicine, 18(11), 1643–1650.PubMedPubMedCentralCrossRef Sundaresan, N. R., Vasudevan, P., Zhong, L., Kim, G., Samant, S., Parekh, V., et al. (2012). The sirtuin SIRT6 blocks IGF-Akt signaling and development of cardiac hypertrophy by targeting c-Jun. Nature Medicine, 18(11), 1643–1650.PubMedPubMedCentralCrossRef
86.
go back to reference Xiao, C., Kim, H. S., Lahusen, T., Wang, R. H., Xu, X., Gavrilova, O., et al. (2010). SIRT6 deficiency results in severe hypoglycemia by enhancing both basal and insulin-stimulated glucose uptake in mice. Journal of Biological Chemistry, 285(47), 36776–36784.PubMedPubMedCentralCrossRef Xiao, C., Kim, H. S., Lahusen, T., Wang, R. H., Xu, X., Gavrilova, O., et al. (2010). SIRT6 deficiency results in severe hypoglycemia by enhancing both basal and insulin-stimulated glucose uptake in mice. Journal of Biological Chemistry, 285(47), 36776–36784.PubMedPubMedCentralCrossRef
87.
go back to reference Wu, M., Seto, E., & Zhang, J. (2015). E2F1 enhances glycolysis through suppressing SIRT6 transcription in cancer cells. Oncotarget, 6(13), 11252–11263.PubMedPubMedCentralCrossRef Wu, M., Seto, E., & Zhang, J. (2015). E2F1 enhances glycolysis through suppressing SIRT6 transcription in cancer cells. Oncotarget, 6(13), 11252–11263.PubMedPubMedCentralCrossRef
88.
go back to reference Santos-Barriopedro, I., Bosch-Presegué, L., Marazuela-Duque, A., De La Torre, C., Colomer, C., Vazquez, B. N., et al. (2018). SIRT6-dependent cysteine monoubiquitination in the PRE-SET domain of Suv39h1 regulates the NF-κB pathway. Nature Communications, 9(1), 101.PubMedPubMedCentralCrossRef Santos-Barriopedro, I., Bosch-Presegué, L., Marazuela-Duque, A., De La Torre, C., Colomer, C., Vazquez, B. N., et al. (2018). SIRT6-dependent cysteine monoubiquitination in the PRE-SET domain of Suv39h1 regulates the NF-κB pathway. Nature Communications, 9(1), 101.PubMedPubMedCentralCrossRef
89.
go back to reference Cui, X., Yao, L., Yang, X., Gao, Y., Fang, F., Zhang, J., et al. (2017). SIRT6 regulates metabolic homeostasis in skeletal muscle through activation of AMPK. American Journal of Physiology-Endocrinology and Metabolism, 313(4), E493-505.PubMedCrossRef Cui, X., Yao, L., Yang, X., Gao, Y., Fang, F., Zhang, J., et al. (2017). SIRT6 regulates metabolic homeostasis in skeletal muscle through activation of AMPK. American Journal of Physiology-Endocrinology and Metabolism, 313(4), E493-505.PubMedCrossRef
90.
go back to reference Tao, R., Xiong, X., DePinho, R. A., Deng, C. X., & Dong, X. C. (2013). FoxO3 transcription factor and SIRT6 deacetylase regulate low density lipoprotein (LDL)-cholesterol homeostasis via control of the proprotein convertase subtilisin/kexin type 9 (Pcsk9) gene expression. Journal of Biological Chemistry, 288(41), 29252–29259.PubMedPubMedCentralCrossRef Tao, R., Xiong, X., DePinho, R. A., Deng, C. X., & Dong, X. C. (2013). FoxO3 transcription factor and SIRT6 deacetylase regulate low density lipoprotein (LDL)-cholesterol homeostasis via control of the proprotein convertase subtilisin/kexin type 9 (Pcsk9) gene expression. Journal of Biological Chemistry, 288(41), 29252–29259.PubMedPubMedCentralCrossRef
91.
go back to reference Kuang, J., Zhang, Y., Liu, Q., Shen, J., Pu, S., Cheng, S., et al. (2017). Fat-specific Sirt6 ablation sensitizes mice to high-fat diet-induced obesity and insulin resistance by inhibiting lipolysis. Diabetes, 66(5), 1159–1171.PubMedCrossRef Kuang, J., Zhang, Y., Liu, Q., Shen, J., Pu, S., Cheng, S., et al. (2017). Fat-specific Sirt6 ablation sensitizes mice to high-fat diet-induced obesity and insulin resistance by inhibiting lipolysis. Diabetes, 66(5), 1159–1171.PubMedCrossRef
92.
go back to reference Chen, Q., Hao, W., Xiao, C., Wang, R., Xu, X., Lu, H., et al. (2017). SIRT6 is essential for adipocyte differentiation by regulating mitotic clonal expansion. Cell Reports, 18(13), 3155–3166.PubMedCrossRef Chen, Q., Hao, W., Xiao, C., Wang, R., Xu, X., Lu, H., et al. (2017). SIRT6 is essential for adipocyte differentiation by regulating mitotic clonal expansion. Cell Reports, 18(13), 3155–3166.PubMedCrossRef
93.
go back to reference Fan, Y., Yang, Q., Yang, Y., Gao, Z., Ma, Y., Zhang, L., et al. (2019). SIRT6 suppresses high glucose-induced mitochondrial dysfunction and apoptosis in podocytes through AMPK activation. International Journal of Biological Sciences, 15(3), 701–713.PubMedPubMedCentralCrossRef Fan, Y., Yang, Q., Yang, Y., Gao, Z., Ma, Y., Zhang, L., et al. (2019). SIRT6 suppresses high glucose-induced mitochondrial dysfunction and apoptosis in podocytes through AMPK activation. International Journal of Biological Sciences, 15(3), 701–713.PubMedPubMedCentralCrossRef
94.
go back to reference Wang, R., Wang, J., Zhang, Z., Ma, B., Sun, S., Gao, L., et al. (2023). FGF21 alleviates endothelial mitochondrial damage and prevents BBB from disruption after intracranial hemorrhage through a mechanism involving SIRT6. Molecular Medicine, 29(1), 165.PubMedPubMedCentralCrossRef Wang, R., Wang, J., Zhang, Z., Ma, B., Sun, S., Gao, L., et al. (2023). FGF21 alleviates endothelial mitochondrial damage and prevents BBB from disruption after intracranial hemorrhage through a mechanism involving SIRT6. Molecular Medicine, 29(1), 165.PubMedPubMedCentralCrossRef
95.
go back to reference Lu, J., Sun, D., Liu, Z., Li, M., Hong, H., Liu, C., et al. (2016). SIRT6 suppresses isoproterenol-induced cardiac hypertrophy through activation of autophagy. Translational Research, 172, 96-112.e6.PubMedCrossRef Lu, J., Sun, D., Liu, Z., Li, M., Hong, H., Liu, C., et al. (2016). SIRT6 suppresses isoproterenol-induced cardiac hypertrophy through activation of autophagy. Translational Research, 172, 96-112.e6.PubMedCrossRef
96.
go back to reference Cheng, M. Y., Cheng, Y. W., Yan, J., Hu, X. Q., Zhang, H., Wang, Z. R., et al. (2016). SIRT6 suppresses mitochondrial defects and cell death via the NF-κB pathway in myocardial hypoxia/reoxygenation induced injury. American Journal of Translational Research, 8(11), 5005–5015.PubMedPubMedCentral Cheng, M. Y., Cheng, Y. W., Yan, J., Hu, X. Q., Zhang, H., Wang, Z. R., et al. (2016). SIRT6 suppresses mitochondrial defects and cell death via the NF-κB pathway in myocardial hypoxia/reoxygenation induced injury. American Journal of Translational Research, 8(11), 5005–5015.PubMedPubMedCentral
97.
go back to reference Maksin-Matveev, A., Kanfi, Y., Hochhauser, E., Isak, A., Cohen, H. Y., & Shainberg, A. (2015). Sirtuin 6 protects the heart from hypoxic damage. Experimental Cell Research, 330(1), 81–90.PubMedCrossRef Maksin-Matveev, A., Kanfi, Y., Hochhauser, E., Isak, A., Cohen, H. Y., & Shainberg, A. (2015). Sirtuin 6 protects the heart from hypoxic damage. Experimental Cell Research, 330(1), 81–90.PubMedCrossRef
98.
go back to reference Wang, T., Sun, C., Hu, L., Gao, E., Li, C., Wang, H., et al. (2020). SIRT6 stabilizes atherosclerosis plaques by promoting macrophage autophagy and reducing contact with endothelial cells. Biochemistry and Cell Biology, 98(2), 120–129.PubMedCrossRef Wang, T., Sun, C., Hu, L., Gao, E., Li, C., Wang, H., et al. (2020). SIRT6 stabilizes atherosclerosis plaques by promoting macrophage autophagy and reducing contact with endothelial cells. Biochemistry and Cell Biology, 98(2), 120–129.PubMedCrossRef
99.
