Skip to main content
Top
Published in: Diabetologia 10/2018

01-10-2018 | Review

Development of SGLT1 and SGLT2 inhibitors

Authors: Timo Rieg, Volker Vallon

Published in: Diabetologia | Issue 10/2018

Login to get access

Abstract

Sodium–glucose cotransporters SGLT1 (encoded by SGLT1, also known as SLC5A1) and SGLT2 (encoded by SGLT2, also known as SLC5A2) are important mediators of epithelial glucose transport. While SGLT1 accounts for most of the dietary glucose uptake in the intestine, SGLT2 is responsible for the majority of glucose reuptake in the tubular system of the kidney, with SGLT1 reabsorbing the remainder of the filtered glucose. As a consequence, mutations in the SLC5A1 gene cause glucose/galactose malabsorption, whereas mutations in SLC5A2 are associated with glucosuria. Since the cloning of SGLT1 more than 30 years ago, big strides have been made in our understanding of these transporters and their suitability as drug targets. Phlorizin, a naturally occurring competitive inhibitor of SGLT1 and SGLT2, provided the first insights into potential efficacy, but its use was hampered by intestinal side effects and a short half-life. Nevertheless, it was a starting point for the development of specific inhibitors of SGLT1 and SGLT2, as well as dual SGLT1/2 inhibitors. Since the approval of the first SGLT2 inhibitor in 2013 by the US Food and Drug Administration, SGLT2 inhibitors have become a new mainstay in the treatment of type 2 diabetes mellitus. They also have beneficial effects on the cardiovascular system (including heart failure) and the kidney. This review focuses on the rationale for the development of individual SGLT2 and SGLT1 inhibitors, as well as dual SGLT1/2 inhibition, including, but not limited to, aspects of genetics, genetically modified mouse models, mathematical modelling and general considerations of drug discovery in the field of metabolism.
Appendix
Available only for authorised users
Literature
1.
go back to reference NCD Risk Factor Collaboration (2016) Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4·4 million participants. Lancet 387:1513–1530CrossRef NCD Risk Factor Collaboration (2016) Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4·4 million participants. Lancet 387:1513–1530CrossRef
2.
go back to reference Laakso M (2010) Cardiovascular disease in type 2 diabetes from population to man to mechanisms: the Kelly West Award Lecture 2008. Diabetes Care 33:442–449CrossRefPubMedPubMedCentral Laakso M (2010) Cardiovascular disease in type 2 diabetes from population to man to mechanisms: the Kelly West Award Lecture 2008. Diabetes Care 33:442–449CrossRefPubMedPubMedCentral
3.
go back to reference Vallon V, Thomson SC (2017) Targeting renal glucose reabsorption to treat hyperglycaemia: the pleiotropic effects of SGLT2 inhibition. Diabetologia 60:215–225CrossRefPubMed Vallon V, Thomson SC (2017) Targeting renal glucose reabsorption to treat hyperglycaemia: the pleiotropic effects of SGLT2 inhibition. Diabetologia 60:215–225CrossRefPubMed
4.
go back to reference Song P, Onishi A, Koepsell H, Vallon V (2016) Sodium glucose cotransporter SGLT1 as a therapeutic target in diabetes mellitus. Expert Opin Ther Targets 20:1109–1125CrossRefPubMedPubMedCentral Song P, Onishi A, Koepsell H, Vallon V (2016) Sodium glucose cotransporter SGLT1 as a therapeutic target in diabetes mellitus. Expert Opin Ther Targets 20:1109–1125CrossRefPubMedPubMedCentral
5.
go back to reference Dennis VW, Brazy PC (1978) Phosphate and glucose transport in the proximal convoluted tubule: mutual dependency on sodium. Adv Exp Med Biol 103:79–80CrossRefPubMed Dennis VW, Brazy PC (1978) Phosphate and glucose transport in the proximal convoluted tubule: mutual dependency on sodium. Adv Exp Med Biol 103:79–80CrossRefPubMed
6.
go back to reference Cramer SC, Pardridge WM, Hirayama BA, Wright EM (1992) Colocalization of GLUT2 glucose transporter, sodium/glucose cotransporter, and gamma-glutamyl transpeptidase in rat kidney with double-peroxidase immunocytochemistry. Diabetes 41:766–770CrossRefPubMed Cramer SC, Pardridge WM, Hirayama BA, Wright EM (1992) Colocalization of GLUT2 glucose transporter, sodium/glucose cotransporter, and gamma-glutamyl transpeptidase in rat kidney with double-peroxidase immunocytochemistry. Diabetes 41:766–770CrossRefPubMed
7.
