Skip to main content
Top
Published in: Cardiovascular Diabetology 1/2024

Open Access 01-12-2024 | Diabetes | Research

Early left ventricular microvascular dysfunction in diabetic pigs: a longitudinal quantitative myocardial perfusion CMR study

Authors: Li Jiang, Wei‑Feng Yan, Lu Zhang, Hua‑Yan Xu, Ying‑Kun Guo, Zhen-Lin Li, Ke-Ling Liu, Ling-Ming Zeng, Yuan Li, Zhi-Gang Yang

Published in: Cardiovascular Diabetology | Issue 1/2024

Login to get access

Abstract

Background

Microvascular pathology is one of the main characteristics of diabetic cardiomyopathy; however, the early longitudinal course of diabetic microvascular dysfunction remains uncertain. This study aimed to investigate the early dynamic changes in left ventricular (LV) microvascular function in diabetic pig model using the cardiac magnetic resonance (CMR)-derived quantitative perfusion technique.

Methods

Twelve pigs with streptozotocin-induced diabetes mellitus (DM) were included in this study, and longitudinal CMR scanning was performed before and 2, 6, 10, and 16 months after diabetic modeling. CMR-derived semiquantitative parameters (upslope, maximal signal intensity, perfusion index, and myocardial perfusion reserve index [MPRI]) and fully quantitative perfusion parameters (myocardial blood flow [MBF] and myocardial perfusion reserve [MPR]) were analyzed to evaluate longitudinal changes in LV myocardial microvascular function. Pearson correlation was used to analyze the relationship between LV structure and function and myocardial perfusion function.

Results

With the progression of DM duration, the upslope at rest showed a gradually increasing trend (P = 0.029); however, the upslope at stress and MBF did not change significantly (P > 0.05). Regarding perfusion reserve function, both MPRI and MPR showed a decreasing trend with the progression of disease duration (MPRI, P = 0.001; MPR, P = 0.042), with high consistency (r = 0.551, P < 0.001). Furthermore, LV MPR is moderately associated with LV longitudinal strain (r = − 0.353, P = 0.022), LV remodeling index (r = − 0.312, P = 0.033), fasting blood glucose (r = − 0.313, P = 0.043), and HbA1c (r = − 0.309, P = 0.046). Microscopically, pathological results showed that collagen volume fraction increased gradually, whereas no significant decrease in microvascular density was observed with the progression of DM duration.

Conclusions

Myocardial microvascular reserve function decreased gradually in the early stage of DM, which is related to both structural (but not reduced microvascular density) and functional abnormalities of microvessels, and is associated with increased blood glucose, reduced LV deformation, and myocardial remodeling.
Appendix
Available only for authorised users
Literature
2.
go back to reference Marcovecchio ML. Importance of identifying novel biomarkers of microvascular damage in type 1 Diabetes. Mol Diagn Ther. 2020;24(5):507–15.CrossRefPubMed Marcovecchio ML. Importance of identifying novel biomarkers of microvascular damage in type 1 Diabetes. Mol Diagn Ther. 2020;24(5):507–15.CrossRefPubMed
3.
go back to reference Yoon YS, Uchida S, Masuo O, et al. Progressive attenuation of myocardial vascular endothelial growth factor expression is a seminal event in diabetic cardiomyopathy: restoration of microvascular homeostasis and recovery of cardiac function in diabetic cardiomyopathy after replenishment of local vascular endothelial growth factor. Circulation. 2005;111(16):2073–85.CrossRefPubMed Yoon YS, Uchida S, Masuo O, et al. Progressive attenuation of myocardial vascular endothelial growth factor expression is a seminal event in diabetic cardiomyopathy: restoration of microvascular homeostasis and recovery of cardiac function in diabetic cardiomyopathy after replenishment of local vascular endothelial growth factor. Circulation. 2005;111(16):2073–85.CrossRefPubMed
4.
go back to reference Jiang L, Shi K, Guo YK, et al. The additive effects of obesity on myocardial microcirculation in diabetic individuals: a cardiac magnetic resonance first-pass perfusion study. Cardiovasc Diabetol. 2020;19(1):52.CrossRefPubMedPubMedCentral Jiang L, Shi K, Guo YK, et al. The additive effects of obesity on myocardial microcirculation in diabetic individuals: a cardiac magnetic resonance first-pass perfusion study. Cardiovasc Diabetol. 2020;19(1):52.CrossRefPubMedPubMedCentral
5.
go back to reference Levelt E, Rodgers CT, Clarke WT, et al. Cardiac energetics, oxygenation, and perfusion during increased workload in patients with type 2 Diabetes Mellitus. Eur Heart J. 2016;37(46):3461–9.CrossRefPubMed Levelt E, Rodgers CT, Clarke WT, et al. Cardiac energetics, oxygenation, and perfusion during increased workload in patients with type 2 Diabetes Mellitus. Eur Heart J. 2016;37(46):3461–9.CrossRefPubMed
6.
go back to reference Qian WL, Xu R, Shi R, et al. The worsening effect of anemia on left ventricular function and global strain in type 2 Diabetes Mellitus patients: a 3.0 T CMR feature tracking study. Cardiovasc Diabetol. 2023;22(1):15.CrossRefPubMedPubMedCentral Qian WL, Xu R, Shi R, et al. The worsening effect of anemia on left ventricular function and global strain in type 2 Diabetes Mellitus patients: a 3.0 T CMR feature tracking study. Cardiovasc Diabetol. 2023;22(1):15.CrossRefPubMedPubMedCentral
7.
go back to reference Li XM, Yan WF, Jiang L, et al. Impact of T2DM on right ventricular systolic dysfunction and interventricular interactions in patients with Essential Hypertension: evaluation using CMR tissue tracking. Cardiovasc Diabetol. 2022;21(1):238.CrossRefPubMedPubMedCentral Li XM, Yan WF, Jiang L, et al. Impact of T2DM on right ventricular systolic dysfunction and interventricular interactions in patients with Essential Hypertension: evaluation using CMR tissue tracking. Cardiovasc Diabetol. 2022;21(1):238.CrossRefPubMedPubMedCentral
8.
go back to reference Gao Y, Shi R, Li Y, et al. Association of Diabetes Mellitus and glycemic control with left ventricular function and deformation in patients after acute Myocardial Infarction: a 3 T cardiac magnetic resonance study. Cardiovasc Diabetol. 2023;22(1):55.CrossRefPubMedPubMedCentral Gao Y, Shi R, Li Y, et al. Association of Diabetes Mellitus and glycemic control with left ventricular function and deformation in patients after acute Myocardial Infarction: a 3 T cardiac magnetic resonance study. Cardiovasc Diabetol. 2023;22(1):55.CrossRefPubMedPubMedCentral