go back to reference Pillai, V. B., Samant, S., Hund, S., Gupta, M., & Gupta, M. P. (2021). The nuclear sirtuin SIRT6 protects the heart from developing aging-associated myocyte senescence and cardiac hypertrophy. Aging, 13(9), 12334–12358.PubMedPubMedCentralCrossRef Pillai, V. B., Samant, S., Hund, S., Gupta, M., & Gupta, M. P. (2021). The nuclear sirtuin SIRT6 protects the heart from developing aging-associated myocyte senescence and cardiac hypertrophy. Aging, 13(9), 12334–12358.PubMedPubMedCentralCrossRef
100.
go back to reference Tian, K., Liu, Z., Wang, J., Xu, S., You, T., & Liu, P. (2015). Sirtuin-6 inhibits cardiac fibroblasts differentiation into myofibroblasts via inactivation of nuclear factor κB signaling. Translational Research, 165(3), 374–386.PubMedCrossRef Tian, K., Liu, Z., Wang, J., Xu, S., You, T., & Liu, P. (2015). Sirtuin-6 inhibits cardiac fibroblasts differentiation into myofibroblasts via inactivation of nuclear factor κB signaling. Translational Research, 165(3), 374–386.PubMedCrossRef
101.
go back to reference Maity, S., Muhamed, J., Sarikhani, M., Kumar, S., Ahamed, F., Spurthi, K. M., et al. (2020). Sirtuin 6 deficiency transcriptionally up-regulates TGF-β signaling and induces fibrosis in mice. Journal of Biological Chemistry, 295(2), 415–434.PubMedCrossRef Maity, S., Muhamed, J., Sarikhani, M., Kumar, S., Ahamed, F., Spurthi, K. M., et al. (2020). Sirtuin 6 deficiency transcriptionally up-regulates TGF-β signaling and induces fibrosis in mice. Journal of Biological Chemistry, 295(2), 415–434.PubMedCrossRef
102.
go back to reference Li, X., Liu, L., Li, T., Liu, M., Wang, Y., Ma, H., et al. (2021). SIRT6 in senescence and aging-related cardiovascular diseases. Frontiers in Cell and Developmental Biology, 29(9), 641315.CrossRef Li, X., Liu, L., Li, T., Liu, M., Wang, Y., Ma, H., et al. (2021). SIRT6 in senescence and aging-related cardiovascular diseases. Frontiers in Cell and Developmental Biology, 29(9), 641315.CrossRef
103.
go back to reference Cardus, A., Uryga, A. K., Walters, G., & Erusalimsky, J. D. (2013). SIRT6 protects human endothelial cells from DNA damage, telomere dysfunction, and senescence. Cardiovascular Research, 97(3), 571–579.PubMedCrossRef Cardus, A., Uryga, A. K., Walters, G., & Erusalimsky, J. D. (2013). SIRT6 protects human endothelial cells from DNA damage, telomere dysfunction, and senescence. Cardiovascular Research, 97(3), 571–579.PubMedCrossRef
104.
go back to reference Wallace, D. C. (2005). A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: A dawn for evolutionary medicine. Annual Review of Genetics, 39(1), 359–407.PubMedPubMedCentralCrossRef Wallace, D. C. (2005). A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: A dawn for evolutionary medicine. Annual Review of Genetics, 39(1), 359–407.PubMedPubMedCentralCrossRef
105.
go back to reference Finkel, T., & Holbrook, N. J. (2000). Oxidants, oxidative stress and the biology of ageing. Nature, 408(6809), 239–247.PubMedCrossRef Finkel, T., & Holbrook, N. J. (2000). Oxidants, oxidative stress and the biology of ageing. Nature, 408(6809), 239–247.PubMedCrossRef
106.
go back to reference Ryan, M. T., & Hoogenraad, N. J. (2007). Mitochondrial-nuclear communications. Annual Review of Biochemistry, 76(1), 701–722.PubMedCrossRef Ryan, M. T., & Hoogenraad, N. J. (2007). Mitochondrial-nuclear communications. Annual Review of Biochemistry, 76(1), 701–722.PubMedCrossRef
107.
go back to reference Hall, A. R., Burke, N., Dongworth, R. K., & Hausenloy, D. J. (2014). Mitochondrial fusion and fission proteins: Novel therapeutic targets for combating cardiovascular disease. British Journsl of Pharmacology, 171(8), 1890–1906.CrossRef Hall, A. R., Burke, N., Dongworth, R. K., & Hausenloy, D. J. (2014). Mitochondrial fusion and fission proteins: Novel therapeutic targets for combating cardiovascular disease. British Journsl of Pharmacology, 171(8), 1890–1906.CrossRef
108.
go back to reference Ott, M., Amunts, A., & Brown, A. (2016). Organization and regulation of mitochondrial protein synthesis. Annual Review of Biochemistry, 2(85), 77–101.CrossRef Ott, M., Amunts, A., & Brown, A. (2016). Organization and regulation of mitochondrial protein synthesis. Annual Review of Biochemistry, 2(85), 77–101.CrossRef
109.
go back to reference Scarpulla, R. C. (2002). Nuclear activators and coactivators in mammalian mitochondrial biogenesis. Biochimica et Biophysica Acta (BBA) - Structure and Expression, 1576(1–2), 1–14. Scarpulla, R. C. (2002). Nuclear activators and coactivators in mammalian mitochondrial biogenesis. Biochimica et Biophysica Acta (BBA) - Structure and Expression, 1576(1–2), 1–14.
110.
go back to reference Arany, Z., Novikov, M., Chin, S., Ma, Y., Rosenzweig, A., & Spiegelman, B. M. (2006). Transverse aortic constriction leads to accelerated heart failure in mice lacking PPAR-γ coactivator 1α. Proceedings of the National academy of Sciences of the United States of America, 103(26), 10086–10091.PubMedPubMedCentralCrossRef Arany, Z., Novikov, M., Chin, S., Ma, Y., Rosenzweig, A., & Spiegelman, B. M. (2006). Transverse aortic constriction leads to accelerated heart failure in mice lacking PPAR-γ coactivator 1α. Proceedings of the National academy of Sciences of the United States of America, 103(26), 10086–10091.PubMedPubMedCentralCrossRef
111.
go back to reference Garnier, A., Fortin, D., Deloménie, C., Momken, I., Veksler, V., & Ventura-Clapier, R. (2003). Depressed mitochondrial transcription factors and oxidative capacity in rat failing cardiac and skeletal muscles. The Journal of Physiology, 551(2), 491–501.PubMedPubMedCentralCrossRef Garnier, A., Fortin, D., Deloménie, C., Momken, I., Veksler, V., & Ventura-Clapier, R. (2003). Depressed mitochondrial transcription factors and oxidative capacity in rat failing cardiac and skeletal muscles. The Journal of Physiology, 551(2), 491–501.PubMedPubMedCentralCrossRef
112.
go back to reference Wang, L., Zhang, Q., Yuan, K., & Yuan, J. (2021). mtDNA in the pathogenesis of cardiovascular diseases. Disease Markers, 2021, 1–8.CrossRef Wang, L., Zhang, Q., Yuan, K., & Yuan, J. (2021). mtDNA in the pathogenesis of cardiovascular diseases. Disease Markers, 2021, 1–8.CrossRef
113.
go back to reference Chen, Y., Liu, Y., & Dorn, G. W. (2011). Mitochondrial fusion is essential for organelle function and cardiac homeostasis. Circulation Research, 109(12), 1327–1331.PubMedPubMedCentralCrossRef Chen, Y., Liu, Y., & Dorn, G. W. (2011). Mitochondrial fusion is essential for organelle function and cardiac homeostasis. Circulation Research, 109(12), 1327–1331.PubMedPubMedCentralCrossRef
114.
go back to reference Papanicolaou, K. N., Kikuchi, R., Ngoh, G. A., Coughlan, K. A., Dominguez, I., Stanley, W. C., et al. (2012). Mitofusins 1 and 2 Are essential for postnatal metabolic remodeling in heart. Circulation Research, 111(8), 1012–1026.PubMedPubMedCentralCrossRef Papanicolaou, K. N., Kikuchi, R., Ngoh, G. A., Coughlan, K. A., Dominguez, I., Stanley, W. C., et al. (2012). Mitofusins 1 and 2 Are essential for postnatal metabolic remodeling in heart. Circulation Research, 111(8), 1012–1026.PubMedPubMedCentralCrossRef
115.
go back to reference Manczak, M., Sesaki, H., Kageyama, Y., & Reddy, P. H. (2012). Dynamin-related protein 1 heterozygote knockout mice do not have synaptic and mitochondrial deficiencies. Biochimica et Biophysica (BBA) - Molecular Basis of Disease, 1822(6), 862–874.CrossRef Manczak, M., Sesaki, H., Kageyama, Y., & Reddy, P. H. (2012). Dynamin-related protein 1 heterozygote knockout mice do not have synaptic and mitochondrial deficiencies. Biochimica et Biophysica (BBA) - Molecular Basis of Disease, 1822(6), 862–874.CrossRef
116.
go back to reference Kubli, D. A., Zhang, X., Lee, Y., Hanna, R. A., Quinsay, M. N., Nguyen, C. K., et al. (2013). Parkin protein deficiency exacerbates cardiac injury and reduces survival following myocardial infarction. Journal of Biological Chemistry, 288(2), 915–926.PubMedCrossRef Kubli, D. A., Zhang, X., Lee, Y., Hanna, R. A., Quinsay, M. N., Nguyen, C. K., et al. (2013). Parkin protein deficiency exacerbates cardiac injury and reduces survival following myocardial infarction. Journal of Biological Chemistry, 288(2), 915–926.PubMedCrossRef
117.
go back to reference Kattoor, A. J., Pothineni, N. V. K., Palagiri, D., & Mehta, J. L. (2017). Oxidative stress in atherosclerosis. Current Atherosclerosis Reports, 19(11), 42.PubMedCrossRef Kattoor, A. J., Pothineni, N. V. K., Palagiri, D., & Mehta, J. L. (2017). Oxidative stress in atherosclerosis. Current Atherosclerosis Reports, 19(11), 42.PubMedCrossRef
118.
go back to reference Sovari, A. A., Rutledge, C. A., Jeong, E. M., Dolmatova, E., Arasu, D., Liu, H., et al. (2013). Mitochondria oxidative stress, Connexin43 remodeling, and sudden arrhythmic death. Circulation Arrhythmia and Electrophysiology, 6(3), 623–631.PubMedPubMedCentralCrossRef Sovari, A. A., Rutledge, C. A., Jeong, E. M., Dolmatova, E., Arasu, D., Liu, H., et al. (2013). Mitochondria oxidative stress, Connexin43 remodeling, and sudden arrhythmic death. Circulation Arrhythmia and Electrophysiology, 6(3), 623–631.PubMedPubMedCentralCrossRef
120.
go back to reference Karamanlidis, G., Nascimben, L., Couper, G. S., Shekar, P. S., del Monte, F., & Tian, R. (2010). Defective DNA replication impairs mitochondrial biogenesis in human failing hearts. Circulation Research, 106(9), 1541–1548.PubMedPubMedCentralCrossRef Karamanlidis, G., Nascimben, L., Couper, G. S., Shekar, P. S., del Monte, F., & Tian, R. (2010). Defective DNA replication impairs mitochondrial biogenesis in human failing hearts. Circulation Research, 106(9), 1541–1548.PubMedPubMedCentralCrossRef
121.
go back to reference Borchi, E., Bargelli, V., Stillitano, F., Giordano, C., Sebastiani, M., Nassi, P. A., et al. (2010). Enhanced ROS production by NADPH oxidase is correlated to changes in antioxidant enzyme activity in human heart failure. Biochimica et Biophysica (BBA) - Molecular Basis of Disease, 1802(3), 331–338.CrossRef Borchi, E., Bargelli, V., Stillitano, F., Giordano, C., Sebastiani, M., Nassi, P. A., et al. (2010). Enhanced ROS production by NADPH oxidase is correlated to changes in antioxidant enzyme activity in human heart failure. Biochimica et Biophysica (BBA) - Molecular Basis of Disease, 1802(3), 331–338.CrossRef
122.
go back to reference Sam, F., Kerstetter, D. L., Pimental, D. R., Mulukutla, S., Tabaee, A., Bristow, M. R., et al. (2005). Increased reactive oxygen species production and functional alterations in antioxidant enzymes in human failing myocardium. Journal of Cardiac Failure, 11(6), 473–480.PubMedCrossRef Sam, F., Kerstetter, D. L., Pimental, D. R., Mulukutla, S., Tabaee, A., Bristow, M. R., et al. (2005). Increased reactive oxygen species production and functional alterations in antioxidant enzymes in human failing myocardium. Journal of Cardiac Failure, 11(6), 473–480.PubMedCrossRef
123.
go back to reference Ahuja, P., Wanagat, J., Wang, Z., Wang, Y., Liem, D. A., Ping, P., et al. (2013). Divergent mitochondrial biogenesis responses in human cardiomyopathy. Circulation, 127(19), 1957–1967.PubMedPubMedCentralCrossRef Ahuja, P., Wanagat, J., Wang, Z., Wang, Y., Liem, D. A., Ping, P., et al. (2013). Divergent mitochondrial biogenesis responses in human cardiomyopathy. Circulation, 127(19), 1957–1967.PubMedPubMedCentralCrossRef
124.
go back to reference Garnier, A., Zoll, J., Fortin, D., N’Guessan, B., Lefebvre, F., Geny, B., et al. (2009). Control by circulating factors of mitochondrial function and transcription cascade in heart failure: A role for endothelin-1 and angiotensin II. Circulation Heart Failure, 2(4), 342–350.PubMedCrossRef Garnier, A., Zoll, J., Fortin, D., N’Guessan, B., Lefebvre, F., Geny, B., et al. (2009). Control by circulating factors of mitochondrial function and transcription cascade in heart failure: A role for endothelin-1 and angiotensin II. Circulation Heart Failure, 2(4), 342–350.PubMedCrossRef
125.
go back to reference Maejima, Y., Kuroda, J., Matsushima, S., Ago, T., & Sadoshima, J. (2011). Regulation of myocardial growth and death by NADPH oxidase. Journal of Molecular and Cellular Cardiology, 50(3), 408–416.PubMedPubMedCentralCrossRef Maejima, Y., Kuroda, J., Matsushima, S., Ago, T., & Sadoshima, J. (2011). Regulation of myocardial growth and death by NADPH oxidase. Journal of Molecular and Cellular Cardiology, 50(3), 408–416.PubMedPubMedCentralCrossRef
126.
go back to reference Neubauer, S. (2007). The failing heart—an engine out of fuel. New England Journal of Medicine, 356(11), 1140–1151.PubMedCrossRef Neubauer, S. (2007). The failing heart—an engine out of fuel. New England Journal of Medicine, 356(11), 1140–1151.PubMedCrossRef
127.
go back to reference Peng, W., Cai, G., Xia, Y., Chen, J., Wu, P., Wang, Z., et al. (2019). Mitochondrial dysfunction in atherosclerosis. DNA and Cell Biology, 38(7), 597–606.PubMedCrossRef Peng, W., Cai, G., Xia, Y., Chen, J., Wu, P., Wang, Z., et al. (2019). Mitochondrial dysfunction in atherosclerosis. DNA and Cell Biology, 38(7), 597–606.PubMedCrossRef
128.
go back to reference Hulsmans, M., Van Dooren, E., & Holvoet, P. (2012). Mitochondrial reactive oxygen species and risk of atherosclerosis. Current Atherosclerosis Reports, 14(3), 264–276.PubMedCrossRef Hulsmans, M., Van Dooren, E., & Holvoet, P. (2012). Mitochondrial reactive oxygen species and risk of atherosclerosis. Current Atherosclerosis Reports, 14(3), 264–276.PubMedCrossRef
129.
go back to reference Huss, J. M., & Kelly, D. P. (2005). Mitochondrial energy metabolism in heart failure: A question of balance. The Journal of Clinical Investigation, 115(3), 547–555.PubMedPubMedCentralCrossRef Huss, J. M., & Kelly, D. P. (2005). Mitochondrial energy metabolism in heart failure: A question of balance. The Journal of Clinical Investigation, 115(3), 547–555.PubMedPubMedCentralCrossRef
130.
go back to reference Finsterer, J. (2009). Cardiogenetics, neurogenetics, and pathogenetics of left ventricular hypertrabeculation/noncompaction. Pediatric Cardiology, 30(5), 659–681.PubMedCrossRef Finsterer, J. (2009). Cardiogenetics, neurogenetics, and pathogenetics of left ventricular hypertrabeculation/noncompaction. Pediatric Cardiology, 30(5), 659–681.PubMedCrossRef
131.
go back to reference Rouslin, W. (1983). Mitochondrial complexes I, II, III, IV, and V in myocardial ischemia and autolysis. American Journal of Physiology-Heart and Circulatory Physiology, 244(6), H743–H748.CrossRef Rouslin, W. (1983). Mitochondrial complexes I, II, III, IV, and V in myocardial ischemia and autolysis. American Journal of Physiology-Heart and Circulatory Physiology, 244(6), H743–H748.CrossRef
132.
go back to reference Asimakis, G., & Conti, V. (1984). Myocardial ischemia: Correlation of mitochondrial adenine nucleotide and respiratory function. Journal of Molecular and Cellular Cardiology, 16(5), 439–447.PubMedCrossRef Asimakis, G., & Conti, V. (1984). Myocardial ischemia: Correlation of mitochondrial adenine nucleotide and respiratory function. Journal of Molecular and Cellular Cardiology, 16(5), 439–447.PubMedCrossRef
133.
go back to reference Borutaite, V., Mildaziene, V., Brown, G. C., & Brand, M. D. (1995). Control and kinetic analysis of ischemia-damaged heart mitochondria: which parts of the oxidative phosphorylation system are affected by ischemia? Biochimica et Biophysica (BBA) - Molecular Basis of Disease, 1272(3), 154–158.CrossRef Borutaite, V., Mildaziene, V., Brown, G. C., & Brand, M. D. (1995). Control and kinetic analysis of ischemia-damaged heart mitochondria: which parts of the oxidative phosphorylation system are affected by ischemia? Biochimica et Biophysica (BBA) - Molecular Basis of Disease, 1272(3), 154–158.CrossRef
134.
