Skip to main content
Top
Published in: Diabetologia 10/2018

Open Access 01-10-2018 | Review

Physiology of renal glucose handling via SGLT1, SGLT2 and GLUT2

Published in: Diabetologia | Issue 10/2018

Login to get access

Abstract

The concentration of glucose in plasma is held within narrow limits (4–10 mmol/l), primarily to ensure fuel supply to the brain. Kidneys play a role in glucose homeostasis in the body by ensuring that glucose is not lost in the urine. Three membrane proteins are responsible for glucose reabsorption from the glomerular filtrate in the proximal tubule: sodium−glucose cotransporters SGLT1 and SGLT2, in the apical membrane, and GLUT2, a uniporter in the basolateral membrane. ‘Knockout’ of these transporters in mice and men results in the excretion of filtered glucose in the urine. In humans, intravenous injection of the plant glucoside phlorizin also results in excretion of the full filtered glucose load. This outcome and the finding that, in an animal model, phlorizin reversed the symptoms of diabetes, has stimulated the development and successful introduction of SGLT2 inhibitors, gliflozins, in the treatment of type 2 diabetes mellitus. Here we summarise the current state of our knowledge about the physiology of renal glucose handling and provide background to the development of SGLT2 inhibitors for type 2 diabetes treatment.
Appendix
Available only for authorised users
Literature
1.
go back to reference Chasis H, Jolliffe N, Smith HW (1933) The action of phlorizin on the excretion of glucose, xylose, sucrose, creatinine and urea by man. J Clin Invest 12:1083–1090CrossRefPubMedPubMedCentral Chasis H, Jolliffe N, Smith HW (1933) The action of phlorizin on the excretion of glucose, xylose, sucrose, creatinine and urea by man. J Clin Invest 12:1083–1090CrossRefPubMedPubMedCentral
3.
go back to reference Barfuss DW, Schafer JA (1981) Differences in active and passive glucose transport along the proximal nephron. Am J Phys 241:F322–F332 Barfuss DW, Schafer JA (1981) Differences in active and passive glucose transport along the proximal nephron. Am J Phys 241:F322–F332
4.
go back to reference Schultz SG, Curran PF (1970) Coupled transport of sodium and organic solutes. Physiol Rev 50:637–718CrossRefPubMed Schultz SG, Curran PF (1970) Coupled transport of sodium and organic solutes. Physiol Rev 50:637–718CrossRefPubMed
5.
go back to reference Hopfer U, Nelson K, Perrotto J, Isselbacher KJ (1973) Glucose transport in isolated brush border membrane from rat small intestine. J Biol Chem 248:25–32PubMed Hopfer U, Nelson K, Perrotto J, Isselbacher KJ (1973) Glucose transport in isolated brush border membrane from rat small intestine. J Biol Chem 248:25–32PubMed
6.
go back to reference Wright EM, Loo DD, Hirayama BA (2011) Biology of human sodium glucose transporters. Physiol Rev 91:733–794CrossRefPubMed Wright EM, Loo DD, Hirayama BA (2011) Biology of human sodium glucose transporters. Physiol Rev 91:733–794CrossRefPubMed
7.
go back to reference Fanconi G, Bickel H (1949) Chronic aminoaciduria (amino acid diabetes or nephrotic-glucosuric dwarfism) in glycogen storage and cystine disease. Helv Paediatr Acta 4:359–396 [article in German]PubMed Fanconi G, Bickel H (1949) Chronic aminoaciduria (amino acid diabetes or nephrotic-glucosuric dwarfism) in glycogen storage and cystine disease. Helv Paediatr Acta 4:359–396 [article in German]PubMed
8.