go back to reference Gorboulev V, Schurmann A, Vallon V et al (2012) Na+-d-glucose cotransporter SGLT1 is pivotal for intestinal glucose absorption and glucose-dependent incretin secretion. Diabetes 61:187–196CrossRefPubMed Gorboulev V, Schurmann A, Vallon V et al (2012) Na+-d-glucose cotransporter SGLT1 is pivotal for intestinal glucose absorption and glucose-dependent incretin secretion. Diabetes 61:187–196CrossRefPubMed
9.
go back to reference Rieg T, Masuda T, Gerasimova M et al (2014) Increase in SGLT1-mediated transport explains renal glucose reabsorption during genetic and pharmacological SGLT2 inhibition in euglycemia. Am J Physiol Ren Physiol 306:F188–F193CrossRef Rieg T, Masuda T, Gerasimova M et al (2014) Increase in SGLT1-mediated transport explains renal glucose reabsorption during genetic and pharmacological SGLT2 inhibition in euglycemia. Am J Physiol Ren Physiol 306:F188–F193CrossRef
10.
go back to reference Hjarne U (1927) A study of orthoglycaemic glycosuria with particular reference to its hereditability. Acta Med Scand 67:495–571CrossRef Hjarne U (1927) A study of orthoglycaemic glycosuria with particular reference to its hereditability. Acta Med Scand 67:495–571CrossRef
11.
go back to reference Santer R, Calado J (2010) Familial renal glucosuria and SGLT2: from a Mendelian trait to a therapeutic target. Clin J Am Soc Nephrol 5:133–141CrossRefPubMed Santer R, Calado J (2010) Familial renal glucosuria and SGLT2: from a Mendelian trait to a therapeutic target. Clin J Am Soc Nephrol 5:133–141CrossRefPubMed
12.
go back to reference Wright EM, Loo DD, Hirayama BA (2011) Biology of human sodium glucose transporters. Physiol Rev 91:733–794CrossRefPubMed Wright EM, Loo DD, Hirayama BA (2011) Biology of human sodium glucose transporters. Physiol Rev 91:733–794CrossRefPubMed
13.
go back to reference Thomson SC, Deng A, Bao D, Satriano J, Blantz RC, Vallon V (2001) Ornithine decarboxylase, kidney size, and the tubular hypothesis of glomerular hyperfiltration in experimental diabetes. J Clin Invest 107:217–224CrossRefPubMedPubMedCentral Thomson SC, Deng A, Bao D, Satriano J, Blantz RC, Vallon V (2001) Ornithine decarboxylase, kidney size, and the tubular hypothesis of glomerular hyperfiltration in experimental diabetes. J Clin Invest 107:217–224CrossRefPubMedPubMedCentral
14.
go back to reference Vallon V, Rose M, Gerasimova M et al (2013) Knockout of Na-glucose transporter SGLT2 attenuates hyperglycemia and glomerular hyperfiltration but not kidney growth or injury in diabetes mellitus. Am J Physiol Ren Physiol 304:F156–F167CrossRef Vallon V, Rose M, Gerasimova M et al (2013) Knockout of Na-glucose transporter SGLT2 attenuates hyperglycemia and glomerular hyperfiltration but not kidney growth or injury in diabetes mellitus. Am J Physiol Ren Physiol 304:F156–F167CrossRef
15.
go back to reference Vallon V, Gerasimova M, Rose MA et al (2014) SGLT2 inhibitor empagliflozin reduces renal growth and albuminuria in proportion to hyperglycemia and prevents glomerular hyperfiltration in diabetic Akita mice. Am J Physiol Ren Physiol 306:F194–F204CrossRef Vallon V, Gerasimova M, Rose MA et al (2014) SGLT2 inhibitor empagliflozin reduces renal growth and albuminuria in proportion to hyperglycemia and prevents glomerular hyperfiltration in diabetic Akita mice. Am J Physiol Ren Physiol 306:F194–F204CrossRef
16.
go back to reference Wang XX, Luo Y, Wang D et al (2017) A dual agonist of farnesoid X receptor (FXR) and the G protein-coupled receptor TGR5, INT-767, reverses age-related kidney disease in mice. J Biol Chem 292:12018–12024CrossRefPubMedPubMedCentral Wang XX, Luo Y, Wang D et al (2017) A dual agonist of farnesoid X receptor (FXR) and the G protein-coupled receptor TGR5, INT-767, reverses age-related kidney disease in mice. J Biol Chem 292:12018–12024CrossRefPubMedPubMedCentral
17.