go back to reference Paradies, G., Petrosillo, G., Pistolese, M., Di Venosa, N., Serena, D., & Ruggiero, F. M. (1999). Lipid peroxidation and alterations to oxidative metabolism in mitochondria isolated from rat heart subjected to ischemia and reperfusion. Free Radical Biology and Medicine, 27(1–2), 42–50.PubMedCrossRef Paradies, G., Petrosillo, G., Pistolese, M., Di Venosa, N., Serena, D., & Ruggiero, F. M. (1999). Lipid peroxidation and alterations to oxidative metabolism in mitochondria isolated from rat heart subjected to ischemia and reperfusion. Free Radical Biology and Medicine, 27(1–2), 42–50.PubMedCrossRef
135.
go back to reference Turrens, J. F., Beconi, M., Barilla, J., Chavez, U. B., & McCord, J. M. (1991). Mitochondrial generation of oxygen radicals during reoxygenation of ischemic tissues. Free Radical Research Communications, 13(1), 681–689.CrossRef Turrens, J. F., Beconi, M., Barilla, J., Chavez, U. B., & McCord, J. M. (1991). Mitochondrial generation of oxygen radicals during reoxygenation of ischemic tissues. Free Radical Research Communications, 13(1), 681–689.CrossRef
136.
go back to reference Griffiths, E. J., & Halestrap, A. P. (1995). Mitochondrial non-specific pores remain closed during cardiac ischaemia, but open upon reperfusion. Biochemical Journal, 307(1), 93–98.PubMedPubMedCentralCrossRef Griffiths, E. J., & Halestrap, A. P. (1995). Mitochondrial non-specific pores remain closed during cardiac ischaemia, but open upon reperfusion. Biochemical Journal, 307(1), 93–98.PubMedPubMedCentralCrossRef
137.
go back to reference Di Lisa, F., Menabò, R., Canton, M., Barile, M., & Bernardi, P. (2001). Opening of the mitochondrial permeability transition pore causes depletion of mitochondrial and cytosolic NAD + and is a causative event in the death of myocytes in postischemic reperfusion of the heart. Journal of Biological Chemistry, 276(4), 2571–2575.PubMedCrossRef Di Lisa, F., Menabò, R., Canton, M., Barile, M., & Bernardi, P. (2001). Opening of the mitochondrial permeability transition pore causes depletion of mitochondrial and cytosolic NAD + and is a causative event in the death of myocytes in postischemic reperfusion of the heart. Journal of Biological Chemistry, 276(4), 2571–2575.PubMedCrossRef
138.
go back to reference Stone, D., Darley-Usmar, V., Smith, D. R., & O’Leary, V. (1989). Hypoxia-reoxygenation induced increase in cellular Ca2+ in myocytes and perfused hearts: The role of mitochondria. Journal of Molecular and Cellular Cardiology, 21(10), 963–973.PubMedCrossRef Stone, D., Darley-Usmar, V., Smith, D. R., & O’Leary, V. (1989). Hypoxia-reoxygenation induced increase in cellular Ca2+ in myocytes and perfused hearts: The role of mitochondria. Journal of Molecular and Cellular Cardiology, 21(10), 963–973.PubMedCrossRef
139.
go back to reference Schilling, J. D. (2015). The mitochondria in diabetic heart failure: From pathogenesis to therapeutic promise. Antioxidants & Redox Signaling, 22(17), 1515–1526.CrossRef Schilling, J. D. (2015). The mitochondria in diabetic heart failure: From pathogenesis to therapeutic promise. Antioxidants & Redox Signaling, 22(17), 1515–1526.CrossRef
140.
go back to reference Verma, S. K., Garikipati, V. N. S., & Kishore, R. (2017). Mitochondrial dysfunction and its impact on diabetic heart. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1863(5), 1098–1105.PubMedCrossRef Verma, S. K., Garikipati, V. N. S., & Kishore, R. (2017). Mitochondrial dysfunction and its impact on diabetic heart. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1863(5), 1098–1105.PubMedCrossRef
141.
142.
go back to reference Mahalakshmi, A., & Kurian, G. A. (2020). Mitochondrial dysfunction plays a key role in the abrogation of cardioprotection by sodium hydrosulfide post-conditioning in diabetic cardiomyopathy rat heart. Naunyn-Schmiedeberg’s Archives of Pharmacology, 393(3), 339–348.CrossRef Mahalakshmi, A., & Kurian, G. A. (2020). Mitochondrial dysfunction plays a key role in the abrogation of cardioprotection by sodium hydrosulfide post-conditioning in diabetic cardiomyopathy rat heart. Naunyn-Schmiedeberg’s Archives of Pharmacology, 393(3), 339–348.CrossRef
143.
go back to reference Yao, K., Zhang, W. W., Yao, L., Yang, S., Nie, W., & Huang, F. (2016). Carvedilol promotes mitochondrial biogenesis by regulating the PGC-1/TFAM pathway in human umbilical vein endothelial cells (HUVECs). Biochemical and Biophysical Research Communications, 470(4), 961–966.PubMedCrossRef Yao, K., Zhang, W. W., Yao, L., Yang, S., Nie, W., & Huang, F. (2016). Carvedilol promotes mitochondrial biogenesis by regulating the PGC-1/TFAM pathway in human umbilical vein endothelial cells (HUVECs). Biochemical and Biophysical Research Communications, 470(4), 961–966.PubMedCrossRef
144.
go back to reference Andres, A. M., Hernandez, G., Lee, P., Huang, C., Ratliff, E. P., Sin, J., et al. (2014). Mitophagy is required for acute cardioprotection by simvastatin. Antioxidants & Redox Signaling, 21(14), 1960–1973.CrossRef Andres, A. M., Hernandez, G., Lee, P., Huang, C., Ratliff, E. P., Sin, J., et al. (2014). Mitophagy is required for acute cardioprotection by simvastatin. Antioxidants & Redox Signaling, 21(14), 1960–1973.CrossRef
145.
go back to reference Coronado, M., Fajardo, G., Nguyen, K., Zhao, M., Kooiker, K., Jung, G., et al. (2018). Physiological mitochondrial fragmentation is a normal cardiac adaptation to increased energy demand. Circulation Research, 122(2), 282–295.PubMedCrossRef Coronado, M., Fajardo, G., Nguyen, K., Zhao, M., Kooiker, K., Jung, G., et al. (2018). Physiological mitochondrial fragmentation is a normal cardiac adaptation to increased energy demand. Circulation Research, 122(2), 282–295.PubMedCrossRef
146.
go back to reference Kong, D., Zhan, Y., Liu, Z., Ding, T., Li, M., Yu, H., et al. (2016). SIRT1-mediated ERβ suppression in the endothelium contributes to vascular aging. Aging Cell, 15(6), 1092–1102.PubMedPubMedCentralCrossRef Kong, D., Zhan, Y., Liu, Z., Ding, T., Li, M., Yu, H., et al. (2016). SIRT1-mediated ERβ suppression in the endothelium contributes to vascular aging. Aging Cell, 15(6), 1092–1102.PubMedPubMedCentralCrossRef
147.
go back to reference Cea, M., Cagnetta, A., Adamia, S., Acharya, C., Tai, Y. T., Fulciniti, M., et al. (2016). Evidence for a role of the histone deacetylase SIRT6 in DNA damage response of multiple myeloma cells. Blood, 127(9), 1138–1150.PubMedPubMedCentralCrossRef Cea, M., Cagnetta, A., Adamia, S., Acharya, C., Tai, Y. T., Fulciniti, M., et al. (2016). Evidence for a role of the histone deacetylase SIRT6 in DNA damage response of multiple myeloma cells. Blood, 127(9), 1138–1150.PubMedPubMedCentralCrossRef
148.
go back to reference Feldman, J. L., Baeza, J., & Denu, J. M. (2013). Activation of the protein deacetylase SIRT6 by long-chain fatty acids and widespread deacylation by mammalian sirtuins. Journal of Biological Chemistry, 288(43), 31350–31356.PubMedPubMedCentralCrossRef Feldman, J. L., Baeza, J., & Denu, J. M. (2013). Activation of the protein deacetylase SIRT6 by long-chain fatty acids and widespread deacylation by mammalian sirtuins. Journal of Biological Chemistry, 288(43), 31350–31356.PubMedPubMedCentralCrossRef
149.
150.
go back to reference Kanwal, A., Pillai, V. B., Samant, S., Gupta, M., & Gupta, M. P. (2019). The nuclear and mitochondrial sirtuins, SIRT6 and SIRT3, regulate each other’s activity and protect the heart from developing obesity-mediated diabetic cardiomyopathy. The FASEB Journal, 33(10), 10872–10888.PubMedPubMedCentralCrossRef Kanwal, A., Pillai, V. B., Samant, S., Gupta, M., & Gupta, M. P. (2019). The nuclear and mitochondrial sirtuins, SIRT6 and SIRT3, regulate each other’s activity and protect the heart from developing obesity-mediated diabetic cardiomyopathy. The FASEB Journal, 33(10), 10872–10888.PubMedPubMedCentralCrossRef
151.
152.
go back to reference Stein, A. B., Giblin, W., Guo, A. H., & Lombard, D. B. (2018). Roles for Sirtuins in Cardiovascular Biology. Introductory Review on Sirtuins in Biology, Aging, and Disease (pp. 155–173). Elsevier. Stein, A. B., Giblin, W., Guo, A. H., & Lombard, D. B. (2018). Roles for Sirtuins in Cardiovascular Biology. Introductory Review on Sirtuins in Biology, Aging, and Disease (pp. 155–173). Elsevier.
153.
go back to reference Kim, J. W., Tchernyshyov, I., Semenza, G. L., & Dang, C. V. (2006). HIF-1-mediated expression of pyruvate dehydrogenase kinase: A metabolic switch required for cellular adaptation to hypoxia. Cell Metabolism, 3(3), 177–185.PubMedCrossRef Kim, J. W., Tchernyshyov, I., Semenza, G. L., & Dang, C. V. (2006). HIF-1-mediated expression of pyruvate dehydrogenase kinase: A metabolic switch required for cellular adaptation to hypoxia. Cell Metabolism, 3(3), 177–185.PubMedCrossRef
154.
go back to reference Papandreou, I., Cairns, R. A., Fontana, L., Lim, A. L., & Denko, N. C. (2006). HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metabolism, 3(3), 187–197.PubMedCrossRef Papandreou, I., Cairns, R. A., Fontana, L., Lim, A. L., & Denko, N. C. (2006). HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metabolism, 3(3), 187–197.PubMedCrossRef
155.
156.
go back to reference van Loo, G., Saelens, X., van Gurp, M., MacFarlane, M., Martin, S. J., & Vandenabeele, P. (2002). The role of mitochondrial factors in apoptosis: A Russian roulette with more than one bullet. Cell Death and Differentiation, 9(10), 1031–1042.PubMedCrossRef van Loo, G., Saelens, X., van Gurp, M., MacFarlane, M., Martin, S. J., & Vandenabeele, P. (2002). The role of mitochondrial factors in apoptosis: A Russian roulette with more than one bullet. Cell Death and Differentiation, 9(10), 1031–1042.PubMedCrossRef
157.
go back to reference Song, L., Chen, X., Mi, L., Liu, C., Zhu, S., Yang, T., et al. (2020). Icariin-induced inhibition of SIRT6/NF-κB triggers redox mediated apoptosis and enhances anti-tumor immunity in triple-negative breast cancer. Cancer Science, 111(11), 4242–4256.PubMedPubMedCentralCrossRef Song, L., Chen, X., Mi, L., Liu, C., Zhu, S., Yang, T., et al. (2020). Icariin-induced inhibition of SIRT6/NF-κB triggers redox mediated apoptosis and enhances anti-tumor immunity in triple-negative breast cancer. Cancer Science, 111(11), 4242–4256.PubMedPubMedCentralCrossRef
158.
go back to reference Balestrieri, M. L., Rizzo, M. R., Barbieri, M., Paolisso, P., D’Onofrio, N., Giovane, A., et al. (2015). Sirtuin 6 expression and inflammatory activity in diabetic atherosclerotic plaques: Effects of incretin treatment. Diabetes, 64(4), 1395–1406.PubMedCrossRef Balestrieri, M. L., Rizzo, M. R., Barbieri, M., Paolisso, P., D’Onofrio, N., Giovane, A., et al. (2015). Sirtuin 6 expression and inflammatory activity in diabetic atherosclerotic plaques: Effects of incretin treatment. Diabetes, 64(4), 1395–1406.PubMedCrossRef
159.
go back to reference Xiong, X., Wang, G., Tao, R., Wu, P., Kono, T., Li, K., et al. (2016). Sirtuin 6 regulates glucose-stimulated insulin secretion in mouse pancreatic beta cells. Diabetologia, 59(1), 151–160.PubMedPubMedCentralCrossRef Xiong, X., Wang, G., Tao, R., Wu, P., Kono, T., Li, K., et al. (2016). Sirtuin 6 regulates glucose-stimulated insulin secretion in mouse pancreatic beta cells. Diabetologia, 59(1), 151–160.PubMedPubMedCentralCrossRef
160.
go back to reference Xiong, X., Sun, X., Wang, Q., Qian, X., Zhang, Y., Pan, X., et al. (2016). SIRT6 protects against palmitate-induced pancreatic β-cell dysfunction and apoptosis. Journal of Endocrinology, 231(2), 159–165.PubMedCrossRef Xiong, X., Sun, X., Wang, Q., Qian, X., Zhang, Y., Pan, X., et al. (2016). SIRT6 protects against palmitate-induced pancreatic β-cell dysfunction and apoptosis. Journal of Endocrinology, 231(2), 159–165.PubMedCrossRef
161.
go back to reference Feng, J., Yan, P. F., Zhao, H. Y., Zhang, F. C., Zhao, W. H., & Feng, M. (2016). SIRT6 suppresses glioma cell growth via induction of apoptosis, inhibition of oxidative stress and suppression of JAK2/STAT3 signaling pathway activation. Oncology Reports, 35(3), 1395–1402.PubMedCrossRef Feng, J., Yan, P. F., Zhao, H. Y., Zhang, F. C., Zhao, W. H., & Feng, M. (2016). SIRT6 suppresses glioma cell growth via induction of apoptosis, inhibition of oxidative stress and suppression of JAK2/STAT3 signaling pathway activation. Oncology Reports, 35(3), 1395–1402.PubMedCrossRef
162.
go back to reference Xie, X., Zhang, H., Gao, P., Wang, L., Zhang, A., Xie, S., et al. (2012). Overexpression of SIRT6 in porcine fetal fibroblasts attenuates cytotoxicity and premature senescence caused by D-galactose and tert-butylhydroperoxide. DNA and Cell Biology, 31(5), 745–752.PubMedCrossRef Xie, X., Zhang, H., Gao, P., Wang, L., Zhang, A., Xie, S., et al. (2012). Overexpression of SIRT6 in porcine fetal fibroblasts attenuates cytotoxicity and premature senescence caused by D-galactose and tert-butylhydroperoxide. DNA and Cell Biology, 31(5), 745–752.PubMedCrossRef
163.
go back to reference Saiyang, X., Deng, W., & Qizhu, T. (2020). Sirtuin 6: A potential therapeutic target for cardiovascular diseases. Pharmacological Research, 163, 105214.PubMedCrossRef Saiyang, X., Deng, W., & Qizhu, T. (2020). Sirtuin 6: A potential therapeutic target for cardiovascular diseases. Pharmacological Research, 163, 105214.PubMedCrossRef
164.
go back to reference Xu, S., Yin, M., Koroleva, M., Mastrangelo, M. A., Zhang, W., Bai, P., et al. (2016). SIRT6 protects against endothelial dysfunction and atherosclerosis in mice. Aging, 8(5), 1064–1082.PubMedPubMedCentralCrossRef Xu, S., Yin, M., Koroleva, M., Mastrangelo, M. A., Zhang, W., Bai, P., et al. (2016). SIRT6 protects against endothelial dysfunction and atherosclerosis in mice. Aging, 8(5), 1064–1082.PubMedPubMedCentralCrossRef
165.
go back to reference Sosnowska, B., Mazidi, M., Penson, P., Gluba-Brzózka, A., Rysz, J., & Banach, M. (2017). The sirtuin family members SIRT1, SIRT3 and SIRT6: Their role in vascular biology and atherogenesis. Atherosclerosis, 265, 275–282.PubMedCrossRef Sosnowska, B., Mazidi, M., Penson, P., Gluba-Brzózka, A., Rysz, J., & Banach, M. (2017). The sirtuin family members SIRT1, SIRT3 and SIRT6: Their role in vascular biology and atherogenesis. Atherosclerosis, 265, 275–282.PubMedCrossRef
166.
go back to reference Bulbulia, R., & Armitage, J. (2012). LDL cholesterol targets – how low to go? Current Opinion in Lipidology, 23(4), 265–270.PubMedCrossRef Bulbulia, R., & Armitage, J. (2012). LDL cholesterol targets – how low to go? Current Opinion in Lipidology, 23(4), 265–270.PubMedCrossRef
167.
go back to reference Marais, D. A., Blom, D. J., Petrides, F., Gouëffic, Y., & Lambert, G. (2012). Proprotein convertase subtilisin/kexin type 9 inhibition. Current Opinion in Lipidology, 23(6), 511–517.PubMedCrossRef Marais, D. A., Blom, D. J., Petrides, F., Gouëffic, Y., & Lambert, G. (2012). Proprotein convertase subtilisin/kexin type 9 inhibition. Current Opinion in Lipidology, 23(6), 511–517.PubMedCrossRef
168.
go back to reference He, J., Zhang, G., Pang, Q., Yu, C., Xiong, J., Zhu, J., et al. (2017). SIRT 6 reduces macrophage foam cell formation by inducing autophagy and cholesterol efflux under ox- LDL condition. FEBS Journal, 284(9), 1324–1337.PubMedCrossRef He, J., Zhang, G., Pang, Q., Yu, C., Xiong, J., Zhu, J., et al. (2017). SIRT 6 reduces macrophage foam cell formation by inducing autophagy and cholesterol efflux under ox- LDL condition. FEBS Journal, 284(9), 1324–1337.PubMedCrossRef
169.