go back to reference Santer R, Schneppenheim R, Dombrowski A, Gotze H, Steinmann B, Schaub J (1997) Mutations in GLUT2, the gene for the liver-type glucose transporter, in patients with Fanconi-Bickel syndrome. Nat Genet 17:324–326CrossRefPubMed Santer R, Schneppenheim R, Dombrowski A, Gotze H, Steinmann B, Schaub J (1997) Mutations in GLUT2, the gene for the liver-type glucose transporter, in patients with Fanconi-Bickel syndrome. Nat Genet 17:324–326CrossRefPubMed
9.
go back to reference Santer R, Groth S, Kinner M et al (2002) The mutation spectrum of the facilitative glucose transporter gene SLC2A2 (GLUT2) in patients with Fanconi-Bickel syndrome. Hum Genet 110:21–29CrossRefPubMed Santer R, Groth S, Kinner M et al (2002) The mutation spectrum of the facilitative glucose transporter gene SLC2A2 (GLUT2) in patients with Fanconi-Bickel syndrome. Hum Genet 110:21–29CrossRefPubMed
10.
go back to reference Mudaliar S, Polidori D, Zambrowicz B, Henry RR (2015) Sodium-glucose cotransporter inhibitors: effects on renal and intestinal glucose transport: from bench to bedside. Diabetes Care 38:2344–2353CrossRefPubMed Mudaliar S, Polidori D, Zambrowicz B, Henry RR (2015) Sodium-glucose cotransporter inhibitors: effects on renal and intestinal glucose transport: from bench to bedside. Diabetes Care 38:2344–2353CrossRefPubMed
11.
go back to reference Gallo LA, Wright EM, Vallon V (2015) Probing SGLT2 as a therapeutic target for diabetes: basic physiology and consequences. Diab Vasc Dis Res 12:78–89CrossRefPubMedPubMedCentral Gallo LA, Wright EM, Vallon V (2015) Probing SGLT2 as a therapeutic target for diabetes: basic physiology and consequences. Diab Vasc Dis Res 12:78–89CrossRefPubMedPubMedCentral
12.
go back to reference Hediger MA, Coady MJ, Ikeda TS, Wright EM (1987) Expression cloning and cDNA sequencing of the Na+/glucose co-transporter. Nature 330:379–381CrossRefPubMed Hediger MA, Coady MJ, Ikeda TS, Wright EM (1987) Expression cloning and cDNA sequencing of the Na+/glucose co-transporter. Nature 330:379–381CrossRefPubMed
13.
go back to reference Hediger MA, Turk E, Wright EM (1989) Homology of the human intestinal Na+/glucose and Escherichia coli Na+/proline cotransporters. Proc Natl Acad Sci U S A 86:5748–5752CrossRefPubMedPubMedCentral Hediger MA, Turk E, Wright EM (1989) Homology of the human intestinal Na+/glucose and Escherichia coli Na+/proline cotransporters. Proc Natl Acad Sci U S A 86:5748–5752CrossRefPubMedPubMedCentral
14.
go back to reference Wells RG, Pajor AM, Kanai Y, Turk E, Wright EM, Hediger MA (1992) Cloning of a human kidney cDNA with similarity to the sodium-glucose cotransporter. Am J Phys 263:F459–F465 Wells RG, Pajor AM, Kanai Y, Turk E, Wright EM, Hediger MA (1992) Cloning of a human kidney cDNA with similarity to the sodium-glucose cotransporter. Am J Phys 263:F459–F465
15.
16.
go back to reference Wright EM (2013) Glucose transport families SLC5 and SLC50. Mol Asp Med 34:183–196CrossRef Wright EM (2013) Glucose transport families SLC5 and SLC50. Mol Asp Med 34:183–196CrossRef
17.
go back to reference Nishimura M, Naito S (2005) Tissue-specific mRNA expression profiles of human ATP-binding cassette and solute carrier transporter superfamilies. Drug Metab Pharmacokinet 20:452–477CrossRefPubMed Nishimura M, Naito S (2005) Tissue-specific mRNA expression profiles of human ATP-binding cassette and solute carrier transporter superfamilies. Drug Metab Pharmacokinet 20:452–477CrossRefPubMed
18.
go back to reference Park J, Shrestha R, Qiu C et al (2018) Single-cell transcriptomics of the mouse kidney reveals potential cellular targets of kidney disease. Science 360:758–763 Park J, Shrestha R, Qiu C et al (2018) Single-cell transcriptomics of the mouse kidney reveals potential cellular targets of kidney disease. Science 360:758–763
19.
go back to reference Faham S, Watanabe A, Besserer GM et al (2008) The crystal structure of a sodium galactose transporter reveals mechanistic insights into Na+/sugar symport. Science 321:810–814CrossRefPubMedPubMedCentral Faham S, Watanabe A, Besserer GM et al (2008) The crystal structure of a sodium galactose transporter reveals mechanistic insights into Na+/sugar symport. Science 321:810–814CrossRefPubMedPubMedCentral
20.
21.
go back to reference Cramer SC, Pardridge WM, Hirayama BA, Wright EM (1992) Colocalization of GLUT2 glucose transporter, sodium/glucose cotransporter, and gamma-glutamyl transpeptidase in rat kidney with double-peroxidase immunocytochemistry. Diabetes 41:766–770CrossRefPubMed Cramer SC, Pardridge WM, Hirayama BA, Wright EM (1992) Colocalization of GLUT2 glucose transporter, sodium/glucose cotransporter, and gamma-glutamyl transpeptidase in rat kidney with double-peroxidase immunocytochemistry. Diabetes 41:766–770CrossRefPubMed
22.
go back to reference Balen D, Ljubojevic M, Breljak D et al (2008) Revised immunolocalization of the Na+-D-glucose cotransporter SGLT1 in rat organs with an improved antibody. Am J Phys Cell Phys 295:C475–C489CrossRef Balen D, Ljubojevic M, Breljak D et al (2008) Revised immunolocalization of the Na+-D-glucose cotransporter SGLT1 in rat organs with an improved antibody. Am J Phys Cell Phys 295:C475–C489CrossRef
23.
go back to reference Sabolic I, Vrhovac I, Eror DB et al (2012) Expression of Na+−D-glucose cotransporter SGLT2 in rodents is kidney-specific and exhibits sex and species differences. Am J Phys Cell Phys 302:C1174–C1188CrossRef Sabolic I, Vrhovac I, Eror DB et al (2012) Expression of Na+−D-glucose cotransporter SGLT2 in rodents is kidney-specific and exhibits sex and species differences. Am J Phys Cell Phys 302:C1174–C1188CrossRef
24.
go back to reference Vrhovac I, Balen Eror D, Klessen D et al (2015) Localizations of Na(+)-D-glucose cotransporters SGLT1 and SGLT2 in human kidney and of SGLT1 in human small intestine, liver, lung, and heart. Pflugers Arch 467:1881–1898CrossRefPubMed Vrhovac I, Balen Eror D, Klessen D et al (2015) Localizations of Na(+)-D-glucose cotransporters SGLT1 and SGLT2 in human kidney and of SGLT1 in human small intestine, liver, lung, and heart. Pflugers Arch 467:1881–1898CrossRefPubMed
25.
go back to reference Scafoglio C, Hirayama BA, Kepe V et al (2015) Functional expression of sodium-glucose transporters in cancer. Proc Natl Acad Sci U S A 112:E4111–E4119CrossRefPubMedPubMedCentral Scafoglio C, Hirayama BA, Kepe V et al (2015) Functional expression of sodium-glucose transporters in cancer. Proc Natl Acad Sci U S A 112:E4111–E4119CrossRefPubMedPubMedCentral
26.
go back to reference Hummel CS, Lu C, Loo DD, Hirayama BA, Voss AA, Wright EM (2011) Glucose transport by human renal Na+/D-glucose cotransporters SGLT1 and SGLT2. Am J Phys Cell Phys 300:C14–C21CrossRef Hummel CS, Lu C, Loo DD, Hirayama BA, Voss AA, Wright EM (2011) Glucose transport by human renal Na+/D-glucose cotransporters SGLT1 and SGLT2. Am J Phys Cell Phys 300:C14–C21CrossRef
27.
go back to reference Sala-Rabanal M, Hirayama BA, Ghezzi C et al (2016) Revisiting the physiological roles of SGLTs and GLUTs using positron emission tomography in mice. J Physiol 594:4425–4438CrossRefPubMedPubMedCentral Sala-Rabanal M, Hirayama BA, Ghezzi C et al (2016) Revisiting the physiological roles of SGLTs and GLUTs using positron emission tomography in mice. J Physiol 594:4425–4438CrossRefPubMedPubMedCentral
28.
go back to reference Powell DR, DaCosta CM, Gay J et al (2013) Improved glycemic control in mice lacking Sglt1 and Sglt2. Am J Physiol Endocrinol Metab 304:E117–E130CrossRefPubMed Powell DR, DaCosta CM, Gay J et al (2013) Improved glycemic control in mice lacking Sglt1 and Sglt2. Am J Physiol Endocrinol Metab 304:E117–E130CrossRefPubMed
29.
go back to reference Santer R, Kinner M, Lassen CL et al (2003) Molecular analysis of the SGLT2 gene in patients with renal glucosuria. J Am Soc Nephrol 14:2873–2882CrossRefPubMed Santer R, Kinner M, Lassen CL et al (2003) Molecular analysis of the SGLT2 gene in patients with renal glucosuria. J Am Soc Nephrol 14:2873–2882CrossRefPubMed
30.
go back to reference Wright E (2009) Diseases of renal glucose handling. In: Lifton R, Somlo S, Giebisch GH, Seldin DW (eds) Genetic diseases of the kidney. Elsevier, New York, pp 131–140CrossRef Wright E (2009) Diseases of renal glucose handling. In: Lifton R, Somlo S, Giebisch GH, Seldin DW (eds) Genetic diseases of the kidney. Elsevier, New York, pp 131–140CrossRef
31.
go back to reference Ghezzi C, Hirayama BA, Gorraitz E, Loo DD, Liang Y, Wright EM (2014) SGLT2 inhibitors act from the extracellular surface of the cell membrane. Phys Rep 2:e12058CrossRef Ghezzi C, Hirayama BA, Gorraitz E, Loo DD, Liang Y, Wright EM (2014) SGLT2 inhibitors act from the extracellular surface of the cell membrane. Phys Rep 2:e12058CrossRef
32.
go back to reference Ghezzi C, Yu AS, Hirayama BA et al (2017) Dapagliflozin binds specifically to sodium-glucose cotransporter 2 in the proximal renal tubule. J Am Soc Nephrol 28:802–810CrossRefPubMed Ghezzi C, Yu AS, Hirayama BA et al (2017) Dapagliflozin binds specifically to sodium-glucose cotransporter 2 in the proximal renal tubule. J Am Soc Nephrol 28:802–810CrossRefPubMed
33.
go back to reference Hummel C, Lu C, Liu J et al (2012) Structural selectivity of human SGLT inhibitors. Am J Phys Cell Phys 302:C373–C382CrossRef Hummel C, Lu C, Liu J et al (2012) Structural selectivity of human SGLT inhibitors. Am J Phys Cell Phys 302:C373–C382CrossRef
34.
go back to reference Silverman M (1974) The in vivo localization of high-affinity phlorizin receptors to the brush border surface of the proximal tubule in dog kidney. Biochim Biophys Acta 339:92–102CrossRefPubMed Silverman M (1974) The in vivo localization of high-affinity phlorizin receptors to the brush border surface of the proximal tubule in dog kidney. Biochim Biophys Acta 339:92–102CrossRefPubMed
36.
go back to reference Yan N (2015) Structural biology of the major facilitator superfamily transporters. Annu Rev Biophys 44:257–283CrossRefPubMed Yan N (2015) Structural biology of the major facilitator superfamily transporters. Annu Rev Biophys 44:257–283CrossRefPubMed
37.
go back to reference Loo DD, Jiang X, Gorraitz E, Hirayama BA, Wright EM (2013) Functional identification and characterization of sodium binding sites in Na symporters. Proc Natl Acad Sci U S A 110:E4557–E4566CrossRefPubMedPubMedCentral Loo DD, Jiang X, Gorraitz E, Hirayama BA, Wright EM (2013) Functional identification and characterization of sodium binding sites in Na symporters. Proc Natl Acad Sci U S A 110:E4557–E4566CrossRefPubMedPubMedCentral
38.
39.
go back to reference Kanai Y, Lee WS, You G, Brown D, Hediger MA (1994) The human kidney low affinity Na+/glucose cotransporter SGLT2. Delineation of the major renal reabsorptive mechanism for D-glucose. J Clin Invest 93:397–404CrossRefPubMedPubMedCentral Kanai Y, Lee WS, You G, Brown D, Hediger MA (1994) The human kidney low affinity Na+/glucose cotransporter SGLT2. Delineation of the major renal reabsorptive mechanism for D-glucose. J Clin Invest 93:397–404CrossRefPubMedPubMedCentral
40.
go back to reference Pajor AM, Randolph KM, Kerner SA, Smith CD (2008) Inhibitor binding in the human renal low- and high-affinity Na+/glucose cotransporters. J Pharmacol Exp Ther 324:985–991CrossRefPubMed Pajor AM, Randolph KM, Kerner SA, Smith CD (2008) Inhibitor binding in the human renal low- and high-affinity Na+/glucose cotransporters. J Pharmacol Exp Ther 324:985–991CrossRefPubMed
41.
go back to reference Coady MJ, El Tarazi A, Santer R et al (2017) MAP17 is a necessary activator of renal Na+/glucose cotransporter SGLT2. J Am Soc Nephrol 28:85–93CrossRefPubMed Coady MJ, El Tarazi A, Santer R et al (2017) MAP17 is a necessary activator of renal Na+/glucose cotransporter SGLT2. J Am Soc Nephrol 28:85–93CrossRefPubMed
42.
go back to reference Coady MJ, Wallendorff B, Lapointe JY (2017) Characterization of the transport activity of SGLT2/MAP17, the renal low-affinity Na+/glucose cotransporter. Am J Physiol Ren Physiol 313:F467–F474CrossRef Coady MJ, Wallendorff B, Lapointe JY (2017) Characterization of the transport activity of SGLT2/MAP17, the renal low-affinity Na+/glucose cotransporter. Am J Physiol Ren Physiol 313:F467–F474CrossRef
43.
go back to reference Ghezzi C, Wright EM (2012) Regulation of the human Na+−dependent glucose cotransporter hSGLT2. Am J Phys Cell Phys 303:C348–C354CrossRef Ghezzi C, Wright EM (2012) Regulation of the human Na+−dependent glucose cotransporter hSGLT2. Am J Phys Cell Phys 303:C348–C354CrossRef
44.
go back to reference Hirsch JR, Loo DD, Wright EM (1996) Regulation of Na+/glucose cotransporter expression by protein kinases in Xenopus laevis oocytes. J Biol Chem 271:14740–14746CrossRefPubMed Hirsch JR, Loo DD, Wright EM (1996) Regulation of Na+/glucose cotransporter expression by protein kinases in Xenopus laevis oocytes. J Biol Chem 271:14740–14746CrossRefPubMed
45.
go back to reference Turk E, Kim O, le Coutre J et al (2000) Molecular characterization of Vibrio parahaemolyticus vSGLT: a model for sodium-coupled sugar cotransporters. J Biol Chem 275:25711–25716CrossRefPubMed Turk E, Kim O, le Coutre J et al (2000) Molecular characterization of Vibrio parahaemolyticus vSGLT: a model for sodium-coupled sugar cotransporters. J Biol Chem 275:25711–25716CrossRefPubMed
46.
go back to reference Sala-Rabanal M, Hirayama BA, Loo DD, Chaptal V, Abramson J, Wright EM (2012) Bridging the gap between structure and kinetics of human SGLT1. Am J Phys Cell Phys 302:C1293–C1305CrossRef Sala-Rabanal M, Hirayama BA, Loo DD, Chaptal V, Abramson J, Wright EM (2012) Bridging the gap between structure and kinetics of human SGLT1. Am J Phys Cell Phys 302:C1293–C1305CrossRef
47.
go back to reference Gorraitz E, Hirayama BA, Paz A, Wright EM, Loo DDF (2017) Active site voltage clamp fluorometry of the sodium glucose cotransporter hSGLT1. Proc Natl Acad Sci U S A 114:E9980–E9988CrossRefPubMedPubMedCentral Gorraitz E, Hirayama BA, Paz A, Wright EM, Loo DDF (2017) Active site voltage clamp fluorometry of the sodium glucose cotransporter hSGLT1. Proc Natl Acad Sci U S A 114:E9980–E9988CrossRefPubMedPubMedCentral
48.
go back to reference Ehrenkranz JR, Lewis NG, Kahn CR, Roth J (2005) Phlorizin: a review. Diabetes Metab Res Rev 21:31–38CrossRefPubMed Ehrenkranz JR, Lewis NG, Kahn CR, Roth J (2005) Phlorizin: a review. Diabetes Metab Res Rev 21:31–38CrossRefPubMed
49.
go back to reference Bisignano P, Kalyanaraman C, Ghezzi C et al (2017) Structural insights into sodium-dependent sugar transporters and their inhibition mechanism. Biophys J 128a:112 (abstract) Bisignano P, Kalyanaraman C, Ghezzi C et al (2017) Structural insights into sodium-dependent sugar transporters and their inhibition mechanism. Biophys J 128a:112 (abstract)
50.
go back to reference Wright EM, Martin MG, Turk E (2001) Familial glucose-galactose malabsorption and hereditary renal glycosuria. In: Scriver CR, Beaudet AL, Sly WS et al (eds) The metabolic and molecular bases of inherited disease. McGraw-Hill, New York, pp 4891–4908 Wright EM, Martin MG, Turk E (2001) Familial glucose-galactose malabsorption and hereditary renal glycosuria. In: Scriver CR, Beaudet AL, Sly WS et al (eds) The metabolic and molecular bases of inherited disease. McGraw-Hill, New York, pp 4891–4908
51.
go back to reference Frohnert PP, Hohmann B, Zwiebel R, Baumann K (1970) Free flow micropuncture studies of glucose transport in the rat nephron. Pflugers Arch 315:66–85CrossRefPubMed Frohnert PP, Hohmann B, Zwiebel R, Baumann K (1970) Free flow micropuncture studies of glucose transport in the rat nephron. Pflugers Arch 315:66–85CrossRefPubMed
52.
go back to reference Santer R, Calado J (2010) Familial renal glucosuria and SGLT2: from a mendelian trait to a therapeutic target. Clin J Am Soc Nephrol 5:133–141CrossRefPubMed Santer R, Calado J (2010) Familial renal glucosuria and SGLT2: from a mendelian trait to a therapeutic target. Clin J Am Soc Nephrol 5:133–141CrossRefPubMed
Metadata
Title
Physiology of renal glucose handling via SGLT1, SGLT2 and GLUT2
Publication date
01-10-2018
Published in
Diabetologia / Issue 10/2018
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-018-4656-5

Other articles of this Issue 10/2018

Diabetologia 10/2018 Go to the issue