go back to reference Khunti K, Davies M, Majeed A, Thorsted BL, Wolden ML, Paul SK (2015) Hypoglycemia and risk of cardiovascular disease and all-cause mortality in insulin-treated people with type 1 and type 2 diabetes: a cohort study. Diabetes Care 38:316–322CrossRefPubMed Khunti K, Davies M, Majeed A, Thorsted BL, Wolden ML, Paul SK (2015) Hypoglycemia and risk of cardiovascular disease and all-cause mortality in insulin-treated people with type 1 and type 2 diabetes: a cohort study. Diabetes Care 38:316–322CrossRefPubMed
18.
go back to reference Wanner C, Inzucchi SE, Lachin JM et al (2016) Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med 375:323–334CrossRefPubMed Wanner C, Inzucchi SE, Lachin JM et al (2016) Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med 375:323–334CrossRefPubMed
19.
go back to reference Zinman B, Wanner C, Lachin JM et al (2015) Empagliflozin, Cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 373:2117–2128CrossRefPubMed Zinman B, Wanner C, Lachin JM et al (2015) Empagliflozin, Cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 373:2117–2128CrossRefPubMed
20.
go back to reference Neal B, Perkovic V, Mahaffey KW et al (2017) Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med 377:644–657CrossRefPubMed Neal B, Perkovic V, Mahaffey KW et al (2017) Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med 377:644–657CrossRefPubMed
21.
go back to reference Inzucchi SE, Zinman B, Wanner C et al (2015) SGLT-2 inhibitors and cardiovascular risk: proposed pathways and review of ongoing outcome trials. Diab Vasc Dis Res 12:90–100CrossRefPubMedPubMedCentral Inzucchi SE, Zinman B, Wanner C et al (2015) SGLT-2 inhibitors and cardiovascular risk: proposed pathways and review of ongoing outcome trials. Diab Vasc Dis Res 12:90–100CrossRefPubMedPubMedCentral
22.
go back to reference Vallon V, Richter K, Blantz RC, Thomson S, Osswald H (1999) Glomerular hyperfiltration in experimental diabetes mellitus: potential role of tubular reabsorption. J Am Soc Nephrol 10:2569–2576PubMed Vallon V, Richter K, Blantz RC, Thomson S, Osswald H (1999) Glomerular hyperfiltration in experimental diabetes mellitus: potential role of tubular reabsorption. J Am Soc Nephrol 10:2569–2576PubMed
23.
go back to reference Thomson SC, Rieg T, Miracle C et al (2012) Acute and chronic effects of SGLT2 blockade on glomerular and tubular function in the early diabetic rat. Am J Phys Regul Integr Comp Phys 302:R75–R83 Thomson SC, Rieg T, Miracle C et al (2012) Acute and chronic effects of SGLT2 blockade on glomerular and tubular function in the early diabetic rat. Am J Phys Regul Integr Comp Phys 302:R75–R83
24.
go back to reference Barnett AH, Mithal A, Manassie J et al (2014) Efficacy and safety of empagliflozin added to existing antidiabetes treatment in patients with type 2 diabetes and chronic kidney disease: a randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol 2:369–384CrossRefPubMed Barnett AH, Mithal A, Manassie J et al (2014) Efficacy and safety of empagliflozin added to existing antidiabetes treatment in patients with type 2 diabetes and chronic kidney disease: a randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol 2:369–384CrossRefPubMed
25.
go back to reference Holtkamp FA, de Zeeuw D, Thomas MC et al (2011) An acute fall in estimated glomerular filtration rate during treatment with losartan predicts a slower decrease in long-term renal function. Kidney Int 80:282–287CrossRefPubMed Holtkamp FA, de Zeeuw D, Thomas MC et al (2011) An acute fall in estimated glomerular filtration rate during treatment with losartan predicts a slower decrease in long-term renal function. Kidney Int 80:282–287CrossRefPubMed
26.
go back to reference Petrykiv S, Laverman GD, de Zeeuw D, Heerspink HJL (2018) Does SGLT2 inhibition with dapagliflozin overcome individual therapy resistance to RAAS inhibition? Diabetes Obes Metab 20:224–227CrossRefPubMed Petrykiv S, Laverman GD, de Zeeuw D, Heerspink HJL (2018) Does SGLT2 inhibition with dapagliflozin overcome individual therapy resistance to RAAS inhibition? Diabetes Obes Metab 20:224–227CrossRefPubMed
27.
go back to reference Skrtic M, Cherney DZ (2015) Sodium-glucose cotransporter-2 inhibition and the potential for renal protection in diabetic nephropathy. Curr Opin Nephrol Hypertens 24:96–103CrossRefPubMed Skrtic M, Cherney DZ (2015) Sodium-glucose cotransporter-2 inhibition and the potential for renal protection in diabetic nephropathy. Curr Opin Nephrol Hypertens 24:96–103CrossRefPubMed
28.
go back to reference Wanner C, Lachin JM, Inzucchi SE et al (2018) Empagliflozin and clinical outcomes in patients with type 2 diabetes mellitus, established cardiovascular disease, and chronic kidney disease. Circulation 137:119–129CrossRefPubMed Wanner C, Lachin JM, Inzucchi SE et al (2018) Empagliflozin and clinical outcomes in patients with type 2 diabetes mellitus, established cardiovascular disease, and chronic kidney disease. Circulation 137:119–129CrossRefPubMed
29.
go back to reference Petrykiv S, Sjostrom CD, Greasley PJ, Xu J, Persson F, Heerspink HJL (2017) Differential effects of dapagliflozin on cardiovascular risk factors at varying degrees of renal function. Clin J Am Soc Nephrol 12:751–759CrossRefPubMedPubMedCentral Petrykiv S, Sjostrom CD, Greasley PJ, Xu J, Persson F, Heerspink HJL (2017) Differential effects of dapagliflozin on cardiovascular risk factors at varying degrees of renal function. Clin J Am Soc Nephrol 12:751–759CrossRefPubMedPubMedCentral
31.
go back to reference Layton AT, Vallon V, Edwards A (2016) Predicted consequences of diabetes and SGLT inhibition on transport and oxygen consumption along a rat nephron. Am J Physiol Ren Physiol 310:F1269–F1283CrossRef Layton AT, Vallon V, Edwards A (2016) Predicted consequences of diabetes and SGLT inhibition on transport and oxygen consumption along a rat nephron. Am J Physiol Ren Physiol 310:F1269–F1283CrossRef
32.
go back to reference Layton AT, Vallon V, Edwards A (2015) Modeling oxygen consumption in the proximal tubule: effects of NHE and SGLT2 inhibition. Am J Physiol Ren Physiol 308:F1343–F1357CrossRef Layton AT, Vallon V, Edwards A (2015) Modeling oxygen consumption in the proximal tubule: effects of NHE and SGLT2 inhibition. Am J Physiol Ren Physiol 308:F1343–F1357CrossRef
33.
go back to reference O’Neill J, Fasching A, Pihl L, Patinha D, Franzen S, Palm F (2015) Acute SGLT inhibition normalizes O2 tension in the renal cortex but causes hypoxia in the renal medulla in anaesthetized control and diabetic rats. Am J Physiol Ren Physiol 309:F227–F234CrossRef O’Neill J, Fasching A, Pihl L, Patinha D, Franzen S, Palm F (2015) Acute SGLT inhibition normalizes O2 tension in the renal cortex but causes hypoxia in the renal medulla in anaesthetized control and diabetic rats. Am J Physiol Ren Physiol 309:F227–F234CrossRef
34.
go back to reference Sano M, Takei M, Shiraishi Y, Suzuki Y (2016) Increased hematocrit during sodium-glucose cotransporter 2 inhibitor therapy indicates recovery of tubulointerstitial function in diabetic kidneys. J Clin Med Res 8:844–847CrossRefPubMedPubMedCentral Sano M, Takei M, Shiraishi Y, Suzuki Y (2016) Increased hematocrit during sodium-glucose cotransporter 2 inhibitor therapy indicates recovery of tubulointerstitial function in diabetic kidneys. J Clin Med Res 8:844–847CrossRefPubMedPubMedCentral
35.
go back to reference Inzucchi SE, Zinman B, Fitchett D et al (2018) How does empagliflozin reduce cardiovascular mortality? Insights from a mediation analysis of the EMPA-REG OUTCOME trial. Diabetes Care 41:356–363CrossRefPubMed Inzucchi SE, Zinman B, Fitchett D et al (2018) How does empagliflozin reduce cardiovascular mortality? Insights from a mediation analysis of the EMPA-REG OUTCOME trial. Diabetes Care 41:356–363CrossRefPubMed
36.
go back to reference Ceriello A (2005) Postprandial hyperglycemia and diabetes complications: is it time to treat? Diabetes 54:1–7CrossRefPubMed Ceriello A (2005) Postprandial hyperglycemia and diabetes complications: is it time to treat? Diabetes 54:1–7CrossRefPubMed
37.
go back to reference Turk E, Zabel B, Mundlos S, Dyer J, Wright EM (1991) Glucose/galactose malabsorption caused by a defect in the Na+/glucose cotransporter. Nature 350:354–356CrossRefPubMed Turk E, Zabel B, Mundlos S, Dyer J, Wright EM (1991) Glucose/galactose malabsorption caused by a defect in the Na+/glucose cotransporter. Nature 350:354–356CrossRefPubMed
38.
go back to reference Moriya R, Shirakura T, Ito J, Mashiko S, Seo T (2009) Activation of sodium-glucose cotransporter 1 ameliorates hyperglycemia by mediating incretin secretion in mice. Am J Physiol Endocrinol Metab 297:E1358–E1365CrossRefPubMed Moriya R, Shirakura T, Ito J, Mashiko S, Seo T (2009) Activation of sodium-glucose cotransporter 1 ameliorates hyperglycemia by mediating incretin secretion in mice. Am J Physiol Endocrinol Metab 297:E1358–E1365CrossRefPubMed
39.
go back to reference Miyamoto K, Hase K, Taketani Y et al (1991) Diabetes and glucose transporter gene expression in rat small intestine. Biochem Biophys Res Commun 181:1110–1117CrossRefPubMed Miyamoto K, Hase K, Taketani Y et al (1991) Diabetes and glucose transporter gene expression in rat small intestine. Biochem Biophys Res Commun 181:1110–1117CrossRefPubMed
40.
go back to reference Ogata H, Seino Y, Harada N et al (2014) KATP channel as well as SGLT1 participates in GIP secretion in the diabetic state. J Endocrinol 222:191–200CrossRefPubMed Ogata H, Seino Y, Harada N et al (2014) KATP channel as well as SGLT1 participates in GIP secretion in the diabetic state. J Endocrinol 222:191–200CrossRefPubMed
41.
go back to reference Grempler R, Thomas L, Eckhardt M et al (2012) Empagliflozin, a novel selective sodium glucose cotransporter-2 (SGLT-2) inhibitor: characterisation and comparison with other SGLT-2 inhibitors. Diabetes Obes Metab 14:83–90CrossRefPubMed Grempler R, Thomas L, Eckhardt M et al (2012) Empagliflozin, a novel selective sodium glucose cotransporter-2 (SGLT-2) inhibitor: characterisation and comparison with other SGLT-2 inhibitors. Diabetes Obes Metab 14:83–90CrossRefPubMed
42.
go back to reference Fujita Y, Kojima H, Hidaka H, Fujimiya M, Kashiwagi A, Kikkawa R (1998) Increased intestinal glucose absorption and postprandial hyperglycaemia at the early step of glucose intolerance in Otsuka Long-Evans Tokushima Fatty Rats. Diabetologia 41:1459–1466CrossRefPubMed Fujita Y, Kojima H, Hidaka H, Fujimiya M, Kashiwagi A, Kikkawa R (1998) Increased intestinal glucose absorption and postprandial hyperglycaemia at the early step of glucose intolerance in Otsuka Long-Evans Tokushima Fatty Rats. Diabetologia 41:1459–1466CrossRefPubMed
43.
go back to reference Dominguez Rieg JA, Chirasani VR, Koepsell H, Senapati S, Mahata SK, Rieg T (2016) Regulation of intestinal SGLT1 by catestatin in hyperleptinemic type 2 diabetic mice. Lab Investig 96:98–111CrossRefPubMed Dominguez Rieg JA, Chirasani VR, Koepsell H, Senapati S, Mahata SK, Rieg T (2016) Regulation of intestinal SGLT1 by catestatin in hyperleptinemic type 2 diabetic mice. Lab Investig 96:98–111CrossRefPubMed
44.
go back to reference Roder PV, Geillinger KE, Zietek TS, Thorens B, Koepsell H, Daniel H (2014) The role of SGLT1 and GLUT2 in intestinal glucose transport and sensing. PLoS One 9:e89977CrossRefPubMedPubMedCentral Roder PV, Geillinger KE, Zietek TS, Thorens B, Koepsell H, Daniel H (2014) The role of SGLT1 and GLUT2 in intestinal glucose transport and sensing. PLoS One 9:e89977CrossRefPubMedPubMedCentral
45.
go back to reference Dobbins RL, Greenway FL, Chen L et al (2015) Selective sodium-dependent glucose transporter 1 inhibitors block glucose absorption and impair glucose-dependent insulinotropic peptide release. Am J Physiol Gastrointest Liver Physiol 308:G946–G954CrossRefPubMed Dobbins RL, Greenway FL, Chen L et al (2015) Selective sodium-dependent glucose transporter 1 inhibitors block glucose absorption and impair glucose-dependent insulinotropic peptide release. Am J Physiol Gastrointest Liver Physiol 308:G946–G954CrossRefPubMed
46.
go back to reference Vilsboll T (2009) The effects of glucagon-like peptide-1 on the beta cell. Diabetes Obes Metab 11(Suppl 3):11–18CrossRefPubMed Vilsboll T (2009) The effects of glucagon-like peptide-1 on the beta cell. Diabetes Obes Metab 11(Suppl 3):11–18CrossRefPubMed
47.
go back to reference Drucker DJ, Nauck MA (2006) The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet 368:1696–1705CrossRefPubMed Drucker DJ, Nauck MA (2006) The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet 368:1696–1705CrossRefPubMed
48.
go back to reference Goodwin NC, Ding ZM, Harrison BA et al (2017) Discovery of LX2761, a sodium-dependent glucose cotransporter 1 (SGLT1) inhibitor restricted to the intestinal lumen, for the treatment of diabetes. J Med Chem 60:710–721CrossRefPubMed Goodwin NC, Ding ZM, Harrison BA et al (2017) Discovery of LX2761, a sodium-dependent glucose cotransporter 1 (SGLT1) inhibitor restricted to the intestinal lumen, for the treatment of diabetes. J Med Chem 60:710–721CrossRefPubMed
49.
go back to reference Powell DR, Smith M, Greer J et al (2013) LX4211 increases serum glucagon-like peptide 1 and peptide YY levels by reducing sodium/glucose cotransporter 1 (SGLT1)-mediated absorption of intestinal glucose. J Pharmacol Exp Ther 345:250–259CrossRefPubMed Powell DR, Smith M, Greer J et al (2013) LX4211 increases serum glucagon-like peptide 1 and peptide YY levels by reducing sodium/glucose cotransporter 1 (SGLT1)-mediated absorption of intestinal glucose. J Pharmacol Exp Ther 345:250–259CrossRefPubMed
50.
go back to reference Zambrowicz B, Freiman J, Brown PM et al (2012) LX4211, a dual SGLT1/SGLT2 inhibitor, improved glycemic control in patients with type 2 diabetes in a randomized, placebo-controlled trial. Clin Pharmacol Ther 92:158–169CrossRefPubMedPubMedCentral Zambrowicz B, Freiman J, Brown PM et al (2012) LX4211, a dual SGLT1/SGLT2 inhibitor, improved glycemic control in patients with type 2 diabetes in a randomized, placebo-controlled trial. Clin Pharmacol Ther 92:158–169CrossRefPubMedPubMedCentral
51.
go back to reference Chasis H, Jolliffe N, Smith HW (1933) The action of phlorizin on the excretion of glucose, xylose, sucrose, creatinine and urea by man. J Clin Invest 12:1083–1090CrossRefPubMedPubMedCentral Chasis H, Jolliffe N, Smith HW (1933) The action of phlorizin on the excretion of glucose, xylose, sucrose, creatinine and urea by man. J Clin Invest 12:1083–1090CrossRefPubMedPubMedCentral
52.
go back to reference Rossetti L, Smith D, Shulman GI, Papachristou D, DeFronzo RA (1987) Correction of hyperglycemia with phlorizin normalizes tissue sensitivity to insulin in diabetic rats. J Clin Invest 79:1510–1515CrossRefPubMedPubMedCentral Rossetti L, Smith D, Shulman GI, Papachristou D, DeFronzo RA (1987) Correction of hyperglycemia with phlorizin normalizes tissue sensitivity to insulin in diabetic rats. J Clin Invest 79:1510–1515CrossRefPubMedPubMedCentral
53.
go back to reference Rossetti L, Shulman GI, Zawalich W, DeFronzo RA (1987) Effect of chronic hyperglycemia on in vivo insulin secretion in partially pancreatectomized rats. J Clin Invest 80:1037–1044CrossRefPubMedPubMedCentral Rossetti L, Shulman GI, Zawalich W, DeFronzo RA (1987) Effect of chronic hyperglycemia on in vivo insulin secretion in partially pancreatectomized rats. J Clin Invest 80:1037–1044CrossRefPubMedPubMedCentral
54.
go back to reference Oku A, Ueta K, Arakawa K et al (1999) T-1095, an inhibitor of renal Na+-glucose cotransporters, may provide a novel approach to treating diabetes. Diabetes 48:1794–1800CrossRefPubMed Oku A, Ueta K, Arakawa K et al (1999) T-1095, an inhibitor of renal Na+-glucose cotransporters, may provide a novel approach to treating diabetes. Diabetes 48:1794–1800CrossRefPubMed
55.
go back to reference Choi CI (2016) Sodium-glucose cotransporter 2 (SGLT2) Inhibitors from natural products: discovery of next-generation antihyperglycemic agents. Molecules 21:E1136CrossRefPubMed Choi CI (2016) Sodium-glucose cotransporter 2 (SGLT2) Inhibitors from natural products: discovery of next-generation antihyperglycemic agents. Molecules 21:E1136CrossRefPubMed
56.
go back to reference Isaji M (2011) SGLT2 inhibitors: molecular design and potential differences in effect. Kidney Int 79 (Suppl 120): S14–S19 Isaji M (2011) SGLT2 inhibitors: molecular design and potential differences in effect. Kidney Int 79 (Suppl 120): S14–S19
57.
go back to reference Lapuerta P, Zambrowicz B, Strumph P, Sands A (2015) Development of sotagliflozin, a dual sodium-dependent glucose transporter 1/2 inhibitor. Diab Vasc Dis Res 12:101–110CrossRefPubMed Lapuerta P, Zambrowicz B, Strumph P, Sands A (2015) Development of sotagliflozin, a dual sodium-dependent glucose transporter 1/2 inhibitor. Diab Vasc Dis Res 12:101–110CrossRefPubMed
58.
go back to reference Inoue T, Takemura M, Fushimi N et al (2017) Mizagliflozin, a novel selective SGLT1 inhibitor, exhibits potential in the amelioration of chronic constipation. Eur J Pharmacol 806:25–31CrossRefPubMed Inoue T, Takemura M, Fushimi N et al (2017) Mizagliflozin, a novel selective SGLT1 inhibitor, exhibits potential in the amelioration of chronic constipation. Eur J Pharmacol 806:25–31CrossRefPubMed
59.
go back to reference Komoroski B, Vachharajani N, Boulton D et al (2009) Dapagliflozin, a novel SGLT2 inhibitor, induces dose-dependent glucosuria in healthy subjects. Clin Pharmacol Ther 85:520–526CrossRefPubMed Komoroski B, Vachharajani N, Boulton D et al (2009) Dapagliflozin, a novel SGLT2 inhibitor, induces dose-dependent glucosuria in healthy subjects. Clin Pharmacol Ther 85:520–526CrossRefPubMed
60.
go back to reference Heise T, Seewaldt-Becker E, Macha S et al (2013) Safety, tolerability, pharmacokinetics and pharmacodynamics following 4 weeks’ treatment with empagliflozin once daily in patients with type 2 diabetes. Diabetes Obes Metab 15:613–621CrossRefPubMed Heise T, Seewaldt-Becker E, Macha S et al (2013) Safety, tolerability, pharmacokinetics and pharmacodynamics following 4 weeks’ treatment with empagliflozin once daily in patients with type 2 diabetes. Diabetes Obes Metab 15:613–621CrossRefPubMed
61.
go back to reference Sha S, Devineni D, Ghosh A et al (2011) Canagliflozin, a novel inhibitor of sodium glucose co-transporter 2, dose dependently reduces calculated renal threshold for glucose excretion and increases urinary glucose excretion in healthy subjects. Diabetes Obes Metab 13:669–672CrossRefPubMed Sha S, Devineni D, Ghosh A et al (2011) Canagliflozin, a novel inhibitor of sodium glucose co-transporter 2, dose dependently reduces calculated renal threshold for glucose excretion and increases urinary glucose excretion in healthy subjects. Diabetes Obes Metab 13:669–672CrossRefPubMed
62.
go back to reference Gallo LA, Wright EM, Vallon V (2015) Probing SGLT2 as a therapeutic target for diabetes: basic physiology and consequences. Diab Vasc Dis Res 12:78–89CrossRefPubMedPubMedCentral Gallo LA, Wright EM, Vallon V (2015) Probing SGLT2 as a therapeutic target for diabetes: basic physiology and consequences. Diab Vasc Dis Res 12:78–89CrossRefPubMedPubMedCentral
63.
go back to reference Powell DR, DaCosta CM, Gay J et al (2013) Improved glycemic control in mice lacking Sglt1 and Sglt2. Am J Physiol Endocrinol Metab 304:E117–E130CrossRefPubMed Powell DR, DaCosta CM, Gay J et al (2013) Improved glycemic control in mice lacking Sglt1 and Sglt2. Am J Physiol Endocrinol Metab 304:E117–E130CrossRefPubMed
64.
go back to reference Sands AT, Zambrowicz BP, Rosenstock J et al (2015) Sotagliflozin, a dual SGLT1 and SGLT2 inhibitor, as adjunct therapy to insulin in type 1 diabetes. Diabetes Care 38:1181–1188CrossRefPubMedPubMedCentral Sands AT, Zambrowicz BP, Rosenstock J et al (2015) Sotagliflozin, a dual SGLT1 and SGLT2 inhibitor, as adjunct therapy to insulin in type 1 diabetes. Diabetes Care 38:1181–1188CrossRefPubMedPubMedCentral
65.
go back to reference Garg SK, Henry RR, Banks P et al (2017) Effects of sotagliflozin added to insulin in patients with type 1 diabetes. N Engl J Med 377:2337–2348CrossRefPubMed Garg SK, Henry RR, Banks P et al (2017) Effects of sotagliflozin added to insulin in patients with type 1 diabetes. N Engl J Med 377:2337–2348CrossRefPubMed
66.
go back to reference Dandona P, Mathieu C, Phillip M et al (2017) Efficacy and safety of dapagliflozin in patients with inadequately controlled type 1 diabetes (DEPICT-1): 24 week results from a multicentre, double-blind, phase 3, randomised controlled trial. Lancet Diabetes Endocrinol 5:864–876CrossRefPubMed Dandona P, Mathieu C, Phillip M et al (2017) Efficacy and safety of dapagliflozin in patients with inadequately controlled type 1 diabetes (DEPICT-1): 24 week results from a multicentre, double-blind, phase 3, randomised controlled trial. Lancet Diabetes Endocrinol 5:864–876CrossRefPubMed
67.
go back to reference Henry RR, Thakkar P, Tong C, Polidori D, Alba M (2015) Efficacy and safety of canagliflozin, a sodium-glucose cotransporter 2 inhibitor, as add-on to insulin in patients with type 1 diabetes. Diabetes Care 38:2258–2265CrossRefPubMed Henry RR, Thakkar P, Tong C, Polidori D, Alba M (2015) Efficacy and safety of canagliflozin, a sodium-glucose cotransporter 2 inhibitor, as add-on to insulin in patients with type 1 diabetes. Diabetes Care 38:2258–2265CrossRefPubMed
68.
go back to reference Fattah H, Vallon V (2018) The potential role of SGLT2 inhibitors in the treatment of type 1 diabetes. Drugs 78:717–726 Fattah H, Vallon V (2018) The potential role of SGLT2 inhibitors in the treatment of type 1 diabetes. Drugs 78:717–726
69.
go back to reference Pieber TR, Famulla S, Eilbracht J et al (2015) Empagliflozin as adjunct to insulin in patients with type 1 diabetes: a 4-week, randomized, placebo-controlled trial (EASE-1). Diabetes Obes Metab 17:928–935CrossRefPubMedPubMedCentral Pieber TR, Famulla S, Eilbracht J et al (2015) Empagliflozin as adjunct to insulin in patients with type 1 diabetes: a 4-week, randomized, placebo-controlled trial (EASE-1). Diabetes Obes Metab 17:928–935CrossRefPubMedPubMedCentral
70.
go back to reference Heerspink HJ, Desai M, Jardine M, Balis D, Meininger G, Perkovic V (2017) Canagliflozin slows progression of renal function decline independently of glycemic effects. J Am Soc Nephrol 28:368–375CrossRefPubMed Heerspink HJ, Desai M, Jardine M, Balis D, Meininger G, Perkovic V (2017) Canagliflozin slows progression of renal function decline independently of glycemic effects. J Am Soc Nephrol 28:368–375CrossRefPubMed
Metadata
Title
Development of SGLT1 and SGLT2 inhibitors
Authors
Timo Rieg
Volker Vallon
Publication date
01-10-2018
Publisher
Springer Berlin Heidelberg
Published in
Diabetologia / Issue 10/2018
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-018-4654-7

Other articles of this Issue 10/2018

Diabetologia 10/2018 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.