Skip to main content
Top
Published in: Molecular Diagnosis & Therapy 1/2008

01-01-2008 | Cancer

Detecting and Treating Cancer with Nanotechnology

Authors: Keith B. Hartman, Professor Lon J. Wilson, Michael G. Rosenblum

Published in: Molecular Diagnosis & Therapy | Issue 1/2008

Login to get access

Abstract

Nanotechnology offers many opportunities for enhanced diagnostic and therapeutic medicine against cancer and other diseases. In this review, the special properties that result from the nanoscale size of quantum dots, metal colloids, superparamagnetic iron oxide, and carbon-based nanostructures are reviewed and interpreted against a background of the structural and electronic detail that gives rise to their nanotechnologic behavior. The detection and treatment of cancer is emphasized, with special attention paid to the biologic targeting of the disease. The future of nanotechnology in cancer research and clinical practice is projected to focus on ‘theranostic’ nanoparticles that are both diagnostic and therapeutic by design.
Literature
2.
go back to reference Agrawal A, Xing Y, Gao X, et al. Quantum dots. In: Vo-Dinh T, editor. Nanotechnology in biology: methods, devices, and applications. Boca Raton (FL): CRC Press, 2007: 1–15 Agrawal A, Xing Y, Gao X, et al. Quantum dots. In: Vo-Dinh T, editor. Nanotechnology in biology: methods, devices, and applications. Boca Raton (FL): CRC Press, 2007: 1–15
3.
go back to reference Klostranec JM, Chan WCW. Quantum dots in biological and biomedical research: recent progress and present challenges. Adv Mater 2006; 18(15): 1953–64CrossRef Klostranec JM, Chan WCW. Quantum dots in biological and biomedical research: recent progress and present challenges. Adv Mater 2006; 18(15): 1953–64CrossRef
4.
go back to reference Caruthers SD, Wickline SA, Lanza GM. Nanotechnological applications in medicine. Curr Opin Biotechnol 2007; 18(1): 26–30PubMedCrossRef Caruthers SD, Wickline SA, Lanza GM. Nanotechnological applications in medicine. Curr Opin Biotechnol 2007; 18(1): 26–30PubMedCrossRef
5.
6.
go back to reference Sonvico F, Dubernet C, Colombo P, et al. Metallic colloid nanotechnology, applications in diagnosis and therapeutics. Curr Pharm Design 2005; 11(16): 2091–105CrossRef Sonvico F, Dubernet C, Colombo P, et al. Metallic colloid nanotechnology, applications in diagnosis and therapeutics. Curr Pharm Design 2005; 11(16): 2091–105CrossRef
7.
go back to reference Wang H, Brandl DW, Nordlander P, et al. Plasmonic nanostructures: artificial molecules. Acc Chem Res 2007; 40(1): 53–62PubMedCrossRef Wang H, Brandl DW, Nordlander P, et al. Plasmonic nanostructures: artificial molecules. Acc Chem Res 2007; 40(1): 53–62PubMedCrossRef
8.
go back to reference Duguet E, Vasseur S, Mornet S, et al. Magnetic nanoparticles and their applications in medicine. Nanomed 2006; 1(2): 157–68CrossRef Duguet E, Vasseur S, Mornet S, et al. Magnetic nanoparticles and their applications in medicine. Nanomed 2006; 1(2): 157–68CrossRef
9.
go back to reference Corot C, Robert P, Idee J-M, et al. Recent advances in iron oxide nanocrystal technology for medical imaging. Adv Drug Deliv Rev 2006; 58(14): 1471–504PubMedCrossRef Corot C, Robert P, Idee J-M, et al. Recent advances in iron oxide nanocrystal technology for medical imaging. Adv Drug Deliv Rev 2006; 58(14): 1471–504PubMedCrossRef
10.
go back to reference Tasis D, Tagmatarchis N, Bianco A, et al. Chemistry of carbon nanotubes. Chem Rev 2006; 106(3): 1105–36PubMedCrossRef Tasis D, Tagmatarchis N, Bianco A, et al. Chemistry of carbon nanotubes. Chem Rev 2006; 106(3): 1105–36PubMedCrossRef
11.
go back to reference Guldi DM, Rahman GMA, Sgobba V, et al. Multifunctional molecular carbon materials: from fullerenes to carbon nanotubes. Chem Soc Rev 2006; 35(5): 471–87PubMedCrossRef Guldi DM, Rahman GMA, Sgobba V, et al. Multifunctional molecular carbon materials: from fullerenes to carbon nanotubes. Chem Soc Rev 2006; 35(5): 471–87PubMedCrossRef
12.
go back to reference Hartschuh A, Pedrosa HN, Peterson J, et al. Single carbon nanotube optical spectroscopy. Chem Phys Chem 2005; 6(4): 577–82PubMedCrossRef Hartschuh A, Pedrosa HN, Peterson J, et al. Single carbon nanotube optical spectroscopy. Chem Phys Chem 2005; 6(4): 577–82PubMedCrossRef
13.
go back to reference Green M. Organometallic based strategies for metal nanocrystal synthesis. Chem Commun 2005; 24: 3002–11CrossRef Green M. Organometallic based strategies for metal nanocrystal synthesis. Chem Commun 2005; 24: 3002–11CrossRef
14.
go back to reference Brus L. Electronic wave functions in semiconductor clusters: experiment and theory. J Phys Chem 1986; 90(12): 2555–60CrossRef Brus L. Electronic wave functions in semiconductor clusters: experiment and theory. J Phys Chem 1986; 90(12): 2555–60CrossRef
15.
go back to reference Brus LE. Electron-electron and electron-hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state. J Phys Chem 1984; 80(9): 4403–9CrossRef Brus LE. Electron-electron and electron-hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state. J Phys Chem 1984; 80(9): 4403–9CrossRef
16.
go back to reference Brachez Jr M, Moronne M, Gin P, et al. Semiconductor nanocrystals as fluorescent biological labels. Science 1998; 281(5385): 2013–6CrossRef Brachez Jr M, Moronne M, Gin P, et al. Semiconductor nanocrystals as fluorescent biological labels. Science 1998; 281(5385): 2013–6CrossRef
17.
go back to reference Jaiswal JK, Mattoussi H, Mauro JM, et al. Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat Biotechnol 2003; 21(1): 47–51PubMedCrossRef Jaiswal JK, Mattoussi H, Mauro JM, et al. Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat Biotechnol 2003; 21(1): 47–51PubMedCrossRef
18.
go back to reference Shepard JRE. Polychromatic microarrays: simultaneous multicolor array hybridization of eight samples. Anal Chem 2006; 78(8): 2478–86PubMedCrossRef Shepard JRE. Polychromatic microarrays: simultaneous multicolor array hybridization of eight samples. Anal Chem 2006; 78(8): 2478–86PubMedCrossRef
19.
go back to reference Levy M, Cater SF, Ellington AD. Quantum-dot aptamer beacons for the detection of proteins. Chem Bio Chem 2005; 6(12): 2163–6PubMedCrossRef Levy M, Cater SF, Ellington AD. Quantum-dot aptamer beacons for the detection of proteins. Chem Bio Chem 2005; 6(12): 2163–6PubMedCrossRef
20.
go back to reference Chan P, Yuen T, Ruf F, et al. Method for multiplex cellular detection of mRN As using quantum dot fluorescent in situ hybridization. Nucleic Acids Res 2005; 33(18): e161/1–8CrossRef Chan P, Yuen T, Ruf F, et al. Method for multiplex cellular detection of mRN As using quantum dot fluorescent in situ hybridization. Nucleic Acids Res 2005; 33(18): e161/1–8CrossRef
21.
go back to reference Ho Y-P, Kung MC, Yang S, et al. Multiplexed hybridization detection with multicolor colocalization of quantum dot nanoprobes. Nano Lett 2005; 5(9): 1693–7PubMedCrossRef Ho Y-P, Kung MC, Yang S, et al. Multiplexed hybridization detection with multicolor colocalization of quantum dot nanoprobes. Nano Lett 2005; 5(9): 1693–7PubMedCrossRef
22.
go back to reference Kobayashi H, Hama Y, Koyama Y, et al. Simultaneous multicolor imaging of five different lymphatic basins using quantum dots. Nano Lett 2007; 7(6): 1711–6PubMedCrossRef Kobayashi H, Hama Y, Koyama Y, et al. Simultaneous multicolor imaging of five different lymphatic basins using quantum dots. Nano Lett 2007; 7(6): 1711–6PubMedCrossRef
23.
go back to reference So M-K, Xu C, Loening AM, et al. Self-illuminating quantum dot conjugates for in vivo imaging. Nat Biotechnol 2006; 24(3): 339–43PubMedCrossRef So M-K, Xu C, Loening AM, et al. Self-illuminating quantum dot conjugates for in vivo imaging. Nat Biotechnol 2006; 24(3): 339–43PubMedCrossRef
24.
go back to reference Cai W, Shin D-W, Chen K, et al. Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Lett 2006; 6(4): 669–76PubMedCrossRef Cai W, Shin D-W, Chen K, et al. Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Lett 2006; 6(4): 669–76PubMedCrossRef
25.
go back to reference Tada H, Higuchi H, Wanatabe TM, et al. In vivo real-time tracking of single quantum dots conjugated with monoclonal Anti-HER2 antibody in tumors of mice. Cancer Res 2007; 67(3): 1138–44PubMedCrossRef Tada H, Higuchi H, Wanatabe TM, et al. In vivo real-time tracking of single quantum dots conjugated with monoclonal Anti-HER2 antibody in tumors of mice. Cancer Res 2007; 67(3): 1138–44PubMedCrossRef
26.
go back to reference Yu X, Chen L, Li K, et al. Immunofluorescence detection with quantum dot bioconjugates for hepatoma in vivo. J Biomed Opt 2007; 12(1): 014008/1–5CrossRef Yu X, Chen L, Li K, et al. Immunofluorescence detection with quantum dot bioconjugates for hepatoma in vivo. J Biomed Opt 2007; 12(1): 014008/1–5CrossRef
27.
go back to reference Gao X, Chung LWK, Nie S. Quantum dots for in vivo molecular and cellular imaging. Meth Mol Biol 2007; 374 (Quantum Dots): 135–45 Gao X, Chung LWK, Nie S. Quantum dots for in vivo molecular and cellular imaging. Meth Mol Biol 2007; 374 (Quantum Dots): 135–45
28.
go back to reference Toms SA, Daneshvar H, Muhammad O, et al. Optical detection of brain tumors using quantum dots. Proceedings of the SPIE; 2005 Nov. In: Analoui M, Dunn DA, editors. Optical methods in drag discovery and development. Bellingham (WA): SPIE, 2005 [online]. Available from URL: http://adsabs.harvard.edu/abs/2005SPIE.6009..125T [Accessed 2008 Feb 6] Toms SA, Daneshvar H, Muhammad O, et al. Optical detection of brain tumors using quantum dots. Proceedings of the SPIE; 2005 Nov. In: Analoui M, Dunn DA, editors. Optical methods in drag discovery and development. Bellingham (WA): SPIE, 2005 [online]. Available from URL: http://​adsabs.​harvard.​edu/​abs/​2005SPIE.​6009.​.​125T [Accessed 2008 Feb 6]
29.
go back to reference Chan WC, Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 1998; 281(5385): 2016–8PubMedCrossRef Chan WC, Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 1998; 281(5385): 2016–8PubMedCrossRef
30.
go back to reference Ballou B, Lagerholm BC, Ernst LA, et al. Noninvasive imaging of quantum dots in mice. Bioconj Chem 2004; 15(1): 79–86CrossRef Ballou B, Lagerholm BC, Ernst LA, et al. Noninvasive imaging of quantum dots in mice. Bioconj Chem 2004; 15(1): 79–86CrossRef
31.
go back to reference Akerman ME, Chan WCW, Laakkonen P, et al. Nanocrystal targeting in vivo. Proc Natl Acad Sci U S A 2002; 99(20): 12617–21PubMedCrossRef Akerman ME, Chan WCW, Laakkonen P, et al. Nanocrystal targeting in vivo. Proc Natl Acad Sci U S A 2002; 99(20): 12617–21PubMedCrossRef
32.
go back to reference Grecco HE, Lidke KA, Heintzmann R, et al. Ensemble and single particle photophysical properties (two-photon excitation, anisotropy, FRET, lifetime, spectral conversion) of commercial quantum dots in solution and in live cells. Micro Res Tech 2004; 65(4/5): 169–79CrossRef Grecco HE, Lidke KA, Heintzmann R, et al. Ensemble and single particle photophysical properties (two-photon excitation, anisotropy, FRET, lifetime, spectral conversion) of commercial quantum dots in solution and in live cells. Micro Res Tech 2004; 65(4/5): 169–79CrossRef
33.
go back to reference Howarth M, Takao K, Hayashi Y, et al. Targeting quantum dots to surface proteins in living cells with biotin ligase. Proc Natl Acad Sci U S A 2005; 102(21): 7583–8PubMedCrossRef Howarth M, Takao K, Hayashi Y, et al. Targeting quantum dots to surface proteins in living cells with biotin ligase. Proc Natl Acad Sci U S A 2005; 102(21): 7583–8PubMedCrossRef
34.
go back to reference Pinaud F, King D, Moore H-P, et al. Bioactivation and cell targeting of semiconductor CdSe/ZnS Nanocrystals with phytochelatin-related peptides. J Am Chem Soc 2004; 126(19): 6115–23PubMedCrossRef Pinaud F, King D, Moore H-P, et al. Bioactivation and cell targeting of semiconductor CdSe/ZnS Nanocrystals with phytochelatin-related peptides. J Am Chem Soc 2004; 126(19): 6115–23PubMedCrossRef
35.
go back to reference Babu P, Sinha S, Surolia A. Sugar-quantum dot conjugates for a selective and sensitive detection of lectins. Bioconj Chem 2007; 18(1): 146–51CrossRef Babu P, Sinha S, Surolia A. Sugar-quantum dot conjugates for a selective and sensitive detection of lectins. Bioconj Chem 2007; 18(1): 146–51CrossRef
36.
go back to reference Sun X-L, Cui W, Haller C, et al. Site-specific multivalent carbohydrate labeling of quantum dots and magnetic beads. Chem Bio Chem 2004; 5(11): 1593–6PubMedCrossRef Sun X-L, Cui W, Haller C, et al. Site-specific multivalent carbohydrate labeling of quantum dots and magnetic beads. Chem Bio Chem 2004; 5(11): 1593–6PubMedCrossRef
37.
go back to reference Gao X, Cui Y, Levenson RM, et al. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 2004; 22(8): 969–76PubMedCrossRef Gao X, Cui Y, Levenson RM, et al. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 2004; 22(8): 969–76PubMedCrossRef
38.
go back to reference Goldman ER, Clapp AR, Anderson GP, et al. Multiplexed toxin analysis using four colors of quantum dot fluororeagents. Anal Chem 2004; 76(3): 684–8PubMedCrossRef Goldman ER, Clapp AR, Anderson GP, et al. Multiplexed toxin analysis using four colors of quantum dot fluororeagents. Anal Chem 2004; 76(3): 684–8PubMedCrossRef
39.
go back to reference Wu X, Liu H, Liu J, et al. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol 2003; 21(1): 41–6PubMedCrossRef Wu X, Liu H, Liu J, et al. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol 2003; 21(1): 41–6PubMedCrossRef
40.
go back to reference Zhu L, Ang S, Liu W-T. Quantum dots as a novel immunofluorescent detection system for Cryptosporidium parvum and Giardia lamblia. Appl Environ Microbiol 2004; 70(1): 597–8PubMedCrossRef Zhu L, Ang S, Liu W-T. Quantum dots as a novel immunofluorescent detection system for Cryptosporidium parvum and Giardia lamblia. Appl Environ Microbiol 2004; 70(1): 597–8PubMedCrossRef
41.
go back to reference Soo Choi H, Liu W, Misra P, et al. Renal clearance of quantum dots. Nat Biotechnol 2007 Oct; 25(10): 1165–70CrossRef Soo Choi H, Liu W, Misra P, et al. Renal clearance of quantum dots. Nat Biotechnol 2007 Oct; 25(10): 1165–70CrossRef
42.
go back to reference Jackson JB, Halas NJ. Silver nanoshells: variations in morphologies and optical properties. J Phys Chem B 2001; 105(14): 2743–6CrossRef Jackson JB, Halas NJ. Silver nanoshells: variations in morphologies and optical properties. J Phys Chem B 2001; 105(14): 2743–6CrossRef
43.
go back to reference Luo Y, Lee SK, Hofmeister H, et al. Pt nanoshell tubes by template wetting. Nano Lett 2004; 4(1): 143–7CrossRef Luo Y, Lee SK, Hofmeister H, et al. Pt nanoshell tubes by template wetting. Nano Lett 2004; 4(1): 143–7CrossRef
44.
go back to reference Wang J, Zhu Y, Wu Y, et al. Fabrication, assembly and magnetic properties of nickel hollow nanoballs. Mod Phys Lett B 2006; 20(10): 549–55CrossRef Wang J, Zhu Y, Wu Y, et al. Fabrication, assembly and magnetic properties of nickel hollow nanoballs. Mod Phys Lett B 2006; 20(10): 549–55CrossRef
45.
go back to reference Sershen SR, Westcott SL, Halas NJ, et al. Independent optically addressable nanoparticle-polymer optomechanical composites. Appl Phys Lett 2002; 80(24): 4609–11CrossRef Sershen SR, Westcott SL, Halas NJ, et al. Independent optically addressable nanoparticle-polymer optomechanical composites. Appl Phys Lett 2002; 80(24): 4609–11CrossRef
46.
go back to reference Oldenburg SJ, Averitt RD, Westcott SL, et al. Nanoengineering of optical resonances. Chem Phys Lett 1998; 288(2,3,4): 243–7CrossRef Oldenburg SJ, Averitt RD, Westcott SL, et al. Nanoengineering of optical resonances. Chem Phys Lett 1998; 288(2,3,4): 243–7CrossRef
47.
go back to reference Mohamed MB, Ismail KZ, Link S, et al. Thermal reshaping of gold nanorods in micelles. J Phys Chem B 1998; 102(47): 9370–4CrossRef Mohamed MB, Ismail KZ, Link S, et al. Thermal reshaping of gold nanorods in micelles. J Phys Chem B 1998; 102(47): 9370–4CrossRef
48.
go back to reference Durr NJ, Larson T, Smith DK, et al. Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods. Nano Lett 2007; 7(4): 941–5PubMedCrossRef Durr NJ, Larson T, Smith DK, et al. Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods. Nano Lett 2007; 7(4): 941–5PubMedCrossRef
49.
go back to reference Huang C-J, Wang Y-H, Chiu P-H, et al. Electrochemical synthesis of gold nanocubes. Mater Lett 2006; 60(15): 1896–900CrossRef Huang C-J, Wang Y-H, Chiu P-H, et al. Electrochemical synthesis of gold nanocubes. Mater Lett 2006; 60(15): 1896–900CrossRef
50.
go back to reference Chen J, Saeki F, Wiley BJ, et al. Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents. Nano Lett 2005; 5(3): 473–7PubMedCrossRef Chen J, Saeki F, Wiley BJ, et al. Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents. Nano Lett 2005; 5(3): 473–7PubMedCrossRef
51.
go back to reference Hao F, Nehl CL, Hafner JH, et al. Plasmon resonances of a gold nanostar. Nano Lett 2007; 7(3): 729–32PubMedCrossRef Hao F, Nehl CL, Hafner JH, et al. Plasmon resonances of a gold nanostar. Nano Lett 2007; 7(3): 729–32PubMedCrossRef
52.
go back to reference Jain PK, Lee KS, El-Sayed IH, et al. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B 2006; 110(14): 7238–48PubMedCrossRef Jain PK, Lee KS, El-Sayed IH, et al. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B 2006; 110(14): 7238–48PubMedCrossRef
53.
go back to reference Gobin AM, Lee MH, Halas NJ, et al. Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. Nano Lett 2007 Jul; 7(7): 1929–34PubMedCrossRef Gobin AM, Lee MH, Halas NJ, et al. Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. Nano Lett 2007 Jul; 7(7): 1929–34PubMedCrossRef
54.
go back to reference Copland JA, Eghtedari M, Popov VL, et al. Bioconjugated gold nanoparticles as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography. Mol Imaging Biol 2004; 6(5): 341–9PubMedCrossRef Copland JA, Eghtedari M, Popov VL, et al. Bioconjugated gold nanoparticles as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography. Mol Imaging Biol 2004; 6(5): 341–9PubMedCrossRef
55.
go back to reference Fu K, Sun J, Lin AWH, et al. Polarized angular dependent light scattering properties of bare and PEGylated gold nanoshells. Curr Nanosci 2007; 3(2): 167–70CrossRef Fu K, Sun J, Lin AWH, et al. Polarized angular dependent light scattering properties of bare and PEGylated gold nanoshells. Curr Nanosci 2007; 3(2): 167–70CrossRef
56.
go back to reference Loo C, Hirsch L, Lee M-H, et al. Gold nanoshell bioconjugates for molecular imaging in living cells. Optics Lett 2005; 30(9): 1012–4CrossRef Loo C, Hirsch L, Lee M-H, et al. Gold nanoshell bioconjugates for molecular imaging in living cells. Optics Lett 2005; 30(9): 1012–4CrossRef
57.
go back to reference Hirsch LR, Stafford RJ, Bankson JA, et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci U S A 2003; 100(23): 13549–54PubMedCrossRef Hirsch LR, Stafford RJ, Bankson JA, et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci U S A 2003; 100(23): 13549–54PubMedCrossRef
58.
go back to reference Overgaard K, Overgaard J. Investigations on the possibility of a thermic tumour therapy: I. Short-wave treatment of a transplanted isologous mouse mammary carcinoma. Eur J Cancer 1972; 8(1): 65–78PubMed Overgaard K, Overgaard J. Investigations on the possibility of a thermic tumour therapy: I. Short-wave treatment of a transplanted isologous mouse mammary carcinoma. Eur J Cancer 1972; 8(1): 65–78PubMed
59.
go back to reference Pankhurst QA, Connolly J, Jones SK, et al. Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 2003; 36(13): R167–81CrossRef Pankhurst QA, Connolly J, Jones SK, et al. Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 2003; 36(13): R167–81CrossRef
60.
go back to reference Sershen SR, Westcott SL, Halas NJ, et al. Temperature-sensitive polymer-nanoshell composites for photothermally modulated drug delivery. J Biomed Mater Res 2000; 51(3): 293–8PubMedCrossRef Sershen SR, Westcott SL, Halas NJ, et al. Temperature-sensitive polymer-nanoshell composites for photothermally modulated drug delivery. J Biomed Mater Res 2000; 51(3): 293–8PubMedCrossRef
61.
go back to reference Tartaj P, Morales MdP, Veintemillas-Verdaguer S, et al. The preparation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys 2003; 36(13): R182–97CrossRef Tartaj P, Morales MdP, Veintemillas-Verdaguer S, et al. The preparation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys 2003; 36(13): R182–97CrossRef
62.
go back to reference Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterial 2005; 26(18): 3995–4021CrossRef Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterial 2005; 26(18): 3995–4021CrossRef
63.
go back to reference Lee J, Isobe T, Senna M. Preparation of ultrafine Fe3O4 particles by precipitation in the presence of PVA at high pH. J Coll Inter Sci 1996; 177(2): 490–4CrossRef Lee J, Isobe T, Senna M. Preparation of ultrafine Fe3O4 particles by precipitation in the presence of PVA at high pH. J Coll Inter Sci 1996; 177(2): 490–4CrossRef
64.
go back to reference Massart R, Cabuil V. Effect of some parameters on the formation of colloidal magnetite in alkaline medium: yield and particle size control. J Chimie Physique Phys Chimie Biol 1987; 84(7–8): 967–73 Massart R, Cabuil V. Effect of some parameters on the formation of colloidal magnetite in alkaline medium: yield and particle size control. J Chimie Physique Phys Chimie Biol 1987; 84(7–8): 967–73
65.
go back to reference Pileni MP. Reverse micelles as microreactors. J Phys Chem 1993; 97(27): 6961–73CrossRef Pileni MP. Reverse micelles as microreactors. J Phys Chem 1993; 97(27): 6961–73CrossRef
66.
go back to reference Zarur AJ, Ying JY. Reverse microemulsion synthesis of nanostructured complex oxides for catalytic combustion. Nature 2000; 403(6765): 65–7PubMedCrossRef Zarur AJ, Ying JY. Reverse microemulsion synthesis of nanostructured complex oxides for catalytic combustion. Nature 2000; 403(6765): 65–7PubMedCrossRef
67.
go back to reference Zhang Y, Kohler N, Zhang M. Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake. Biomaterials 2002; 23(7): 1553–61PubMedCrossRef Zhang Y, Kohler N, Zhang M. Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake. Biomaterials 2002; 23(7): 1553–61PubMedCrossRef
68.
go back to reference Pileni M-P. The role of soft colloidal templates in controlling the size and shape of inorganic nanocrystals. Nat Mater 2003; 2(3): 145–50PubMedCrossRef Pileni M-P. The role of soft colloidal templates in controlling the size and shape of inorganic nanocrystals. Nat Mater 2003; 2(3): 145–50PubMedCrossRef
69.
go back to reference Reimer P, Balzer T. Ferucarbotran (Resovist): a new clinically approved RES-specific contrast agent for contrast-enhanced MRI of the liver: properties, clinical development, and applications. Eur Radiol 2003; 13(6): 1266–76PubMed Reimer P, Balzer T. Ferucarbotran (Resovist): a new clinically approved RES-specific contrast agent for contrast-enhanced MRI of the liver: properties, clinical development, and applications. Eur Radiol 2003; 13(6): 1266–76PubMed
70.
go back to reference Gruttner C, Teller J. New types of silica-fortified magnetic nanoparticles as tools for molecular biology applications. J Magn Magn Mater 1999; 194(1–3): 8–15CrossRef Gruttner C, Teller J. New types of silica-fortified magnetic nanoparticles as tools for molecular biology applications. J Magn Magn Mater 1999; 194(1–3): 8–15CrossRef
71.
go back to reference Berry CC, Curtis ASG. Functionalisation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys 2003; 36(13): R198–206CrossRef Berry CC, Curtis ASG. Functionalisation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys 2003; 36(13): R198–206CrossRef
72.
go back to reference Ji X, Shao R, Elliott AM, et al. Bifunctional gold nanoshells with a superparamagnetic iron oxide-silica core suitable for both mr imaging and photothermal therapy. J Phys Chem C 2007; 111(17): 6245–51CrossRef Ji X, Shao R, Elliott AM, et al. Bifunctional gold nanoshells with a superparamagnetic iron oxide-silica core suitable for both mr imaging and photothermal therapy. J Phys Chem C 2007; 111(17): 6245–51CrossRef
73.
go back to reference Merbach AE, Toth E, editors. The chemistry of contrast agents in medical magnetic resonance imaging. New York: Wiley, 2001 Merbach AE, Toth E, editors. The chemistry of contrast agents in medical magnetic resonance imaging. New York: Wiley, 2001
74.
go back to reference Mornet S, Vasseur S, Grasset F, et al. Magnetic nanoparticle design for medical diagnosis and therapy. J Mater Chem 2004; 14(14): 2161–75CrossRef Mornet S, Vasseur S, Grasset F, et al. Magnetic nanoparticle design for medical diagnosis and therapy. J Mater Chem 2004; 14(14): 2161–75CrossRef
75.
go back to reference Taupitz M, Wagner S, Schnorr J, et al. Phase I clinical evaluation of citrate-coated monocrystalline very small superparamagnetic iron oxide particles as a new contrast medium for magnetic resonance imaging. Invest Radiol 2004; 39(7): 394–405PubMedCrossRef Taupitz M, Wagner S, Schnorr J, et al. Phase I clinical evaluation of citrate-coated monocrystalline very small superparamagnetic iron oxide particles as a new contrast medium for magnetic resonance imaging. Invest Radiol 2004; 39(7): 394–405PubMedCrossRef
76.
go back to reference Clement O, Siauve N, Cuenod CA, et al. Liver imaging with ferumoxides (Feridex): fundamentals, controversies, and practical aspects. Top Magn Reson Imaging 1998; 9(3): 167–82PubMedCrossRef Clement O, Siauve N, Cuenod CA, et al. Liver imaging with ferumoxides (Feridex): fundamentals, controversies, and practical aspects. Top Magn Reson Imaging 1998; 9(3): 167–82PubMedCrossRef
77.
go back to reference Reimer P, Marx C, Rummeny EJ, et al. SPIO-enhanced 2D-TOF MR angiography of the portal venous system: results of an intraindividual comparison. J Magn Reson Imaging 1997; 7(6): 945–9PubMedCrossRef Reimer P, Marx C, Rummeny EJ, et al. SPIO-enhanced 2D-TOF MR angiography of the portal venous system: results of an intraindividual comparison. J Magn Reson Imaging 1997; 7(6): 945–9PubMedCrossRef
78.
go back to reference McLachlan SJ, Morris MR, Lucas MA, et al. Phase I clinical evaluation of a new iron oxide MR contrast agent. J Magn Reson Imaging 1994; 4(3): 301–7PubMedCrossRef McLachlan SJ, Morris MR, Lucas MA, et al. Phase I clinical evaluation of a new iron oxide MR contrast agent. J Magn Reson Imaging 1994; 4(3): 301–7PubMedCrossRef
79.
go back to reference Li W, Tutton S, Vu AT, et al. First-pass contrast-enhanced magnetic resonance angiography in humans using ferumoxytol, a novel ultrasmall superparamagnetic iron oxide (USPIO)-based blood pool agent. J Magn Reson Imaging 2005; 21(1): 46–52PubMedCrossRef Li W, Tutton S, Vu AT, et al. First-pass contrast-enhanced magnetic resonance angiography in humans using ferumoxytol, a novel ultrasmall superparamagnetic iron oxide (USPIO)-based blood pool agent. J Magn Reson Imaging 2005; 21(1): 46–52PubMedCrossRef
80.
go back to reference Reimer P, Tombach B. Hepatic MRI with SPIO: detection and characterization of focal liver lesions. Eur Radiol 1998; 8(7): 1198–204PubMedCrossRef Reimer P, Tombach B. Hepatic MRI with SPIO: detection and characterization of focal liver lesions. Eur Radiol 1998; 8(7): 1198–204PubMedCrossRef
81.
go back to reference Schulze E, Ferrucci Jr JT, Poss K, et al. Cellular uptake and trafficking of a prototypical magnetic iron oxide label in vitro. Invest Radiol 1995; 30(10): 604–10PubMedCrossRef Schulze E, Ferrucci Jr JT, Poss K, et al. Cellular uptake and trafficking of a prototypical magnetic iron oxide label in vitro. Invest Radiol 1995; 30(10): 604–10PubMedCrossRef
82.
go back to reference Toma A, Otsuji E, Kuriu Y, et al. Monoclonal antibody A7-superparamagnetic iron oxide as contrast agent of MR imaging of rectal carcinoma. Br J Cancer 2005; 93(1): 131–6PubMedCrossRef Toma A, Otsuji E, Kuriu Y, et al. Monoclonal antibody A7-superparamagnetic iron oxide as contrast agent of MR imaging of rectal carcinoma. Br J Cancer 2005; 93(1): 131–6PubMedCrossRef
83.
go back to reference Funovics MA, Kapeller B, Hoeller C, et al. MR imaging of the her2/neu and 9.2.27 tumor antigens using immunospecific contrast agents. Magn Reson Imaging 2004; 22(6): 843–50PubMedCrossRef Funovics MA, Kapeller B, Hoeller C, et al. MR imaging of the her2/neu and 9.2.27 tumor antigens using immunospecific contrast agents. Magn Reson Imaging 2004; 22(6): 843–50PubMedCrossRef
84.
go back to reference Tsourkas A, Shinde-Patil VR, Kelly KA, et al. In vivo imaging of activated endothelium using an anti-VCAM-1 magnetooptical probe. Bioconj Chem 2005; 16(3): 576–81CrossRef Tsourkas A, Shinde-Patil VR, Kelly KA, et al. In vivo imaging of activated endothelium using an anti-VCAM-1 magnetooptical probe. Bioconj Chem 2005; 16(3): 576–81CrossRef
85.
go back to reference Josephson L, Tung C-H, Moore A, et al. High-efficiency intracellular magnetic labeling with novel superparamagnetic-tat peptide conjugates. Bioconj Chem 1999; 10(2): 186–91CrossRef Josephson L, Tung C-H, Moore A, et al. High-efficiency intracellular magnetic labeling with novel superparamagnetic-tat peptide conjugates. Bioconj Chem 1999; 10(2): 186–91CrossRef
86.
go back to reference Zhao M, Kircher Moritz F, Josephson L, et al. Differential conjugation of tat peptide to superparamagnetic nanoparticles and its effect on cellular uptake. Bioconj Chem 2002; 13(4): 840–4CrossRef Zhao M, Kircher Moritz F, Josephson L, et al. Differential conjugation of tat peptide to superparamagnetic nanoparticles and its effect on cellular uptake. Bioconj Chem 2002; 13(4): 840–4CrossRef
87.
go back to reference Sun C, Sze R, Zhang M. Folic acid-PEG conjugated superparamagnetic nanoparticles for targeted cellular uptake and detection by MRI. J Biomed Mater Res A 2006; 78(3): 550–7PubMed Sun C, Sze R, Zhang M. Folic acid-PEG conjugated superparamagnetic nanoparticles for targeted cellular uptake and detection by MRI. J Biomed Mater Res A 2006; 78(3): 550–7PubMed
88.
go back to reference Bos C, Delmas Y, Desmouliere A, et al. In vivo MR imaging of intravascularly injected magnetically labeled mesenchymal stem cells in rat kidney and liver. Radiology 2004; 233(3): 781–9PubMedCrossRef Bos C, Delmas Y, Desmouliere A, et al. In vivo MR imaging of intravascularly injected magnetically labeled mesenchymal stem cells in rat kidney and liver. Radiology 2004; 233(3): 781–9PubMedCrossRef
89.
go back to reference Frank JA, Miller BR, Arbab AS, et al. Clinically applicable labeling of mammalian and stem cells by combining superparamagnetic iron oxides and transfection agents. Radiology 2003; 228(2): 480–7PubMedCrossRef Frank JA, Miller BR, Arbab AS, et al. Clinically applicable labeling of mammalian and stem cells by combining superparamagnetic iron oxides and transfection agents. Radiology 2003; 228(2): 480–7PubMedCrossRef
90.
go back to reference Leuschner C, Kumar CSSR, Hansel W, et al. LHRH-conjugated magnetic iron oxide nanoparticles for detection of breast cancer metastases. Breast Cancer Res Treat 2006; 99(2): 163–76PubMedCrossRef Leuschner C, Kumar CSSR, Hansel W, et al. LHRH-conjugated magnetic iron oxide nanoparticles for detection of breast cancer metastases. Breast Cancer Res Treat 2006; 99(2): 163–76PubMedCrossRef
91.
go back to reference Rosensweig RE. Heating magnetic fluid with alternating magnetic field. J Magn Magn Mater 2002; 252(1–3): 370–4CrossRef Rosensweig RE. Heating magnetic fluid with alternating magnetic field. J Magn Magn Mater 2002; 252(1–3): 370–4CrossRef
92.
go back to reference Jordan A, Rheinlaender T, Waldoefner N, et al. Increase of the specific absorption rate (SAR) by magnetic fractionation of magnetic fluids. J Nanopart Res 2003; 5(5–6): 597–600CrossRef Jordan A, Rheinlaender T, Waldoefner N, et al. Increase of the specific absorption rate (SAR) by magnetic fractionation of magnetic fluids. J Nanopart Res 2003; 5(5–6): 597–600CrossRef
93.
go back to reference Johannsen M, Gneveckow U, Taymoorian K, et al. Morbidity and quality of life during thermotherapy using magnetic nanoparticles in locally recurrent prostate cancer: results of a prospective phase I trial. Int J Hyperthermia 2007; 23(3): 315–23PubMedCrossRef Johannsen M, Gneveckow U, Taymoorian K, et al. Morbidity and quality of life during thermotherapy using magnetic nanoparticles in locally recurrent prostate cancer: results of a prospective phase I trial. Int J Hyperthermia 2007; 23(3): 315–23PubMedCrossRef
94.
go back to reference Kroto HW, Heath JR, O’Brien SC, et al. C60: buckminsterfullerene. Nature 1985; 318(6042): 162–3CrossRef Kroto HW, Heath JR, O’Brien SC, et al. C60: buckminsterfullerene. Nature 1985; 318(6042): 162–3CrossRef
96.
go back to reference Dai H. Carbon nanotubes: synthesis, integration, and properties. Acc Chem Res 2002; 35(12): 1035–44PubMedCrossRef Dai H. Carbon nanotubes: synthesis, integration, and properties. Acc Chem Res 2002; 35(12): 1035–44PubMedCrossRef
97.
go back to reference Cognet L, Tsyboulski DA, Rocha J-DR, et al. Stepwise quenching of exciton fluorescence in carbon nanotubes by single-molecule reactions. Science 2007; 316(5830): 1465–8PubMedCrossRef Cognet L, Tsyboulski DA, Rocha J-DR, et al. Stepwise quenching of exciton fluorescence in carbon nanotubes by single-molecule reactions. Science 2007; 316(5830): 1465–8PubMedCrossRef
98.
go back to reference Cherukuri P, Bachilo SM, Litovsky SH, et al. Near-infrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells. J Am Chem Soc 2004; 126(48): 15638–9PubMedCrossRef Cherukuri P, Bachilo SM, Litovsky SH, et al. Near-infrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells. J Am Chem Soc 2004; 126(48): 15638–9PubMedCrossRef
99.
go back to reference Cherukuri P, Gannon CJ, Leeuw TK, et al. Mammalian pharmacokinetics of carbon nanotubes using intrinsic near-infrared fluorescence. Proc Natl Acad Sci USA 2006; 103(50): 18882–6PubMedCrossRef Cherukuri P, Gannon CJ, Leeuw TK, et al. Mammalian pharmacokinetics of carbon nanotubes using intrinsic near-infrared fluorescence. Proc Natl Acad Sci USA 2006; 103(50): 18882–6PubMedCrossRef
100.
go back to reference Leeuw TK, Reith RM, Simonette RA, et al. Single-walled carbon nanotubes in the intact organism: near-IR imaging and biocompatibility studies in drosophila. Nano Lett 2007; 7(9): 2650–4PubMedCrossRef Leeuw TK, Reith RM, Simonette RA, et al. Single-walled carbon nanotubes in the intact organism: near-IR imaging and biocompatibility studies in drosophila. Nano Lett 2007; 7(9): 2650–4PubMedCrossRef
101.
go back to reference Kam NWS, O’Connell M, Wisdom JA, et al. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc Natl Acad Sci U S A 2005; 102(33): 11600–5PubMedCrossRef Kam NWS, O’Connell M, Wisdom JA, et al. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc Natl Acad Sci U S A 2005; 102(33): 11600–5PubMedCrossRef
102.
go back to reference Gannon CJ, Cherukuri P, Yakobson BI, et al. Carbon nanotube-enhanced thermal destruction of cancer cells in a noninvasive radiofrequency field. Cancer 2007; 110(12): 2654–65PubMedCrossRef Gannon CJ, Cherukuri P, Yakobson BI, et al. Carbon nanotube-enhanced thermal destruction of cancer cells in a noninvasive radiofrequency field. Cancer 2007; 110(12): 2654–65PubMedCrossRef
104.
go back to reference Bolskar RD, Benedetto AF, Husebo LO, et al. First soluble M@C60 derivatives provide enhanced access to metallofullerenes and permit in vivo evaluation of Gd@C6o[C(COOH)2]io as a MRI contrast agent. J Am Chem Soc 2003; 125(18): 5471–8PubMedCrossRef Bolskar RD, Benedetto AF, Husebo LO, et al. First soluble M@C60 derivatives provide enhanced access to metallofullerenes and permit in vivo evaluation of Gd@C6o[C(COOH)2]io as a MRI contrast agent. J Am Chem Soc 2003; 125(18): 5471–8PubMedCrossRef
105.
go back to reference Laus S, Sitharaman B, Toth E, et al. Destroying gadofullerene aggregates by salt addition in aqueous solution of Gd@C60(OH)x and Gd@C60[C(COOH2)]l0. J Am Chem Soc 2005; 127(26): 9368–9PubMedCrossRef Laus S, Sitharaman B, Toth E, et al. Destroying gadofullerene aggregates by salt addition in aqueous solution of Gd@C60(OH)x and Gd@C60[C(COOH2)]l0. J Am Chem Soc 2005; 127(26): 9368–9PubMedCrossRef
106.
go back to reference Laus S, Sitharaman B, Toth E, et al. Understanding paramagnetic relaxation phenomena for water-soluble gadofullerenes. J Phys Chem C 2007; 111(15): 5633–9CrossRef Laus S, Sitharaman B, Toth E, et al. Understanding paramagnetic relaxation phenomena for water-soluble gadofullerenes. J Phys Chem C 2007; 111(15): 5633–9CrossRef
107.
go back to reference Sitharaman B, Bolskar RD, Rusakova I, et al. Gd@C60[C(COOH)2]l0 and Gd@C60(OH)x: nanoscale aggregation studies of two metallofullerene MRI contrast agents in aqueous solution. Nano Lett 2004; 4(12): 2373–8CrossRef Sitharaman B, Bolskar RD, Rusakova I, et al. Gd@C60[C(COOH)2]l0 and Gd@C60(OH)x: nanoscale aggregation studies of two metallofullerene MRI contrast agents in aqueous solution. Nano Lett 2004; 4(12): 2373–8CrossRef
108.
go back to reference Toth E, Bolskar RD, Borel A, et al. Water-soluble gadofullerenes: toward high-relaxivity, pH-responsive MRI contrast agents. J Am Chem Soc 2005; 127(2): 799–805PubMedCrossRef Toth E, Bolskar RD, Borel A, et al. Water-soluble gadofullerenes: toward high-relaxivity, pH-responsive MRI contrast agents. J Am Chem Soc 2005; 127(2): 799–805PubMedCrossRef
109.
go back to reference Sitharaman B, Tran LA, Pham QP, et al. Gadofullerenes as nanoscale magnetic labels for cellular MRI. Contrast Media Molec Imag 2007; 2(3): 139–46CrossRef Sitharaman B, Tran LA, Pham QP, et al. Gadofullerenes as nanoscale magnetic labels for cellular MRI. Contrast Media Molec Imag 2007; 2(3): 139–46CrossRef
110.
go back to reference Fatouros PP, Corwin FD, Chen Z-J, et al. In vitro and in vivo imaging studies of a new endohedral metallofullerene nanoparticle. Radiology 2006; 240(3): 756–64PubMedCrossRef Fatouros PP, Corwin FD, Chen Z-J, et al. In vitro and in vivo imaging studies of a new endohedral metallofullerene nanoparticle. Radiology 2006; 240(3): 756–64PubMedCrossRef
111.
go back to reference Rancan F, Helmreich M, Moelich A, et al. Synthesis and in vitro testing of a pyropheophorbide-a-fullerene hexakis adduct immunoconjugate for photodynamic therapy. Bioconj Chem 2007; 18(4): 1078–86CrossRef Rancan F, Helmreich M, Moelich A, et al. Synthesis and in vitro testing of a pyropheophorbide-a-fullerene hexakis adduct immunoconjugate for photodynamic therapy. Bioconj Chem 2007; 18(4): 1078–86CrossRef
112.
go back to reference Ashcroft JM, Tsyboulski DA, Hartman KB, et al. Fullerene (C6o) immunoconjugates: interaction of water-soluble C60 derivatives with the murine anti-gp240 melanoma antibody. Chem Commun 2006; 28: 3004–6CrossRef Ashcroft JM, Tsyboulski DA, Hartman KB, et al. Fullerene (C6o) immunoconjugates: interaction of water-soluble C60 derivatives with the murine anti-gp240 melanoma antibody. Chem Commun 2006; 28: 3004–6CrossRef
113.
go back to reference Sitharaman B, Kissell KR, Hartman KB, et al. Superparamagnetic gadonanotubes are high-performance MRI contrast agents. Chem Commun 2005; 31: 3915–7CrossRef Sitharaman B, Kissell KR, Hartman KB, et al. Superparamagnetic gadonanotubes are high-performance MRI contrast agents. Chem Commun 2005; 31: 3915–7CrossRef
114.
go back to reference Sitharaman B, Wilson LJ. Gadonanotubes as new high-performance MRI contrast agents. Int J Nanomed 2006; 1(3): 291–5 Sitharaman B, Wilson LJ. Gadonanotubes as new high-performance MRI contrast agents. Int J Nanomed 2006; 1(3): 291–5
115.
go back to reference Hartman KB, Wilson LJ. Carbon nanostructures as a new, high-performance platform for MR molecular imaging. In: Chan WCW, editor. Bio-applications of nanoparticles. Austin (TX): Landes Biosciences, 2007 Hartman KB, Wilson LJ. Carbon nanostructures as a new, high-performance platform for MR molecular imaging. In: Chan WCW, editor. Bio-applications of nanoparticles. Austin (TX): Landes Biosciences, 2007
116.
go back to reference Gu Z, Peng H, Hauge RH, et al. Cutting single-wall carbon nanotubes through fluorination. Nano Lett. 2002; 2(9): 1009–13CrossRef Gu Z, Peng H, Hauge RH, et al. Cutting single-wall carbon nanotubes through fluorination. Nano Lett. 2002; 2(9): 1009–13CrossRef
117.
go back to reference Hartman KB, Laus S, Bolskar RD, et al. Gadonanotubes as ultrasensitive pH-smart probes for magnetic resonance imaging. Nano Lett. Epub 2008 Jan 24 Hartman KB, Laus S, Bolskar RD, et al. Gadonanotubes as ultrasensitive pH-smart probes for magnetic resonance imaging. Nano Lett. Epub 2008 Jan 24
118.
go back to reference Baselga J. The EGFR as a target for anticancer therapy-focus on cetuximab. Eur J Cancer 2001; 37Suppl. 4: S16–22PubMedCrossRef Baselga J. The EGFR as a target for anticancer therapy-focus on cetuximab. Eur J Cancer 2001; 37Suppl. 4: S16–22PubMedCrossRef
119.
go back to reference Crombet T, Torres O, Rodriguez V, et al. Phase I clinical evaluation of a neutralizing monoclonal antibody against epidermal growth factor receptor in advanced brain tumor patients: preliminary study. Hybridoma 2001; 20(2): 131–6PubMedCrossRef Crombet T, Torres O, Rodriguez V, et al. Phase I clinical evaluation of a neutralizing monoclonal antibody against epidermal growth factor receptor in advanced brain tumor patients: preliminary study. Hybridoma 2001; 20(2): 131–6PubMedCrossRef
120.
go back to reference Labianca R, La Verde N, Garassino MC. Development and clinical indications of cetuximab. Int J Biol Markers 2007; 22(1 Suppl. 4): S40–6PubMed Labianca R, La Verde N, Garassino MC. Development and clinical indications of cetuximab. Int J Biol Markers 2007; 22(1 Suppl. 4): S40–6PubMed
121.
go back to reference Morgillo F, Bareschino MA, Bianco R, et al. Primary and acquired resistance to anti-EGFR targeted drugs in cancer therapy. Differentiation 2007 Nov; 75(9): 788–99PubMedCrossRef Morgillo F, Bareschino MA, Bianco R, et al. Primary and acquired resistance to anti-EGFR targeted drugs in cancer therapy. Differentiation 2007 Nov; 75(9): 788–99PubMedCrossRef
122.
go back to reference Yang XD, Jia XC, Corvalan JR, et al. Development of ABX-EGF, a fully human anti-EGF receptor monoclonal antibody, for cancer therapy. Crit Rev Oncol Hematol 2001; 38(1): 17–23PubMedCrossRef Yang XD, Jia XC, Corvalan JR, et al. Development of ABX-EGF, a fully human anti-EGF receptor monoclonal antibody, for cancer therapy. Crit Rev Oncol Hematol 2001; 38(1): 17–23PubMedCrossRef
123.
go back to reference Hudis CA. Trastuzumab: mechanism of action and use in clinical practice. N Engl J Med 2007; 357(1): 39–51PubMedCrossRef Hudis CA. Trastuzumab: mechanism of action and use in clinical practice. N Engl J Med 2007; 357(1): 39–51PubMedCrossRef
124.
go back to reference Meric-Bernstam F, Hung M-C. Advances in targeting human epidermal growth factor receptor-2 signaling for cancer therapy. Clin Cancer Res 2006; 12(21): 6326–30PubMedCrossRef Meric-Bernstam F, Hung M-C. Advances in targeting human epidermal growth factor receptor-2 signaling for cancer therapy. Clin Cancer Res 2006; 12(21): 6326–30PubMedCrossRef
125.
go back to reference Moasser MM. Targeting the function of the HER2 oncogene in human cancer therapeutics. Oncogene 2007 Oct 11; 26(46): 6577–92PubMedCrossRef Moasser MM. Targeting the function of the HER2 oncogene in human cancer therapeutics. Oncogene 2007 Oct 11; 26(46): 6577–92PubMedCrossRef
126.
go back to reference Simonds HM, Miles D. Adjuvant treatment of breast cancer: impact of monoclonal antibody therapy directed against the HER2 receptor. Expert Opin Biol Ther 2007; 7(4): 487–91PubMedCrossRef Simonds HM, Miles D. Adjuvant treatment of breast cancer: impact of monoclonal antibody therapy directed against the HER2 receptor. Expert Opin Biol Ther 2007; 7(4): 487–91PubMedCrossRef
127.
go back to reference Inwards DJ, Cilley JC, Winter JN. Radioimmunotherapeutic strategies in autologous hematopoietic stem-cell transplantation for malignant lymphoma. Best Pract Res Clin Haematol 2006; 19(4): 669–84PubMedCrossRef Inwards DJ, Cilley JC, Winter JN. Radioimmunotherapeutic strategies in autologous hematopoietic stem-cell transplantation for malignant lymphoma. Best Pract Res Clin Haematol 2006; 19(4): 669–84PubMedCrossRef
128.
go back to reference Liebenguth P, Vogt Temple S. Radioimmunotherapy for non-Hodgkin’s lymphoma. Semin Oncol Nurs 2006; 22(4): 257–66PubMedCrossRef Liebenguth P, Vogt Temple S. Radioimmunotherapy for non-Hodgkin’s lymphoma. Semin Oncol Nurs 2006; 22(4): 257–66PubMedCrossRef
129.
go back to reference Schaefer-Cutillo J, Friedberg JW, Fisher RI. Novel concepts in radioimmunotherapy for non-Hodgkin’s lymphoma. Oncology 2007; 21(2): 203–12; discussion 214, 217, 221PubMed Schaefer-Cutillo J, Friedberg JW, Fisher RI. Novel concepts in radioimmunotherapy for non-Hodgkin’s lymphoma. Oncology 2007; 21(2): 203–12; discussion 214, 217, 221PubMed
130.
go back to reference Witzig TE. Radioimmunotherapy for B-cell non-Hodgkin lymphoma. Best Pract Res Clin Haematol 2006; 19(4): 655–68PubMedCrossRef Witzig TE. Radioimmunotherapy for B-cell non-Hodgkin lymphoma. Best Pract Res Clin Haematol 2006; 19(4): 655–68PubMedCrossRef
131.
go back to reference Fenton C, Perry CM. Gemtuzumab ozogamicin: a review of its use in acute myeloid leukaemia. Drugs 2005; 65(16): 2405–27PubMedCrossRef Fenton C, Perry CM. Gemtuzumab ozogamicin: a review of its use in acute myeloid leukaemia. Drugs 2005; 65(16): 2405–27PubMedCrossRef
132.
go back to reference Maslak PG, Jurcic JG, Scheinberg DA. Monoclonal antibody therapy of APL. Curr Top Microbiol Immun 2007; 313: 205–19CrossRef Maslak PG, Jurcic JG, Scheinberg DA. Monoclonal antibody therapy of APL. Curr Top Microbiol Immun 2007; 313: 205–19CrossRef
133.
go back to reference O’Brien S, Albitar M, Giles FJ. Monoclonal antibodies in the treatment of leukemia. Curr Molec Med 2005; 5(7): 663–75CrossRef O’Brien S, Albitar M, Giles FJ. Monoclonal antibodies in the treatment of leukemia. Curr Molec Med 2005; 5(7): 663–75CrossRef
134.
135.
go back to reference Pagano L, Fianchi L, Caira M, et al. The role of gemtuzumab ozogamicin in the treatment of acute myeloid leukemia patients. Oncogene 2007; 26(25): 3679–90PubMedCrossRef Pagano L, Fianchi L, Caira M, et al. The role of gemtuzumab ozogamicin in the treatment of acute myeloid leukemia patients. Oncogene 2007; 26(25): 3679–90PubMedCrossRef
136.
go back to reference Tallman MS. New strategies for the treatment of acute myeloid leukemia including antibodies and other novel agents. Hematology Am Soc Hematol Educ Program 2005: 143–50 Tallman MS. New strategies for the treatment of acute myeloid leukemia including antibodies and other novel agents. Hematology Am Soc Hematol Educ Program 2005: 143–50
137.
go back to reference Tsimberidou A-M, Giles FJ, Estey E, et al. The role of gemtuzumab ozogamicin in acute leukaemia therapy. Br J Haematol 2006; 132(4): 398–409PubMed Tsimberidou A-M, Giles FJ, Estey E, et al. The role of gemtuzumab ozogamicin in acute leukaemia therapy. Br J Haematol 2006; 132(4): 398–409PubMed
138.
go back to reference Wu AM, Senter PD. Arming antibodies: prospects and challenges for immunoconjugates. Nat Biotechnol 2005; 23(9): 1137–46PubMedCrossRef Wu AM, Senter PD. Arming antibodies: prospects and challenges for immunoconjugates. Nat Biotechnol 2005; 23(9): 1137–46PubMedCrossRef
139.
go back to reference McDevitt MR, Chattopadhyay D, Kappel BJ, et al. Tumor targeting with antibody-functionalized, radiolabeled carbon nanotubes. J Nucl Med 2007; 48(7): 1180–9PubMedCrossRef McDevitt MR, Chattopadhyay D, Kappel BJ, et al. Tumor targeting with antibody-functionalized, radiolabeled carbon nanotubes. J Nucl Med 2007; 48(7): 1180–9PubMedCrossRef
140.
go back to reference Mackeyev YA, Marks JW, Rosenblum MG, et al. Stable containment of radionuclides on the nanoscale by cut single-wall carbon nanotubes. J Phys Chem B 2005; 109(12): 5482–4PubMedCrossRef Mackeyev YA, Marks JW, Rosenblum MG, et al. Stable containment of radionuclides on the nanoscale by cut single-wall carbon nanotubes. J Phys Chem B 2005; 109(12): 5482–4PubMedCrossRef
141.
go back to reference Hartman KB, Hamlin DK, Wilbur DS, et al. 211AtCl@US-tube nanocapsules: a new concept in radiotherapeutic-agent design. Small 2007; 3(9): 1496–9PubMedCrossRef Hartman KB, Hamlin DK, Wilbur DS, et al. 211AtCl@US-tube nanocapsules: a new concept in radiotherapeutic-agent design. Small 2007; 3(9): 1496–9PubMedCrossRef
142.
go back to reference Liu Z, Winters M, Holodniy M, et al. siRNA delivery into human T cells and primary cells with carbon-nanotube transporters. Angewandte Chem Int Ed 2007; 46(12): 2023–7CrossRef Liu Z, Winters M, Holodniy M, et al. siRNA delivery into human T cells and primary cells with carbon-nanotube transporters. Angewandte Chem Int Ed 2007; 46(12): 2023–7CrossRef
143.
go back to reference Jiang H, Zhang T, Sun X. Vascular endothelial growth factor gene delivery by magnetic DNA nanospheres ameliorates limb ischemia in rabbits. J Surg Res 2005; 126(1): 48–54PubMedCrossRef Jiang H, Zhang T, Sun X. Vascular endothelial growth factor gene delivery by magnetic DNA nanospheres ameliorates limb ischemia in rabbits. J Surg Res 2005; 126(1): 48–54PubMedCrossRef
144.
go back to reference Dobson J. Gene therapy progress and prospects: magnetic nanoparticle-based gene delivery. Gene Ther 2006; 13(4): 283–7PubMedCrossRef Dobson J. Gene therapy progress and prospects: magnetic nanoparticle-based gene delivery. Gene Ther 2006; 13(4): 283–7PubMedCrossRef
145.
go back to reference Everts M, Saini V, Leddon JL, et al. Covalently linked Au nanoparticles to a viral vector: potential for combined photothermal and gene cancer therapy. Nano Lett 2006; 6(4): 587–91PubMedCrossRef Everts M, Saini V, Leddon JL, et al. Covalently linked Au nanoparticles to a viral vector: potential for combined photothermal and gene cancer therapy. Nano Lett 2006; 6(4): 587–91PubMedCrossRef
146.
go back to reference Morishita N, Nakagami H, Morishita R, et al. Magnetic nanoparticles with surface modification enhanced gene delivery of HVJ-E vector. Biochem Biophys Res Commun 2005; 334(4): 1121–6PubMedCrossRef Morishita N, Nakagami H, Morishita R, et al. Magnetic nanoparticles with surface modification enhanced gene delivery of HVJ-E vector. Biochem Biophys Res Commun 2005; 334(4): 1121–6PubMedCrossRef
147.
go back to reference Portney NG, Ozkan M. Nano-oncology: drug delivery, imaging, and sensing. Anal Bioanal Chem 2006; 384(3): 620–30PubMedCrossRef Portney NG, Ozkan M. Nano-oncology: drug delivery, imaging, and sensing. Anal Bioanal Chem 2006; 384(3): 620–30PubMedCrossRef
148.
go back to reference Park JH, Kwon S, Nam J-O, et al. Self-assembled nanoparticles based on glycol chitosan bearing 5b-cholanic acid for RGD peptide delivery. J Control Release 2004; 95(3): 579–88PubMedCrossRef Park JH, Kwon S, Nam J-O, et al. Self-assembled nanoparticles based on glycol chitosan bearing 5b-cholanic acid for RGD peptide delivery. J Control Release 2004; 95(3): 579–88PubMedCrossRef
149.
go back to reference Chalasani KB, Russell-Jones GJ, Yandrapu SK, et al. A novel vitamin B12-nanosphere conjugate carrier system for peroral delivery of insulin. J Control Release 2007; 117(3): 421–9PubMedCrossRef Chalasani KB, Russell-Jones GJ, Yandrapu SK, et al. A novel vitamin B12-nanosphere conjugate carrier system for peroral delivery of insulin. J Control Release 2007; 117(3): 421–9PubMedCrossRef
150.
go back to reference Cherian AK, Rana AC, Jain SK. Self-assembled carbohydrate-stabilized ceramic nanoparticles for the parenteral delivery of insulin. Drug Dev Ind Pharm 2000; 26(4): 459–63PubMedCrossRef Cherian AK, Rana AC, Jain SK. Self-assembled carbohydrate-stabilized ceramic nanoparticles for the parenteral delivery of insulin. Drug Dev Ind Pharm 2000; 26(4): 459–63PubMedCrossRef
151.
go back to reference Cui F-D, Tao A-J, Cun D-M, et al. Preparation of insulin loaded PLGA-Hp55 nanoparticles for oral delivery. J Pharm Sci 2007; 96(2): 421–7PubMedCrossRef Cui F-D, Tao A-J, Cun D-M, et al. Preparation of insulin loaded PLGA-Hp55 nanoparticles for oral delivery. J Pharm Sci 2007; 96(2): 421–7PubMedCrossRef
152.
go back to reference Fernandez-Urrusuno R, Calvo P, Remunan-Lopez C, et al. Enhancement of nasal absorption of insulin using chitosan nanoparticles. Pharm Res 1999; 16(10): 1576–81PubMedCrossRef Fernandez-Urrusuno R, Calvo P, Remunan-Lopez C, et al. Enhancement of nasal absorption of insulin using chitosan nanoparticles. Pharm Res 1999; 16(10): 1576–81PubMedCrossRef
153.
go back to reference Gupta AK, Berry C, Gupta M, et al. Receptor-mediated targeting of magnetic nanoparticles using insulin as a surface ligand to prevent endocytosis. IEEE Trans Nanobiosci 2003; 2(4): 255–61CrossRef Gupta AK, Berry C, Gupta M, et al. Receptor-mediated targeting of magnetic nanoparticles using insulin as a surface ligand to prevent endocytosis. IEEE Trans Nanobiosci 2003; 2(4): 255–61CrossRef
154.
go back to reference Leobandung W, Ichikawa H, Fukumori Y, et al. Preparation of stable insulin-loaded nanospheres of poly(ethylene glycol) macromers and N-isopropyl acrylamide. J Control Release 2002; 80(1–3): 357–63PubMedCrossRef Leobandung W, Ichikawa H, Fukumori Y, et al. Preparation of stable insulin-loaded nanospheres of poly(ethylene glycol) macromers and N-isopropyl acrylamide. J Control Release 2002; 80(1–3): 357–63PubMedCrossRef
155.
go back to reference Ma Z, Lim TM, Lim L-Y. Pharmacological activity of peroral chitosan-insulin nanoparticles in diabetic rats. Int J Pharm 2005; 293(1–2): 271–80PubMedCrossRef Ma Z, Lim TM, Lim L-Y. Pharmacological activity of peroral chitosan-insulin nanoparticles in diabetic rats. Int J Pharm 2005; 293(1–2): 271–80PubMedCrossRef
156.
go back to reference Ma Z, Yeoh HH, Lim L-Y. Formulation pH modulates the interaction of insulin with chitosan nanoparticles. J Pharm Sci 2002; 91(6): 1396–404PubMedCrossRef Ma Z, Yeoh HH, Lim L-Y. Formulation pH modulates the interaction of insulin with chitosan nanoparticles. J Pharm Sci 2002; 91(6): 1396–404PubMedCrossRef
157.
go back to reference Mesiha MS, Sidhom MB, Fasipe B. Oral and subcutaneous absorption of insulin poly(isobutylcyanoacrylate) nanoparticles. Int J Pharm 2005; 288(2): 289–93PubMedCrossRef Mesiha MS, Sidhom MB, Fasipe B. Oral and subcutaneous absorption of insulin poly(isobutylcyanoacrylate) nanoparticles. Int J Pharm 2005; 288(2): 289–93PubMedCrossRef
158.
go back to reference Pan Y, Li Y-J, Zhao H-Y, et al. Bioadhesive polysaccharide in protein delivery system: chitosan nanoparticles improve the intestinal absorption of insulin in vivo. Int J Pharm 2002; 249(1–2): 139–47PubMedCrossRef Pan Y, Li Y-J, Zhao H-Y, et al. Bioadhesive polysaccharide in protein delivery system: chitosan nanoparticles improve the intestinal absorption of insulin in vivo. Int J Pharm 2002; 249(1–2): 139–47PubMedCrossRef
159.
go back to reference Reis CP, Ribeiro AJ, Houng S, et al. Nanoparticulate delivery system for insulin: design, characterization and in vitro/in vivo bioactivity. Eur J Pharm Sci 2007; 30(5): 392–7PubMedCrossRef Reis CP, Ribeiro AJ, Houng S, et al. Nanoparticulate delivery system for insulin: design, characterization and in vitro/in vivo bioactivity. Eur J Pharm Sci 2007; 30(5): 392–7PubMedCrossRef
160.
go back to reference Sajeesh S, Sharma CP. Cyclodextrin-insulin complex encapsulated polymethacrylic acid based nanoparticles for oral insulin delivery. Int J Pharm 2006; 325(1–2): 147–54PubMedCrossRef Sajeesh S, Sharma CP. Cyclodextrin-insulin complex encapsulated polymethacrylic acid based nanoparticles for oral insulin delivery. Int J Pharm 2006; 325(1–2): 147–54PubMedCrossRef
161.
go back to reference Zhang Q, Shen Z, Nagai T. Prolonged hypoglycemic effect of insulin-loaded polybutylcyanoacrylate nanoparticles after pulmonary administration to normal rats. Int J Pharm 2001; 218(1–2): 75–80PubMedCrossRef Zhang Q, Shen Z, Nagai T. Prolonged hypoglycemic effect of insulin-loaded polybutylcyanoacrylate nanoparticles after pulmonary administration to normal rats. Int J Pharm 2001; 218(1–2): 75–80PubMedCrossRef
162.
go back to reference Pan Y-L, Cai J-Y, Qin L, et al. Atomic force microscopy-based cell nanostructure for ligand-conjugated quantum dot endocytosis. Acta Biochim Biophys Sin 2006; 38(9): 646–52PubMedCrossRef Pan Y-L, Cai J-Y, Qin L, et al. Atomic force microscopy-based cell nanostructure for ligand-conjugated quantum dot endocytosis. Acta Biochim Biophys Sin 2006; 38(9): 646–52PubMedCrossRef
163.
go back to reference Alexiou C, Jurgons R, Seliger C, et al. Delivery of superparamagnetic nanoparticles for local chemotherapy after intraarterial infusion and magnetic drug targeting. Anticancer Res 2007; 27(4A): 2019–22PubMed Alexiou C, Jurgons R, Seliger C, et al. Delivery of superparamagnetic nanoparticles for local chemotherapy after intraarterial infusion and magnetic drug targeting. Anticancer Res 2007; 27(4A): 2019–22PubMed
164.
go back to reference Fahmy TM, Fong PM, Park J, et al. Nanosystems for simultaneous imaging and drug delivery to T cells. AAPS J 2007; 9(2): E171–80PubMedCrossRef Fahmy TM, Fong PM, Park J, et al. Nanosystems for simultaneous imaging and drug delivery to T cells. AAPS J 2007; 9(2): E171–80PubMedCrossRef
165.
go back to reference Gan ZF, Jiang JS, Yang Y, et al. Immobilization of homing peptide on magnetite nanoparticles and its specificity in vitro. J Biomed Mater Res A 2008 Jan; 84(1): 10–8PubMed Gan ZF, Jiang JS, Yang Y, et al. Immobilization of homing peptide on magnetite nanoparticles and its specificity in vitro. J Biomed Mater Res A 2008 Jan; 84(1): 10–8PubMed
166.
go back to reference Gupta AK, Naregalkar RR, Vaidya VD, et al. Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications. Nanomed 2007; 2(1): 23–39CrossRef Gupta AK, Naregalkar RR, Vaidya VD, et al. Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications. Nanomed 2007; 2(1): 23–39CrossRef
167.
go back to reference McCarthy JR, Kelly KA, Sun EY, et al. Targeted delivery of multifunctional magnetic nanoparticles. Nanomed 2007; 2(2): 153–67CrossRef McCarthy JR, Kelly KA, Sun EY, et al. Targeted delivery of multifunctional magnetic nanoparticles. Nanomed 2007; 2(2): 153–67CrossRef
168.
go back to reference Reddy GR, Bhojani MS, McConville P, et al. Vascular targeted nanoparticles for imaging and treatment of brain tumors. Clin Cancer Res 2006; 12(22): 6677–86PubMedCrossRef Reddy GR, Bhojani MS, McConville P, et al. Vascular targeted nanoparticles for imaging and treatment of brain tumors. Clin Cancer Res 2006; 12(22): 6677–86PubMedCrossRef
169.
go back to reference Serda RE, Adolphi NL, Bisoffi M, et al. Targeting and cellular trafficking of magnetic nanoparticles for prostate cancer imaging. Mol Imaging 2007; 6(4): 277–88PubMed Serda RE, Adolphi NL, Bisoffi M, et al. Targeting and cellular trafficking of magnetic nanoparticles for prostate cancer imaging. Mol Imaging 2007; 6(4): 277–88PubMed
170.
go back to reference Wang J-M, Xiao B-L, Zheng J-W, et al. Effect of targeted magnetic nanoparticles containing 5-FU on expression of bcl-2, bax and caspase 3 in nude mice with transplanted human liver cancer. World J Gastroenterol 2007; 13(23): 3171–5PubMed Wang J-M, Xiao B-L, Zheng J-W, et al. Effect of targeted magnetic nanoparticles containing 5-FU on expression of bcl-2, bax and caspase 3 in nude mice with transplanted human liver cancer. World J Gastroenterol 2007; 13(23): 3171–5PubMed
171.
go back to reference Zhang J, Misra RD. Magnetic drug-targeting carrier encapsulated with thermosensitive smart polymer: core-shell nanoparticle carrier and drug release response. Acta Biomater 2007; 3(6): 838–50PubMedCrossRef Zhang J, Misra RD. Magnetic drug-targeting carrier encapsulated with thermosensitive smart polymer: core-shell nanoparticle carrier and drug release response. Acta Biomater 2007; 3(6): 838–50PubMedCrossRef
172.
go back to reference Xie H-Y, Zuo C, Liu Y, et al. Cell-targeting multifunctional nanospheres with both fluorescence and magnetism. Small 2005; 1(5): 506–9PubMedCrossRef Xie H-Y, Zuo C, Liu Y, et al. Cell-targeting multifunctional nanospheres with both fluorescence and magnetism. Small 2005; 1(5): 506–9PubMedCrossRef
Metadata
Title
Detecting and Treating Cancer with Nanotechnology
Authors
Keith B. Hartman
Professor Lon J. Wilson
Michael G. Rosenblum
Publication date
01-01-2008
Publisher
Springer International Publishing
Published in
Molecular Diagnosis & Therapy / Issue 1/2008
Print ISSN: 1177-1062
Electronic ISSN: 1179-2000
DOI
https://doi.org/10.1007/BF03256264

Other articles of this Issue 1/2008

Molecular Diagnosis & Therapy 1/2008 Go to the issue

Neurological Disorders

NeuroAIDS

Diagnostic Profile

Aspirin Works®

Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.