9.
go back to reference Kramer CM, Chandrashekhar Y, Quantitative Myocardial Perfusion CMR. Is the Game Worth the Candle? JACC Cardiovasc Imaging. 2018;11(5):784–6.CrossRefPubMed Kramer CM, Chandrashekhar Y, Quantitative Myocardial Perfusion CMR. Is the Game Worth the Candle? JACC Cardiovasc Imaging. 2018;11(5):784–6.CrossRefPubMed
10.
11.
go back to reference Zhou W, Lee JCY, Leung ST, et al. Long-term prognosis of patients with coronary microvascular Disease using stress perfusion Cardiac magnetic resonance. JACC Cardiovasc Imaging. 2021;14(3):602–11.CrossRefPubMed Zhou W, Lee JCY, Leung ST, et al. Long-term prognosis of patients with coronary microvascular Disease using stress perfusion Cardiac magnetic resonance. JACC Cardiovasc Imaging. 2021;14(3):602–11.CrossRefPubMed
12.
go back to reference Seraphim A, Dowsing B, Rathod KS, et al. Quantitative myocardial perfusion predicts outcomes in patients with prior Surgical revascularization. J Am Coll Cardiol. 2022;79(12):1141–51.CrossRefPubMedPubMedCentral Seraphim A, Dowsing B, Rathod KS, et al. Quantitative myocardial perfusion predicts outcomes in patients with prior Surgical revascularization. J Am Coll Cardiol. 2022;79(12):1141–51.CrossRefPubMedPubMedCentral
13.
go back to reference Jablonowski R, Bennet L, Engblom H, et al. Quantitative myocardial perfusion during stress using CMR is impaired in healthy Middle Eastern immigrants without CV risk factors. Sci Rep. 2022;12(1):18237.CrossRefPubMedPubMedCentral Jablonowski R, Bennet L, Engblom H, et al. Quantitative myocardial perfusion during stress using CMR is impaired in healthy Middle Eastern immigrants without CV risk factors. Sci Rep. 2022;12(1):18237.CrossRefPubMedPubMedCentral
14.
go back to reference Hsu LY, Groves DW, Aletras AH, Kellman P, Arai AE. A quantitative pixel-wise measurement of myocardial blood flow by contrast-enhanced first-pass CMR perfusion imaging: microsphere validation in dogs and feasibility study in humans. JACC Cardiovasc Imaging. 2012;5(2):154–66.CrossRefPubMedPubMedCentral Hsu LY, Groves DW, Aletras AH, Kellman P, Arai AE. A quantitative pixel-wise measurement of myocardial blood flow by contrast-enhanced first-pass CMR perfusion imaging: microsphere validation in dogs and feasibility study in humans. JACC Cardiovasc Imaging. 2012;5(2):154–66.CrossRefPubMedPubMedCentral
15.
go back to reference Renner S, Blutke A, Clauss S, et al. Porcine models for studying Complications and organ crosstalk in Diabetes Mellitus. Cell Tissue Res. 2020;380(2):341–78.CrossRefPubMed Renner S, Blutke A, Clauss S, et al. Porcine models for studying Complications and organ crosstalk in Diabetes Mellitus. Cell Tissue Res. 2020;380(2):341–78.CrossRefPubMed
16.
go back to reference Yan WF, Xu HY, Jiang L, et al. Early longitudinal changes in left ventricular function and morphology in diabetic pigs: evaluation by 3.0T magnetic resonance imaging. Cardiovasc Diabetol. 2023;22(1):6.CrossRefPubMedPubMedCentral Yan WF, Xu HY, Jiang L, et al. Early longitudinal changes in left ventricular function and morphology in diabetic pigs: evaluation by 3.0T magnetic resonance imaging. Cardiovasc Diabetol. 2023;22(1):6.CrossRefPubMedPubMedCentral
17.
go back to reference Ishida M, Schuster A, Morton G, et al. Development of a universal dual-bolus injection scheme for the quantitative assessment of myocardial perfusion cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2011;13(1):28.CrossRefPubMedPubMedCentral Ishida M, Schuster A, Morton G, et al. Development of a universal dual-bolus injection scheme for the quantitative assessment of myocardial perfusion cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2011;13(1):28.CrossRefPubMedPubMedCentral