go back to reference Tao, R., Xiong, X., DePinho, R. A., Deng, C. X., & Dong, X. C. (2013). Hepatic SREBP-2 and cholesterol biosynthesis are regulated by FoxO3 and Sirt6. Journal of Lipid Research, 54(10), 2745–2753.PubMedPubMedCentralCrossRef Tao, R., Xiong, X., DePinho, R. A., Deng, C. X., & Dong, X. C. (2013). Hepatic SREBP-2 and cholesterol biosynthesis are regulated by FoxO3 and Sirt6. Journal of Lipid Research, 54(10), 2745–2753.PubMedPubMedCentralCrossRef
170.
go back to reference Kim, H. S., Xiao, C., Wang, R. H., Lahusen, T., Xu, X., Vassilopoulos, A., et al. (2010). Hepatic-specific disruption of SIRT6 in mice results in fatty liver formation due to enhanced glycolysis and triglyceride synthesis. Cell Metabolism, 12(3), 224–236.PubMedPubMedCentralCrossRef Kim, H. S., Xiao, C., Wang, R. H., Lahusen, T., Xu, X., Vassilopoulos, A., et al. (2010). Hepatic-specific disruption of SIRT6 in mice results in fatty liver formation due to enhanced glycolysis and triglyceride synthesis. Cell Metabolism, 12(3), 224–236.PubMedPubMedCentralCrossRef
171.
go back to reference Takasaka, N., Araya, J., Hara, H., Ito, S., Kobayashi, K., Kurita, Y., et al. (2014). Autophagy induction by SIRT6 through attenuation of insulin-like growth factor signaling is involved in the regulation of human bronchial epithelial cell senescence. The Journal of Immunology, 192(3), 958–968.PubMedCrossRef Takasaka, N., Araya, J., Hara, H., Ito, S., Kobayashi, K., Kurita, Y., et al. (2014). Autophagy induction by SIRT6 through attenuation of insulin-like growth factor signaling is involved in the regulation of human bronchial epithelial cell senescence. The Journal of Immunology, 192(3), 958–968.PubMedCrossRef
172.
go back to reference Zhang, Z. Z., Cheng, Y. W., Jin, H. Y., Chang, Q., Shang, Q. H., Xu, Y. L., et al. (2017). The sirtuin 6 prevents angiotensin II-mediated myocardial fibrosis and injury by targeting AMPK-ACE2 signaling. Oncotarget, 8(42), 72302–72314.PubMedPubMedCentralCrossRef Zhang, Z. Z., Cheng, Y. W., Jin, H. Y., Chang, Q., Shang, Q. H., Xu, Y. L., et al. (2017). The sirtuin 6 prevents angiotensin II-mediated myocardial fibrosis and injury by targeting AMPK-ACE2 signaling. Oncotarget, 8(42), 72302–72314.PubMedPubMedCentralCrossRef
173.
go back to reference Li, Y., Meng, X., Wang, W., Liu, F., Hao, Z., Yang, Y., et al. (2017). Cardioprotective effects of SIRT6 in a mouse model of transverse aortic constriction-induced heart failure. Frontiers in Physiology, 13(8), 394.CrossRef Li, Y., Meng, X., Wang, W., Liu, F., Hao, Z., Yang, Y., et al. (2017). Cardioprotective effects of SIRT6 in a mouse model of transverse aortic constriction-induced heart failure. Frontiers in Physiology, 13(8), 394.CrossRef
174.
go back to reference Matsushima, S., & Sadoshima, J. (2015). The role of sirtuins in cardiac disease. American Journal of Physiology-Heart and Circulatory Physiology, 309(9), H1375–H1389.PubMedPubMedCentralCrossRef Matsushima, S., & Sadoshima, J. (2015). The role of sirtuins in cardiac disease. American Journal of Physiology-Heart and Circulatory Physiology, 309(9), H1375–H1389.PubMedPubMedCentralCrossRef
175.
go back to reference Van Meter, M., Simon, M., Tombline, G., May, A., Morello, T. D., Hubbard, B. P., et al. (2016). JNK phosphorylates SIRT6 to stimulate DNA double-strand break repair in response to oxidative stress by recruiting PARP1 to DNA breaks. Cell Reports, 16(10), 2641–2650.PubMedCrossRef Van Meter, M., Simon, M., Tombline, G., May, A., Morello, T. D., Hubbard, B. P., et al. (2016). JNK phosphorylates SIRT6 to stimulate DNA double-strand break repair in response to oxidative stress by recruiting PARP1 to DNA breaks. Cell Reports, 16(10), 2641–2650.PubMedCrossRef
176.
go back to reference D’Onofrio, N., Servillo, L., & Balestrieri, M. L. (2018). SIRT1 and SIRT6 signaling pathways in cardiovascular disease protection. Antioxidants & Redox Signaling, 28(8), 711–732.CrossRef D’Onofrio, N., Servillo, L., & Balestrieri, M. L. (2018). SIRT1 and SIRT6 signaling pathways in cardiovascular disease protection. Antioxidants & Redox Signaling, 28(8), 711–732.CrossRef
177.
go back to reference Jung, S. M., Hung, C. M., Hildebrand, S. R., Sanchez-Gurmaches, J., Martinez-Pastor, B., Gengatharan, J. M., et al. (2019). Non-canonical mTORC2 signaling regulates brown adipocyte lipid catabolism through SIRT6-FoxO1. Molecular Cell, 75(4), 807-822.e8.PubMedPubMedCentralCrossRef Jung, S. M., Hung, C. M., Hildebrand, S. R., Sanchez-Gurmaches, J., Martinez-Pastor, B., Gengatharan, J. M., et al. (2019). Non-canonical mTORC2 signaling regulates brown adipocyte lipid catabolism through SIRT6-FoxO1. Molecular Cell, 75(4), 807-822.e8.PubMedPubMedCentralCrossRef
178.
go back to reference Khan, D., Sarikhani, M., Dasgupta, S., Maniyadath, B., Pandit, A. S., Mishra, S., et al. (2018). SIRT6 deacetylase transcriptionally regulates glucose metabolism in heart. Journal of Cellular Physiology, 233(7), 5478–5489.PubMedCrossRef Khan, D., Sarikhani, M., Dasgupta, S., Maniyadath, B., Pandit, A. S., Mishra, S., et al. (2018). SIRT6 deacetylase transcriptionally regulates glucose metabolism in heart. Journal of Cellular Physiology, 233(7), 5478–5489.PubMedCrossRef
180.
go back to reference Naiman, S., Huynh, F. K., Gil, R., Glick, Y., Shahar, Y., Touitou, N., et al. (2019). SIRT6 promotes hepatic beta-oxidation via activation of PPARα. Cell Reports, 29(12), 4127-4143.e8.PubMedCrossRef Naiman, S., Huynh, F. K., Gil, R., Glick, Y., Shahar, Y., Touitou, N., et al. (2019). SIRT6 promotes hepatic beta-oxidation via activation of PPARα. Cell Reports, 29(12), 4127-4143.e8.PubMedCrossRef
181.
go back to reference Guo, J., Wang, Z., Wu, J., Liu, M., Li, M., Sun, Y., et al. (2019). Endothelial SIRT6 is vital to prevent hypertension and associated cardiorenal injury through targeting Nkx3.2-GATA5 signaling. Circulation Research, 124(10), 1448–1461.PubMedCrossRef Guo, J., Wang, Z., Wu, J., Liu, M., Li, M., Sun, Y., et al. (2019). Endothelial SIRT6 is vital to prevent hypertension and associated cardiorenal injury through targeting Nkx3.2-GATA5 signaling. Circulation Research, 124(10), 1448–1461.PubMedCrossRef
182.
go back to reference Masri, S., & Sassone-Corsi, P. (2014). Sirtuins and the circadian clock: Bridging chromatin and metabolism. Science Signaling, 7(342), re6.PubMedCrossRef Masri, S., & Sassone-Corsi, P. (2014). Sirtuins and the circadian clock: Bridging chromatin and metabolism. Science Signaling, 7(342), re6.PubMedCrossRef
183.
go back to reference Bugger, H., Witt, C. N., & Bode, C. (2016). Mitochondrial sirtuins in the heart. Heart Failure Reviews, 21(5), 519–528.PubMedCrossRef Bugger, H., Witt, C. N., & Bode, C. (2016). Mitochondrial sirtuins in the heart. Heart Failure Reviews, 21(5), 519–528.PubMedCrossRef
184.
go back to reference Chalkiadaki, A., & Guarente, L. (2015). The multifaceted functions of sirtuins in cancer. Nature Reviews Cancer, 15(10), 608–624.PubMedCrossRef Chalkiadaki, A., & Guarente, L. (2015). The multifaceted functions of sirtuins in cancer. Nature Reviews Cancer, 15(10), 608–624.PubMedCrossRef
185.
go back to reference Madhavi, Y. V., Gaikwad, N., Yerra, V. G., Kalvala, A. K., Nanduri, S., & Kumar, A. (2019). Targeting AMPK in diabetes and diabetic complications: energy homeostasis. Autophagy and Mitochondrial Health CMC, 26(27), 5207–5229. Madhavi, Y. V., Gaikwad, N., Yerra, V. G., Kalvala, A. K., Nanduri, S., & Kumar, A. (2019). Targeting AMPK in diabetes and diabetic complications: energy homeostasis. Autophagy and Mitochondrial Health CMC, 26(27), 5207–5229.
186.
go back to reference Palikaras, K., & Tavernarakis, N. (2014). Mitochondrial homeostasis: The interplay between mitophagy and mitochondrial biogenesis. Experimental Gerontology, 56, 182–188.PubMedCrossRef Palikaras, K., & Tavernarakis, N. (2014). Mitochondrial homeostasis: The interplay between mitophagy and mitochondrial biogenesis. Experimental Gerontology, 56, 182–188.PubMedCrossRef
187.
go back to reference Wu, S., & Zou, M. H. (2020). AMPK, mitochondrial function, and cardiovascular disease. International Journal of Molecular Science, 21(14), 4987.CrossRef Wu, S., & Zou, M. H. (2020). AMPK, mitochondrial function, and cardiovascular disease. International Journal of Molecular Science, 21(14), 4987.CrossRef
188.
go back to reference Myers, R. W., Guan, H. P., Ehrhart, J., Petrov, A., Prahalada, S., Tozzo, E., et al. (2017). Systemic pan-AMPK activator MK-8722 improves glucose homeostasis but induces cardiac hypertrophy. Science, 357(6350), 507–511.PubMedCrossRef Myers, R. W., Guan, H. P., Ehrhart, J., Petrov, A., Prahalada, S., Tozzo, E., et al. (2017). Systemic pan-AMPK activator MK-8722 improves glucose homeostasis but induces cardiac hypertrophy. Science, 357(6350), 507–511.PubMedCrossRef
189.
go back to reference Anderson, K. A., Madsen, A. S., Olsen, C. A., & Hirschey, M. D. (2017). Metabolic control by sirtuins and other enzymes that sense NAD+, NADH, or their ratio. Biochimica et Biophysica Acta, Bioenergetics, 1858(12), 991–998.PubMedCrossRef Anderson, K. A., Madsen, A. S., Olsen, C. A., & Hirschey, M. D. (2017). Metabolic control by sirtuins and other enzymes that sense NAD+, NADH, or their ratio. Biochimica et Biophysica Acta, Bioenergetics, 1858(12), 991–998.PubMedCrossRef
190.
go back to reference Cai, Y., Yu, S. S., Chen, S. R., Pi, R. B., Gao, S., Li, H., et al. (2012). Nmnat2 protects cardiomyocytes from hypertrophy via activation of SIRT6. FEBS Letters, 586(6), 866–874.PubMedCrossRef Cai, Y., Yu, S. S., Chen, S. R., Pi, R. B., Gao, S., Li, H., et al. (2012). Nmnat2 protects cardiomyocytes from hypertrophy via activation of SIRT6. FEBS Letters, 586(6), 866–874.PubMedCrossRef
191.
go back to reference Pillai, V., Samant, S. A., Gupta, M., & Gupta, M. P. (2019). Sirt6 protects the heart from aging-induced cardiac hypertrophy by enhancing mitochondrial fitness. Circulation, 140, A11897. Pillai, V., Samant, S. A., Gupta, M., & Gupta, M. P. (2019). Sirt6 protects the heart from aging-induced cardiac hypertrophy by enhancing mitochondrial fitness. Circulation, 140, A11897.
192.
go back to reference Acin-Perez, R., Lechuga-Vieco, A. V., Mar Muñoz, M. D., Nieto-Arellano, R., Torroja, C., Sánchez-Cabo, F., et al. (2018). Ablation of the stress protease OMA1 protects against heart failure in mice. Science Translational Medicine, 10(434), eaan4935.PubMedCrossRef Acin-Perez, R., Lechuga-Vieco, A. V., Mar Muñoz, M. D., Nieto-Arellano, R., Torroja, C., Sánchez-Cabo, F., et al. (2018). Ablation of the stress protease OMA1 protects against heart failure in mice. Science Translational Medicine, 10(434), eaan4935.PubMedCrossRef
193.
go back to reference Han, J. (2017). Mitochondrial DNA mitochondrial dysfunction and cardiac manifestations. Frontiers in Bioscience, 22(7), 1177–1194.CrossRef Han, J. (2017). Mitochondrial DNA mitochondrial dysfunction and cardiac manifestations. Frontiers in Bioscience, 22(7), 1177–1194.CrossRef
194.
go back to reference Yu, S., Cai, Y., Ye, J., Pi, R., Chen, S., Liu, P., et al. (2013). Sirtuin 6 protects cardiomyocytes from hypertrophy in vitro via inhibition of NF-κB-dependent transcriptional activity. British Journal of Pharmacology, 168(1), 117–128.PubMedPubMedCentralCrossRef Yu, S., Cai, Y., Ye, J., Pi, R., Chen, S., Liu, P., et al. (2013). Sirtuin 6 protects cardiomyocytes from hypertrophy in vitro via inhibition of NF-κB-dependent transcriptional activity. British Journal of Pharmacology, 168(1), 117–128.PubMedPubMedCentralCrossRef
195.
go back to reference Brito, V. B., Nascimento, L. V. M., Nunes, R. B., Moura, D. J., Lago, P. D., & Saffi, J. (2016). Exercise during pregnancy decreases doxorubicin-induced cardiotoxic effects on neonatal hearts. Toxicology, 368–369, 46–57.PubMedCrossRef Brito, V. B., Nascimento, L. V. M., Nunes, R. B., Moura, D. J., Lago, P. D., & Saffi, J. (2016). Exercise during pregnancy decreases doxorubicin-induced cardiotoxic effects on neonatal hearts. Toxicology, 368–369, 46–57.PubMedCrossRef
196.
go back to reference Rocha, B., Rodrigues, A. R., Tomada, I., Martins, M. J., Guimarães, J. T., Gouveia, A. M., et al. (2018). Energy restriction, exercise and atorvastatin treatment improve endothelial dysfunction and inhibit miRNA-155 in the erectile tissue of the aged rat. Nutrition & Metabolism (London), 15(1), 28.CrossRef Rocha, B., Rodrigues, A. R., Tomada, I., Martins, M. J., Guimarães, J. T., Gouveia, A. M., et al. (2018). Energy restriction, exercise and atorvastatin treatment improve endothelial dysfunction and inhibit miRNA-155 in the erectile tissue of the aged rat. Nutrition & Metabolism (London), 15(1), 28.CrossRef
197.
go back to reference Koltai, E., Szabo, Z., Atalay, M., Boldogh, I., Naito, H., Goto, S., et al. (2010). Exercise alters SIRT1, SIRT6, NAD and NAMPT levels in skeletal muscle of aged rats. Mechanisms of Ageing and Development., 131(1), 21–28.PubMedCrossRef Koltai, E., Szabo, Z., Atalay, M., Boldogh, I., Naito, H., Goto, S., et al. (2010). Exercise alters SIRT1, SIRT6, NAD and NAMPT levels in skeletal muscle of aged rats. Mechanisms of Ageing and Development., 131(1), 21–28.PubMedCrossRef
198.
go back to reference Zhang, N., Li, Z., Mu, W., Li, L., Liang, Y., Lu, M., et al. (2016). Calorie restriction-induced SIRT6 activation delays aging by suppressing NF-κB signaling. Cell Cycle, 15(7), 1009–1018.PubMedPubMedCentralCrossRef Zhang, N., Li, Z., Mu, W., Li, L., Liang, Y., Lu, M., et al. (2016). Calorie restriction-induced SIRT6 activation delays aging by suppressing NF-κB signaling. Cell Cycle, 15(7), 1009–1018.PubMedPubMedCentralCrossRef
199.
go back to reference Kitada, M., Ogura, Y., Monno, I., & Koya, D. (2019). Sirtuins and type 2 diabetes: Role in inflammation, oxidative stress, and mitochondrial function. Frontiers in Endocrinology, 10, 1–12.CrossRef Kitada, M., Ogura, Y., Monno, I., & Koya, D. (2019). Sirtuins and type 2 diabetes: Role in inflammation, oxidative stress, and mitochondrial function. Frontiers in Endocrinology, 10, 1–12.CrossRef
200.
go back to reference Yasuda, M., Wilson, D. R., Fugmann, S. D., & Moaddel, R. (2011). Synthesis and characterization of SIRT6 protein coated magnetic beads: Identification of a novel inhibitor of SIRT6 deacetylase from medicinal plant extracts. Analytical Chemistry, 83(19), 7400–7407.PubMedPubMedCentralCrossRef Yasuda, M., Wilson, D. R., Fugmann, S. D., & Moaddel, R. (2011). Synthesis and characterization of SIRT6 protein coated magnetic beads: Identification of a novel inhibitor of SIRT6 deacetylase from medicinal plant extracts. Analytical Chemistry, 83(19), 7400–7407.PubMedPubMedCentralCrossRef
201.
go back to reference Chang, Y.-L., et al. (2016). An improved fluorogenic assay for SIRT1, SIRT2, and SIRT3. Organic & Biomolecular Chemistry, 14(7), 2186–2190.CrossRef Chang, Y.-L., et al. (2016). An improved fluorogenic assay for SIRT1, SIRT2, and SIRT3. Organic & Biomolecular Chemistry, 14(7), 2186–2190.CrossRef
202.
go back to reference Gertz, M., Fischer, F., Nguyen, G. T. T., Lakshminarasimhan, M., Schutkowski, M., Weyand, M., et al. (2013). Ex-527 inhibits Sirtuins by exploiting their unique NAD+-dependent deacetylation mechanism. Proceedings of the National Academy of Sciences, 110(30), E2772–E2781.CrossRef Gertz, M., Fischer, F., Nguyen, G. T. T., Lakshminarasimhan, M., Schutkowski, M., Weyand, M., et al. (2013). Ex-527 inhibits Sirtuins by exploiting their unique NAD+-dependent deacetylation mechanism. Proceedings of the National Academy of Sciences, 110(30), E2772–E2781.CrossRef
203.
go back to reference Kokkonen, P., Rahnasto-Rilla, M., Mellini, P., Jarho, E., Lahtela-Kakkonen, M., & Kokkola, T. (2014). Studying SIRT6 regulation using H3K56 based substrate and small molecules. European Journal of Pharmaceutical Sciences, 63, 71–76.PubMedCrossRef Kokkonen, P., Rahnasto-Rilla, M., Mellini, P., Jarho, E., Lahtela-Kakkonen, M., & Kokkola, T. (2014). Studying SIRT6 regulation using H3K56 based substrate and small molecules. European Journal of Pharmaceutical Sciences, 63, 71–76.PubMedCrossRef
204.
go back to reference Singh, N., Ravichandran, S., Norton, D. D., Fugmann, S. D., & Moaddel, R. (2013). Synthesis and characterization of a SIRT6 open tubular column: Predicting deacetylation activity using frontal chromatography. Analytical Biochemistry, 436(2), 78–83.PubMedPubMedCentralCrossRef Singh, N., Ravichandran, S., Norton, D. D., Fugmann, S. D., & Moaddel, R. (2013). Synthesis and characterization of a SIRT6 open tubular column: Predicting deacetylation activity using frontal chromatography. Analytical Biochemistry, 436(2), 78–83.PubMedPubMedCentralCrossRef
205.
go back to reference Rahnasto-Rilla, M., Kokkola, T., Jarho, E., Lahtela-Kakkonen, M., & Moaddel, R. (2016). N-Acylethanolamines bind to SIRT6. ChemBioChem, 17(1), 77–81.PubMedCrossRef Rahnasto-Rilla, M., Kokkola, T., Jarho, E., Lahtela-Kakkonen, M., & Moaddel, R. (2016). N-Acylethanolamines bind to SIRT6. ChemBioChem, 17(1), 77–81.PubMedCrossRef
206.
go back to reference Sociali, G., Galeno, L., Parenti, M. D., Grozio, A., Bauer, I., Passalacqua, M., et al. (2015). Quinazolinedione SIRT6 inhibitors sensitize cancer cells to chemotherapeutics. European Journal of Medicinal Chemistry., 102, 530–539.PubMedCrossRef Sociali, G., Galeno, L., Parenti, M. D., Grozio, A., Bauer, I., Passalacqua, M., et al. (2015). Quinazolinedione SIRT6 inhibitors sensitize cancer cells to chemotherapeutics. European Journal of Medicinal Chemistry., 102, 530–539.PubMedCrossRef
207.
go back to reference Yang, S. J., Choi, J. M., Chae, S. W., Kim, W. J., Park, S. E., Rhee, E. J., et al. (2011). Activation of peroxisome proliferator-activated receptor gamma by rosiglitazone increases Sirt6 expression and ameliorates hepatic steatosis in rats. PLoS ONE, 6(2), e17057.PubMedPubMedCentralCrossRef Yang, S. J., Choi, J. M., Chae, S. W., Kim, W. J., Park, S. E., Rhee, E. J., et al. (2011). Activation of peroxisome proliferator-activated receptor gamma by rosiglitazone increases Sirt6 expression and ameliorates hepatic steatosis in rats. PLoS ONE, 6(2), e17057.PubMedPubMedCentralCrossRef
208.
go back to reference Li, Y., Li, X., Cole, A., McLaughlin, S., & Du, W. (2018). Icariin improves Fanconi anemia hematopoietic stem cell function through SIRT6-mediated NF-kappa B inhibition. Cell Cycle, 17(3), 367–376.PubMedPubMedCentralCrossRef Li, Y., Li, X., Cole, A., McLaughlin, S., & Du, W. (2018). Icariin improves Fanconi anemia hematopoietic stem cell function through SIRT6-mediated NF-kappa B inhibition. Cell Cycle, 17(3), 367–376.PubMedPubMedCentralCrossRef
209.
go back to reference Chen, Y., Sun, T., Wu, J., Kalionis, B., Zhang, C., Yuan, D., et al. (2015). Icariin intervenes in cardiac inflammaging through upregulation of SIRT6 enzyme activity and inhibition of the NF-kappa B pathway. BioMed Research International, 2015, 1–12. Chen, Y., Sun, T., Wu, J., Kalionis, B., Zhang, C., Yuan, D., et al. (2015). Icariin intervenes in cardiac inflammaging through upregulation of SIRT6 enzyme activity and inhibition of the NF-kappa B pathway. BioMed Research International, 2015, 1–12.
210.
go back to reference Tang, Y. L., Zhou, Y., Wang, Y. P., Wang, J. W., & Ding, J. C. (2015). SIRT6/NF-κB signaling axis in ginsenoside Rg1-delayed hematopoietic stem/progenitor cell senescence. International Journal of Clinical and Experimental Pathology, 8(5), 5591–5596.PubMedPubMedCentral Tang, Y. L., Zhou, Y., Wang, Y. P., Wang, J. W., & Ding, J. C. (2015). SIRT6/NF-κB signaling axis in ginsenoside Rg1-delayed hematopoietic stem/progenitor cell senescence. International Journal of Clinical and Experimental Pathology, 8(5), 5591–5596.PubMedPubMedCentral
211.
go back to reference D’Onofrio, N., Servillo, L., Giovane, A., Casale, R., Vitiello, M., Marfella, R., et al. (2016). Ergothioneine oxidation in the protection against high-glucose induced endothelial senescence: Involvement of SIRT1 and SIRT6. Free Radical Biology and Medicine, 96, 211–222.PubMedCrossRef D’Onofrio, N., Servillo, L., Giovane, A., Casale, R., Vitiello, M., Marfella, R., et al. (2016). Ergothioneine oxidation in the protection against high-glucose induced endothelial senescence: Involvement of SIRT1 and SIRT6. Free Radical Biology and Medicine, 96, 211–222.PubMedCrossRef
212.
go back to reference Smeriglio, A., Barreca, D., Bellocco, E., & Trombetta, D. (2016). Chemistry, pharmacology and health benefits of anthocyanins. Phytotherapy Research, 30(8), 1265–1286.PubMedCrossRef Smeriglio, A., Barreca, D., Bellocco, E., & Trombetta, D. (2016). Chemistry, pharmacology and health benefits of anthocyanins. Phytotherapy Research, 30(8), 1265–1286.PubMedCrossRef
213.
go back to reference Rahnasto-Rilla, M., Tyni, J., Huovinen, M., Jarho, E., Kulikowicz, T., Ravichandran, S., et al. (2018). Natural polyphenols as sirtuin 6 modulators. Scientific Reports, 8(1), 1–11.CrossRef Rahnasto-Rilla, M., Tyni, J., Huovinen, M., Jarho, E., Kulikowicz, T., Ravichandran, S., et al. (2018). Natural polyphenols as sirtuin 6 modulators. Scientific Reports, 8(1), 1–11.CrossRef
214.
go back to reference You, W., & Steegborn, C. (2020). Structural basis for activation of human sirtuin 6 by fluvastatin. ACS Medicinal Chemistry Letters, 11(11), 2285–2289.PubMedPubMedCentralCrossRef You, W., & Steegborn, C. (2020). Structural basis for activation of human sirtuin 6 by fluvastatin. ACS Medicinal Chemistry Letters, 11(11), 2285–2289.PubMedPubMedCentralCrossRef
215.
Metadata
Title
SIRT6 in Regulation of Mitochondrial Damage and Associated Cardiac Dysfunctions: A Possible Therapeutic Target for CVDs
Authors
K. P. Divya
Navjot Kanwar
P. V. Anuranjana
Gautam Kumar
Fathima Beegum
Krupa Thankam George
Nitesh Kumar
K. Nandakumar
Abhinav Kanwal
Publication date
30-04-2024
Publisher
Springer US
Published in
Cardiovascular Toxicology / Issue 6/2024
Print ISSN: 1530-7905
Electronic ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-024-09858-1

Other articles of this Issue 6/2024

Cardiovascular Toxicology 6/2024 Go to the issue
Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Medication non-adherence is a major barrier to effective healthcare delivery; half of all patients do not follow their doctor’s recommendations or treatment plan.

Our experts explain the fundamentals with a practical discussion of how to manage non-adherence in two common scenarios: hypertension and asthma control.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine