Skip to main content
Top
Published in: Journal of Translational Medicine 1/2015

Open Access 01-12-2015 | Research

Caulerpa lentillifera extract ameliorates insulin resistance and regulates glucose metabolism in C57BL/KsJ-db/db mice via PI3K/AKT signaling pathway in myocytes

Authors: Bhesh Raj Sharma, Hyun Jung Kim, Dong Young Rhyu

Published in: Journal of Translational Medicine | Issue 1/2015

Login to get access

Abstract

Background

Glucose homeostasis is distorted by defects of the PI3K/AKT and AMPK pathways in insulin-sensitive tissues, allowing the accumulation of glucose in the blood. The purpose of this study was to assess the effects and mechanisms by which ethanol extract of Caulerpa lentillifera (CLE) regulates glucose metabolism in C57BL/KsJ-db/db (db/db) mice.

Methods

Mice were administered CLE (250 or 500 mg/kg BW) or rosiglitazone (RSG, 10 mg/kg BW) for 6 weeks. Then, oral glucose tolerance test (OGTT) and intraperitoneal insulin tolerance test (IPITT) were performed, and blood glucose was measured in db/db mice. Levels of insulin and insulin resistance factors in plasma, glycogen content in the liver, and IRS, PI3K, AKT, and GLUT4 expressions in skeletal muscles were measured in db/db mice. Glucose uptake and insulin signaling molecules were measured in L6 myocytes, using fluorometry and Western blotting.

Results

CLE significantly decreased fasting blood glucose, glucose level in OGTT and IPITT, plasma insulin, homeostatic model assessment-insulin resistant (HOMA-IR), TNF-α, IL-6, FFA, TG and TC levels, and hepatic glycogen content in db/db mice. CLE significantly increased the activation of IRS, AKT, PI3K, and GLUT4, which are the key effector molecules of the PI3K/AKT pathway in L6 myocytes and the skeletal muscles of db/db mice. The enhanced glucose uptake by CLE was abolished by treatment with a PI3K inhibitor (LY294002), but not by an AMPK inhibitor (compound C) in L6 myocytes. CLE regulated glucose uptake and homeostasis via the PI3K/AKT pathway in myocytes and db/db mice, respectively.

Conclusion

Our results suggest that CLE could be a potential candidate for the prevention of diabetes.
Literature
1.
2.
go back to reference International Diabetes Fedration. IDF diabetes atlas. 6th ed. Brussels, Belgium: International Diabetes Federation; 2014. International Diabetes Fedration. IDF diabetes atlas. 6th ed. Brussels, Belgium: International Diabetes Federation; 2014.
3.
go back to reference Chehade JM, Gladysz M, Mooradian AD. Dyslipidemia in type 2 diabetes: prevalence, pahtophysiology, and management. Drugs. 2013;73:327–39.CrossRefPubMed Chehade JM, Gladysz M, Mooradian AD. Dyslipidemia in type 2 diabetes: prevalence, pahtophysiology, and management. Drugs. 2013;73:327–39.CrossRefPubMed
4.
go back to reference Cordero-Herrera I, Martin MA, Bravo L, Goya L, Ramos S. Cocoa flavonoids improve insulin signaling and modulate glucose production via AKT and AMPK in HepG2 cells. Mol Nutr Food Res. 2013;57:974–85.CrossRefPubMed Cordero-Herrera I, Martin MA, Bravo L, Goya L, Ramos S. Cocoa flavonoids improve insulin signaling and modulate glucose production via AKT and AMPK in HepG2 cells. Mol Nutr Food Res. 2013;57:974–85.CrossRefPubMed
5.
go back to reference Bryant NJ, Govers R, James DE. Regulated transport of the glucose transporter GLUT4. Nat Rev Mol Cell Biol. 2002;3:266–77.CrossRef Bryant NJ, Govers R, James DE. Regulated transport of the glucose transporter GLUT4. Nat Rev Mol Cell Biol. 2002;3:266–77.CrossRef
6.
go back to reference Coughlan KA, Valentine RJ, Ruderman NB, Saha AK. AMPK activation: a therapeutic target for type 2 diabetes. Diabetes Metab Syndr Obes. 2014;7:241–53.PubMedCentralPubMed Coughlan KA, Valentine RJ, Ruderman NB, Saha AK. AMPK activation: a therapeutic target for type 2 diabetes. Diabetes Metab Syndr Obes. 2014;7:241–53.PubMedCentralPubMed
7.
go back to reference Guo X, Yoshitomi H, Gao M, Qin L, Duan Y, Sun W, et al. Guava lead extracts promote glucose metabolism in SHRSP.Z-Leprfa/Izm rats by improving insulin resistance in skeletal muscle. BMC Complement Altern Med. 2013;13:52.CrossRefPubMedCentralPubMed Guo X, Yoshitomi H, Gao M, Qin L, Duan Y, Sun W, et al. Guava lead extracts promote glucose metabolism in SHRSP.Z-Leprfa/Izm rats by improving insulin resistance in skeletal muscle. BMC Complement Altern Med. 2013;13:52.CrossRefPubMedCentralPubMed
8.
go back to reference Lee JC, Hou MF, Huang HW, Chang FR, Yeh CC, Tang JY, et al. Marine algal natural products with antioxidative, anti-inflammatory, and anti-cancer properties. Cancer Cell Int. 2013;13:55.CrossRefPubMedCentralPubMed Lee JC, Hou MF, Huang HW, Chang FR, Yeh CC, Tang JY, et al. Marine algal natural products with antioxidative, anti-inflammatory, and anti-cancer properties. Cancer Cell Int. 2013;13:55.CrossRefPubMedCentralPubMed
9.
go back to reference Nguyen VT, Ueng JP, Tsai GJ. Proximate composition, total phenolic content, and antioxidant activity of seagrape (Caulerpa lentillifera). J Food Sci. 2011;76:C950–8.CrossRefPubMed Nguyen VT, Ueng JP, Tsai GJ. Proximate composition, total phenolic content, and antioxidant activity of seagrape (Caulerpa lentillifera). J Food Sci. 2011;76:C950–8.CrossRefPubMed
10.
go back to reference Ratana-arporn P, Chirapart A. Nutritional evaluation of tropical green seaweeds. Kasetsart J (Nat Sci). 2006;40:75–83. Ratana-arporn P, Chirapart A. Nutritional evaluation of tropical green seaweeds. Kasetsart J (Nat Sci). 2006;40:75–83.
11.
go back to reference Maeda R, Ida T, Ihara H, Sakamoto T. Induction of apoptosis in MCF-7 cells by β-1,3-xylooligosaccharides prepared from Caulerpa lentillifera. Biosci Biotechnol Biochem. 2012;76:1032–4.CrossRefPubMed Maeda R, Ida T, Ihara H, Sakamoto T. Induction of apoptosis in MCF-7 cells by β-1,3-xylooligosaccharides prepared from Caulerpa lentillifera. Biosci Biotechnol Biochem. 2012;76:1032–4.CrossRefPubMed
12.
go back to reference Matanjun P, Mohamed S, Muhammad K, Mustapha NM. Comparison of cardiovascular protective effects of tropical seaweeds, kappaphycus alvarezii, Caulerpa lentillifera, and Sargassum polycystum, on high-cholesterol/high-fat diet in rats. J Med Food. 2010;13(4):792–800.CrossRefPubMed Matanjun P, Mohamed S, Muhammad K, Mustapha NM. Comparison of cardiovascular protective effects of tropical seaweeds, kappaphycus alvarezii, Caulerpa lentillifera, and Sargassum polycystum, on high-cholesterol/high-fat diet in rats. J Med Food. 2010;13(4):792–800.CrossRefPubMed
13.
go back to reference Sharma BR, Rhyu DY. Anti-diabetic effects of Caulerpa lentillifera: stimulation of insulin secretion in pancreatic β-cells and enhancement of glucose uptake in adipocytes. Asian Pac J Trop Biomed. 2014;4(7):575–80.PubMedCentralPubMed Sharma BR, Rhyu DY. Anti-diabetic effects of Caulerpa lentillifera: stimulation of insulin secretion in pancreatic β-cells and enhancement of glucose uptake in adipocytes. Asian Pac J Trop Biomed. 2014;4(7):575–80.PubMedCentralPubMed
15.
go back to reference Park CH, Rhyu DY, Sharma BR, Yokozawa T. Inhibition of preadipocyte differentiation and lipid accumulation by 7-O-galloyl-d-sedeheptulose treatment in 3 T3-L1 adipocytes. Biomed Prev Nutr. 2013;3:319–24.CrossRef Park CH, Rhyu DY, Sharma BR, Yokozawa T. Inhibition of preadipocyte differentiation and lipid accumulation by 7-O-galloyl-d-sedeheptulose treatment in 3 T3-L1 adipocytes. Biomed Prev Nutr. 2013;3:319–24.CrossRef
16.
go back to reference Liu S, Guo X, Wu B, Yu H, Zhang X, Li M. Arsenic induces diabetic effects through beta-cell dysfunction and increased gluconeogenesis in mice. Sci Rep. 2014;4:6894.CrossRefPubMedCentralPubMed Liu S, Guo X, Wu B, Yu H, Zhang X, Li M. Arsenic induces diabetic effects through beta-cell dysfunction and increased gluconeogenesis in mice. Sci Rep. 2014;4:6894.CrossRefPubMedCentralPubMed
17.
go back to reference Sharma BR, Rhyu DY. Lespedeza davurica (Lax.) schindl. extract protects against cytokine-induced β-cell damage and streptozotocin-induce diabetes. Biomed Res Int. Article ID 169256, in press. Sharma BR, Rhyu DY. Lespedeza davurica (Lax.) schindl. extract protects against cytokine-induced β-cell damage and streptozotocin-induce diabetes. Biomed Res Int. Article ID 169256, in press.
18.
go back to reference Zierath JR, He L, Guma A, Odegoard Wahlstrom E, Klip A, Wallberg-Henriksson H. Insulin action on glucose transport membrane GLUT4 content in skeletal muscle from patients with NIDDM. Diabetologia. 1996;39:1180–9.CrossRefPubMed Zierath JR, He L, Guma A, Odegoard Wahlstrom E, Klip A, Wallberg-Henriksson H. Insulin action on glucose transport membrane GLUT4 content in skeletal muscle from patients with NIDDM. Diabetologia. 1996;39:1180–9.CrossRefPubMed
19.
go back to reference Kang C, Lee H, Jung ES, Seyedian R, Jo M, Kim J, et al. Saffron (Crocus sativus L.) increases glucose uptake and insulin sensitivity in muscle cells via multipathway mechanisms. Food Chem. 2012;135:2350–8.CrossRefPubMed Kang C, Lee H, Jung ES, Seyedian R, Jo M, Kim J, et al. Saffron (Crocus sativus L.) increases glucose uptake and insulin sensitivity in muscle cells via multipathway mechanisms. Food Chem. 2012;135:2350–8.CrossRefPubMed
21.
go back to reference Shulmen GI. Cellular mechanisms of insulin resistance. J Clin Invest. 2000;106:171–6.CrossRef Shulmen GI. Cellular mechanisms of insulin resistance. J Clin Invest. 2000;106:171–6.CrossRef
22.
go back to reference Siew ED, Pupim LB, Majchrzak KM, Shintani A, Flakoll PJ, Ikizler TA. Insulin resistance is associated with skeletal muscle protein breakdown in non-diabetic chronic hemodialysis patients. Kidney Int. 2007;71:146–52.CrossRefPubMed Siew ED, Pupim LB, Majchrzak KM, Shintani A, Flakoll PJ, Ikizler TA. Insulin resistance is associated with skeletal muscle protein breakdown in non-diabetic chronic hemodialysis patients. Kidney Int. 2007;71:146–52.CrossRefPubMed
23.
go back to reference AbouZid SF, Ahmed OM, Ahmed RR, Mahmoud A, Abdella E, Ashour MB. Antihyperglycemic effect of crude extracts of some Egyptian plants and algae. J Med Food. 2014;17:400–6.CrossRefPubMed AbouZid SF, Ahmed OM, Ahmed RR, Mahmoud A, Abdella E, Ashour MB. Antihyperglycemic effect of crude extracts of some Egyptian plants and algae. J Med Food. 2014;17:400–6.CrossRefPubMed
24.
go back to reference Conn PM. Animal models for the study of human disease. San Diego: Academic Press; 2013. Conn PM. Animal models for the study of human disease. San Diego: Academic Press; 2013.
25.
go back to reference Jung UJ, Baek NI, Chung HG, Bang MH, Jeong TS, Lee KT, et al. Effects of the ethanol extract of the roots of Brassica rapa on glucose metabolism in C57BL/KsJ-db/db mice. Clin Nutr. 2008;27:158–67.CrossRefPubMed Jung UJ, Baek NI, Chung HG, Bang MH, Jeong TS, Lee KT, et al. Effects of the ethanol extract of the roots of Brassica rapa on glucose metabolism in C57BL/KsJ-db/db mice. Clin Nutr. 2008;27:158–67.CrossRefPubMed
26.
go back to reference Barzilai N, Rossetti L. Role of glucokinase and glucose-6-phosphatase in the acute and chronic regulation of hepatic glucose fluxes by insulin. J Biol Chem. 1993;268:25019–25.PubMed Barzilai N, Rossetti L. Role of glucokinase and glucose-6-phosphatase in the acute and chronic regulation of hepatic glucose fluxes by insulin. J Biol Chem. 1993;268:25019–25.PubMed
27.
go back to reference De Felice FG, Ferreira ST. Inflammation, defective insulin signaling and mitochondrial dysfunction as common molecular denominators connecting type 2 diabetes to alzheimer disease. Diabetes. 2014;63:2262–72.CrossRefPubMed De Felice FG, Ferreira ST. Inflammation, defective insulin signaling and mitochondrial dysfunction as common molecular denominators connecting type 2 diabetes to alzheimer disease. Diabetes. 2014;63:2262–72.CrossRefPubMed
28.
go back to reference Singh R, Kaur N, Kishore L, Gupta GK. Management of diabetic complications: a chemical constituents based approach. J Ethnopharmacol. 2013;150:51–70.CrossRefPubMed Singh R, Kaur N, Kishore L, Gupta GK. Management of diabetic complications: a chemical constituents based approach. J Ethnopharmacol. 2013;150:51–70.CrossRefPubMed
29.
go back to reference Sarkozy M, Fekete V, Szucs G, Torok S, Szucs C, Barkanyi J, et al. Anti-diabetic effect of a preparation of vitamins, minerals and trace elements in diabetic rats: a gender difference. BMC Endocr Disord. 2014;14:72.CrossRefPubMedCentralPubMed Sarkozy M, Fekete V, Szucs G, Torok S, Szucs C, Barkanyi J, et al. Anti-diabetic effect of a preparation of vitamins, minerals and trace elements in diabetic rats: a gender difference. BMC Endocr Disord. 2014;14:72.CrossRefPubMedCentralPubMed
Metadata
Title
Caulerpa lentillifera extract ameliorates insulin resistance and regulates glucose metabolism in C57BL/KsJ-db/db mice via PI3K/AKT signaling pathway in myocytes
Authors
Bhesh Raj Sharma
Hyun Jung Kim
Dong Young Rhyu
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2015
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-015-0412-5

Other articles of this Issue 1/2015

Journal of Translational Medicine 1/2015 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.