18.
go back to reference Sammut EC, Villa ADM, Di Giovine G, et al. Prognostic value of quantitative stress perfusion Cardiac magnetic resonance. JACC Cardiovasc Imaging. 2018;11(5):686–94.CrossRefPubMedPubMedCentral Sammut EC, Villa ADM, Di Giovine G, et al. Prognostic value of quantitative stress perfusion Cardiac magnetic resonance. JACC Cardiovasc Imaging. 2018;11(5):686–94.CrossRefPubMedPubMedCentral
19.
go back to reference Papanastasiou G, Williams MC, Kershaw LE, et al. Measurement of myocardial blood flow by cardiovascular magnetic resonance perfusion: comparison of distributed parameter and Fermi models with single and dual bolus. J Cardiovasc Magn Reson. 2015;17(1):17.CrossRefPubMedPubMedCentral Papanastasiou G, Williams MC, Kershaw LE, et al. Measurement of myocardial blood flow by cardiovascular magnetic resonance perfusion: comparison of distributed parameter and Fermi models with single and dual bolus. J Cardiovasc Magn Reson. 2015;17(1):17.CrossRefPubMedPubMedCentral
20.
go back to reference Schulz-Menger J, Bluemke DA, Bremerich J, et al. Standardized image interpretation and post-processing in cardiovascular magnetic resonance – 2020 update: Society for Cardiovascular magnetic resonance (SCMR): Board of Trustees Task Force on standardized post-processing. J Cardiovasc Magn Reson. 2020;22(1):19.CrossRefPubMedPubMedCentral Schulz-Menger J, Bluemke DA, Bremerich J, et al. Standardized image interpretation and post-processing in cardiovascular magnetic resonance – 2020 update: Society for Cardiovascular magnetic resonance (SCMR): Board of Trustees Task Force on standardized post-processing. J Cardiovasc Magn Reson. 2020;22(1):19.CrossRefPubMedPubMedCentral
21.
go back to reference van Dijk R, van Assen M, Vliegenthart R, de Bock GH, van der Harst P, Oudkerk M. Diagnostic performance of semi-quantitative and quantitative stress CMR perfusion analysis: a meta-analysis. J Cardiovasc Magn Reson. 2017;19(1):92.CrossRefPubMedPubMedCentral van Dijk R, van Assen M, Vliegenthart R, de Bock GH, van der Harst P, Oudkerk M. Diagnostic performance of semi-quantitative and quantitative stress CMR perfusion analysis: a meta-analysis. J Cardiovasc Magn Reson. 2017;19(1):92.CrossRefPubMedPubMedCentral
22.
go back to reference Godo S, Suda A, Takahashi J, Yasuda S, Shimokawa H. Coronary microvascular dysfunction. Arterioscler Thromb Vasc Biol. 2021;41(5):1625–37.CrossRefPubMed Godo S, Suda A, Takahashi J, Yasuda S, Shimokawa H. Coronary microvascular dysfunction. Arterioscler Thromb Vasc Biol. 2021;41(5):1625–37.CrossRefPubMed
23.
go back to reference Zhang W, Singh S, Liu L, et al. Prognostic value of coronary microvascular dysfunction assessed by coronary angiography-derived index of microcirculatory resistance in diabetic patients with chronic coronary syndrome. Cardiovasc Diabetol. 2022;21(1):222.CrossRefPubMedPubMedCentral Zhang W, Singh S, Liu L, et al. Prognostic value of coronary microvascular dysfunction assessed by coronary angiography-derived index of microcirculatory resistance in diabetic patients with chronic coronary syndrome. Cardiovasc Diabetol. 2022;21(1):222.CrossRefPubMedPubMedCentral
24.
go back to reference Sørensen MH, Bojer AS, Pontoppidan JRN, et al. Reduced myocardial Perfusion Reserve in Type 2 Diabetes is caused by increased perfusion at Rest and decreased maximal perfusion during stress. Diabetes Care. 2020;43(6):1285–92.CrossRefPubMed Sørensen MH, Bojer AS, Pontoppidan JRN, et al. Reduced myocardial Perfusion Reserve in Type 2 Diabetes is caused by increased perfusion at Rest and decreased maximal perfusion during stress. Diabetes Care. 2020;43(6):1285–92.CrossRefPubMed
25.
go back to reference Naresh NK, Butcher JT, Lye RJ, et al. Cardiovascular magnetic resonance detects the progression of impaired myocardial perfusion reserve and increased left-ventricular mass in mice fed a high-fat diet. J Cardiovasc Magn Reson. 2016;18(1):53.CrossRefPubMedPubMedCentral Naresh NK, Butcher JT, Lye RJ, et al. Cardiovascular magnetic resonance detects the progression of impaired myocardial perfusion reserve and increased left-ventricular mass in mice fed a high-fat diet. J Cardiovasc Magn Reson. 2016;18(1):53.CrossRefPubMedPubMedCentral
26.
go back to reference Horton WB, Barrett EJ. Microvascular Dysfunction in Diabetes Mellitus and Cardiometabolic Disease. Endocr Rev. 2021;42(1):29–55.CrossRefPubMed Horton WB, Barrett EJ. Microvascular Dysfunction in Diabetes Mellitus and Cardiometabolic Disease. Endocr Rev. 2021;42(1):29–55.CrossRefPubMed
27.
go back to reference Camici PG, d’Amati G, Rimoldi O. Coronary microvascular dysfunction: mechanisms and functional assessment. Nat Rev Cardiol. 2015;12(1):48–62.CrossRefPubMed Camici PG, d’Amati G, Rimoldi O. Coronary microvascular dysfunction: mechanisms and functional assessment. Nat Rev Cardiol. 2015;12(1):48–62.CrossRefPubMed
28.
go back to reference Laakso M. Heart in Diabetes: a microvascular Disease. Diabetes Care. 2011;34(Suppl 2):145–9.CrossRef Laakso M. Heart in Diabetes: a microvascular Disease. Diabetes Care. 2011;34(Suppl 2):145–9.CrossRef
29.
go back to reference Herrero P, Peterson LR, McGill JB, et al. Increased myocardial fatty acid metabolism in patients with type 1 Diabetes Mellitus. J Am Coll Cardiol. 2006;47(3):598–604.CrossRefPubMed Herrero P, Peterson LR, McGill JB, et al. Increased myocardial fatty acid metabolism in patients with type 1 Diabetes Mellitus. J Am Coll Cardiol. 2006;47(3):598–604.CrossRefPubMed
30.
go back to reference Brown RE, Riddell MC, Macpherson AK, Canning KL, Kuk JL. All-cause and cardiovascular mortality risk in U.S. adults with and without type 2 Diabetes: influence of physical activity, pharmacological treatment and glycemic control. J Diabetes Complications. 2014;28(3):311–5.CrossRefPubMed Brown RE, Riddell MC, Macpherson AK, Canning KL, Kuk JL. All-cause and cardiovascular mortality risk in U.S. adults with and without type 2 Diabetes: influence of physical activity, pharmacological treatment and glycemic control. J Diabetes Complications. 2014;28(3):311–5.CrossRefPubMed
31.
go back to reference Peterson LR, Herrero P, McGill J, et al. Fatty acids and insulin modulate myocardial substrate metabolism in humans with type 1 Diabetes. Diabetes. 2008;57(1):32–40.CrossRefPubMed Peterson LR, Herrero P, McGill J, et al. Fatty acids and insulin modulate myocardial substrate metabolism in humans with type 1 Diabetes. Diabetes. 2008;57(1):32–40.CrossRefPubMed
32.
go back to reference Chen R, Ma K, Li S, et al. Protective effects and mechanisms of opuntia polysaccharide in animal models of Diabetes Mellitus: a systematic review and meta-analysis. J Ethnopharmacol. 2023;312:116490.CrossRefPubMed Chen R, Ma K, Li S, et al. Protective effects and mechanisms of opuntia polysaccharide in animal models of Diabetes Mellitus: a systematic review and meta-analysis. J Ethnopharmacol. 2023;312:116490.CrossRefPubMed
Metadata
Title
Early left ventricular microvascular dysfunction in diabetic pigs: a longitudinal quantitative myocardial perfusion CMR study
Authors
Li Jiang
Wei‑Feng Yan
Lu Zhang
Hua‑Yan Xu
Ying‑Kun Guo
Zhen-Lin Li
Ke-Ling Liu
Ling-Ming Zeng
Yuan Li
Zhi-Gang Yang
Publication date
01-12-2024
Publisher
BioMed Central
Keyword
Diabetes
Published in
Cardiovascular Diabetology / Issue 1/2024
Electronic ISSN: 1475-2840
DOI
https://doi.org/10.1186/s12933-023-02106-w

Other articles of this Issue 1/2024

Cardiovascular Diabetology 1/2024 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine