Skip to main content
Top
Published in: Seminars in Immunopathology 2/2017

01-02-2017 | Review

Dendritic cells as gatekeepers of tolerance

Authors: Ari Waisman, Dominika Lukas, Björn E. Clausen, Nir Yogev

Published in: Seminars in Immunopathology | Issue 2/2017

Login to get access

Abstract

Dendritic cells (DC) are unique hematopoietic cells, linking innate and adaptive immune responses. In particular, they are considered as the most potent antigen presenting cells, governing both T cell immunity and tolerance. In view of their exceptional ability to present antigen and to interact with T cells, DC play distinct roles in shaping T cell development, differentiation and function. The outcome of the DC-T cell interaction is determined by the state of DC maturation, the type of DC subset, the cytokine microenvironment and the tissue location. Both regulatory T cells (Tregs) and DC are indispensable for maintaining central and peripheral tolerance. Over the past decade, accumulating data indicate that DC critically contribute to Treg differentiation and homeostasis.
Literature
2.
go back to reference Naik SH et al. (2007) Development of plasmacytoid and conventional dendritic cell subtypes from single precursor cells derived in vitro and in vivo. Nat Immunol 8(11):1217–1226PubMedCrossRef Naik SH et al. (2007) Development of plasmacytoid and conventional dendritic cell subtypes from single precursor cells derived in vitro and in vivo. Nat Immunol 8(11):1217–1226PubMedCrossRef
3.
go back to reference Sela U et al. (2011) Dendritic cells induce antigen-specific regulatory T cells that prevent graft versus host disease and persist in mice. J Exp Med 208(12):2489–2496PubMedPubMedCentralCrossRef Sela U et al. (2011) Dendritic cells induce antigen-specific regulatory T cells that prevent graft versus host disease and persist in mice. J Exp Med 208(12):2489–2496PubMedPubMedCentralCrossRef
6.
7.
go back to reference Merad M et al. (2013) The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu Rev Immunol 31:563–604PubMedCrossRef Merad M et al. (2013) The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu Rev Immunol 31:563–604PubMedCrossRef
8.
go back to reference Colonna M, Trinchieri G, Liu YJ (2004) Plasmacytoid dendritic cells in immunity. Nat Immunol 5(12):1219–1226PubMedCrossRef Colonna M, Trinchieri G, Liu YJ (2004) Plasmacytoid dendritic cells in immunity. Nat Immunol 5(12):1219–1226PubMedCrossRef
10.
go back to reference Nakano H, Yanagita M, Gunn MD (2001) CD11c(+)B220(+)Gr-1(+) cells in mouse lymph nodes and spleen display characteristics of plasmacytoid dendritic cells. J Exp Med 194(8):1171–1178PubMedPubMedCentralCrossRef Nakano H, Yanagita M, Gunn MD (2001) CD11c(+)B220(+)Gr-1(+) cells in mouse lymph nodes and spleen display characteristics of plasmacytoid dendritic cells. J Exp Med 194(8):1171–1178PubMedPubMedCentralCrossRef
11.
go back to reference Asselin-Paturel C et al. (2001) Mouse type I IFN-producing cells are immature APCs with plasmacytoid morphology. Nat Immunol 2(12):1144–1150PubMedCrossRef Asselin-Paturel C et al. (2001) Mouse type I IFN-producing cells are immature APCs with plasmacytoid morphology. Nat Immunol 2(12):1144–1150PubMedCrossRef
12.
go back to reference Bjorck P (2001) Isolation and characterization of plasmacytoid dendritic cells from Flt3 ligand and granulocyte-macrophage colony-stimulating factor-treated mice. Blood 98(13):3520–3526PubMedCrossRef Bjorck P (2001) Isolation and characterization of plasmacytoid dendritic cells from Flt3 ligand and granulocyte-macrophage colony-stimulating factor-treated mice. Blood 98(13):3520–3526PubMedCrossRef
13.
go back to reference Kuwana M (2002) Induction of anergic and regulatory T cells by plasmacytoid dendritic cells and other dendritic cell subsets. Hum Immunol 63(12):1156–1163PubMedCrossRef Kuwana M (2002) Induction of anergic and regulatory T cells by plasmacytoid dendritic cells and other dendritic cell subsets. Hum Immunol 63(12):1156–1163PubMedCrossRef
14.
go back to reference Moseman EA et al. (2004) Human plasmacytoid dendritic cells activated by CpG oligodeoxynucleotides induce the generation of CD4 + CD25+ regulatory T cells. J Immunol 173(7):4433–4442PubMedCrossRef Moseman EA et al. (2004) Human plasmacytoid dendritic cells activated by CpG oligodeoxynucleotides induce the generation of CD4 + CD25+ regulatory T cells. J Immunol 173(7):4433–4442PubMedCrossRef
15.
go back to reference Boonstra A et al. (2003) Flexibility of mouse classical and plasmacytoid-derived dendritic cells in directing T helper type 1 and 2 cell development: dependency on antigen dose and differential toll-like receptor ligation. J Exp Med 197(1):101–109PubMedPubMedCentralCrossRef Boonstra A et al. (2003) Flexibility of mouse classical and plasmacytoid-derived dendritic cells in directing T helper type 1 and 2 cell development: dependency on antigen dose and differential toll-like receptor ligation. J Exp Med 197(1):101–109PubMedPubMedCentralCrossRef
16.
go back to reference Martin P et al. (2002) Characterization of a new subpopulation of mouse CD8alpha + B220+ dendritic cells endowed with type 1 interferon production capacity and tolerogenic potential. Blood 100(2):383–390PubMedCrossRef Martin P et al. (2002) Characterization of a new subpopulation of mouse CD8alpha + B220+ dendritic cells endowed with type 1 interferon production capacity and tolerogenic potential. Blood 100(2):383–390PubMedCrossRef
17.
go back to reference Bilsborough J et al. (2003) Mucosal CD8alpha + DC, with a plasmacytoid phenotype, induce differentiation and support function of T cells with regulatory properties. Immunology 108(4):481–492PubMedPubMedCentralCrossRef Bilsborough J et al. (2003) Mucosal CD8alpha + DC, with a plasmacytoid phenotype, induce differentiation and support function of T cells with regulatory properties. Immunology 108(4):481–492PubMedPubMedCentralCrossRef
18.
19.
go back to reference McKenna HJ et al. (2000) Mice lacking flt3 ligand have deficient hematopoiesis affecting hematopoietic progenitor cells, dendritic cells, and natural killer cells. Blood 95(11):3489–3497PubMed McKenna HJ et al. (2000) Mice lacking flt3 ligand have deficient hematopoiesis affecting hematopoietic progenitor cells, dendritic cells, and natural killer cells. Blood 95(11):3489–3497PubMed
20.
go back to reference Waskow C et al. (2008) The receptor tyrosine kinase Flt3 is required for dendritic cell development in peripheral lymphoid tissues. Nat Immunol 9(6):676–683PubMedPubMedCentralCrossRef Waskow C et al. (2008) The receptor tyrosine kinase Flt3 is required for dendritic cell development in peripheral lymphoid tissues. Nat Immunol 9(6):676–683PubMedPubMedCentralCrossRef
21.
go back to reference Hacker C et al. (2003) Transcriptional profiling identifies Id2 function in dendritic cell development. Nat Immunol 4(4):380–386PubMedCrossRef Hacker C et al. (2003) Transcriptional profiling identifies Id2 function in dendritic cell development. Nat Immunol 4(4):380–386PubMedCrossRef
22.
go back to reference Kusunoki T et al. (2003) TH2 dominance and defective development of a CD8+ dendritic cell subset in Id2-deficient mice. J Allergy Clin Immunol 111(1):136–142PubMedCrossRef Kusunoki T et al. (2003) TH2 dominance and defective development of a CD8+ dendritic cell subset in Id2-deficient mice. J Allergy Clin Immunol 111(1):136–142PubMedCrossRef
23.
go back to reference Holtschke T et al. (1996) Immunodeficiency and chronic myelogenous leukemia-like syndrome in mice with a targeted mutation of the ICSBP gene. Cell 87(2):307–317PubMedCrossRef Holtschke T et al. (1996) Immunodeficiency and chronic myelogenous leukemia-like syndrome in mice with a targeted mutation of the ICSBP gene. Cell 87(2):307–317PubMedCrossRef
24.
go back to reference Schiavoni G et al. (2002) ICSBP is essential for the development of mouse type I interferon-producing cells and for the generation and activation of CD8alpha(+) dendritic cells. J Exp Med 196(11):1415–1425PubMedPubMedCentralCrossRef Schiavoni G et al. (2002) ICSBP is essential for the development of mouse type I interferon-producing cells and for the generation and activation of CD8alpha(+) dendritic cells. J Exp Med 196(11):1415–1425PubMedPubMedCentralCrossRef
25.
go back to reference Hildner K et al. (2008) Batf3 deficiency reveals a critical role for CD8alpha + dendritic cells in cytotoxic T cell immunity. Science 322(5904):1097–1100PubMedPubMedCentralCrossRef Hildner K et al. (2008) Batf3 deficiency reveals a critical role for CD8alpha + dendritic cells in cytotoxic T cell immunity. Science 322(5904):1097–1100PubMedPubMedCentralCrossRef
26.
go back to reference Edelson BT et al. (2010) Peripheral CD103+ dendritic cells form a unified subset developmentally related to CD8alpha + conventional dendritic cells. J Exp Med 207(4):823–836PubMedPubMedCentralCrossRef Edelson BT et al. (2010) Peripheral CD103+ dendritic cells form a unified subset developmentally related to CD8alpha + conventional dendritic cells. J Exp Med 207(4):823–836PubMedPubMedCentralCrossRef
27.
28.
go back to reference Belz GT et al. (2002) The CD8alpha(+) dendritic cell is responsible for inducing peripheral self-tolerance to tissue-associated antigens. J Exp Med 196(8):1099–1104PubMedPubMedCentralCrossRef Belz GT et al. (2002) The CD8alpha(+) dendritic cell is responsible for inducing peripheral self-tolerance to tissue-associated antigens. J Exp Med 196(8):1099–1104PubMedPubMedCentralCrossRef
29.
go back to reference Scheinecker C et al. (2002) Constitutive presentation of a natural tissue autoantigen exclusively by dendritic cells in the draining lymph node. J Exp Med 196(8):1079–1090PubMedPubMedCentralCrossRef Scheinecker C et al. (2002) Constitutive presentation of a natural tissue autoantigen exclusively by dendritic cells in the draining lymph node. J Exp Med 196(8):1079–1090PubMedPubMedCentralCrossRef
30.
31.
go back to reference Bonifaz L et al. (2002) Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads to antigen presentation on major histocompatibility complex class I products and peripheral CD8+ T cell tolerance. J Exp Med 196(12):1627–1638PubMedPubMedCentralCrossRef Bonifaz L et al. (2002) Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads to antigen presentation on major histocompatibility complex class I products and peripheral CD8+ T cell tolerance. J Exp Med 196(12):1627–1638PubMedPubMedCentralCrossRef
32.
go back to reference Kretschmer K et al. (2005) Inducing and expanding regulatory T cell populations by foreign antigen. Nat Immunol 6(12):1219–1227PubMedCrossRef Kretschmer K et al. (2005) Inducing and expanding regulatory T cell populations by foreign antigen. Nat Immunol 6(12):1219–1227PubMedCrossRef
33.
go back to reference Fukaya T et al. (2012) Conditional ablation of CD205+ conventional dendritic cells impacts the regulation of T-cell immunity and homeostasis in vivo. Proc Natl Acad Sci U S A 109(28):11288–11293PubMedPubMedCentralCrossRef Fukaya T et al. (2012) Conditional ablation of CD205+ conventional dendritic cells impacts the regulation of T-cell immunity and homeostasis in vivo. Proc Natl Acad Sci U S A 109(28):11288–11293PubMedPubMedCentralCrossRef
34.
go back to reference Lewis KL et al. (2011) Notch2 receptor signaling controls functional differentiation of dendritic cells in the spleen and intestine. Immunity 35(5):780–791PubMedPubMedCentralCrossRef Lewis KL et al. (2011) Notch2 receptor signaling controls functional differentiation of dendritic cells in the spleen and intestine. Immunity 35(5):780–791PubMedPubMedCentralCrossRef
35.
go back to reference Greter M et al. (2012) GM-CSF controls nonlymphoid tissue dendritic cell homeostasis but is dispensable for the differentiation of inflammatory dendritic cells. Immunity 36(6):1031–1046PubMedPubMedCentralCrossRef Greter M et al. (2012) GM-CSF controls nonlymphoid tissue dendritic cell homeostasis but is dispensable for the differentiation of inflammatory dendritic cells. Immunity 36(6):1031–1046PubMedPubMedCentralCrossRef
36.
go back to reference Chung Y et al. (2005) CD8alpha-11b + dendritic cells but not CD8alpha + dendritic cells mediate cross-tolerance toward intestinal antigens. Blood 106(1):201–206PubMedCrossRef Chung Y et al. (2005) CD8alpha-11b + dendritic cells but not CD8alpha + dendritic cells mediate cross-tolerance toward intestinal antigens. Blood 106(1):201–206PubMedCrossRef
37.
go back to reference Kriegel MA, Rathinam C, Flavell RA (2012) Pancreatic islet expression of chemokine CCL2 suppresses autoimmune diabetes via tolerogenic CD11c + CD11b + dendritic cells. Proc Natl Acad Sci U S A 109(9):3457–3462PubMedPubMedCentralCrossRef Kriegel MA, Rathinam C, Flavell RA (2012) Pancreatic islet expression of chemokine CCL2 suppresses autoimmune diabetes via tolerogenic CD11c + CD11b + dendritic cells. Proc Natl Acad Sci U S A 109(9):3457–3462PubMedPubMedCentralCrossRef
38.
go back to reference Park MJ et al. (2012) A distinct tolerogenic subset of splenic IDO(+)CD11b(+) dendritic cells from orally tolerized mice is responsible for induction of systemic immune tolerance and suppression of collagen-induced arthritis. Cell Immunol 278(1–2):45–54PubMedCrossRef Park MJ et al. (2012) A distinct tolerogenic subset of splenic IDO(+)CD11b(+) dendritic cells from orally tolerized mice is responsible for induction of systemic immune tolerance and suppression of collagen-induced arthritis. Cell Immunol 278(1–2):45–54PubMedCrossRef
39.
go back to reference Min SY et al. (2006) Antigen-induced, tolerogenic CD11c+,CD11b + dendritic cells are abundant in Peyer’s patches during the induction of oral tolerance to type II collagen and suppress experimental collagen-induced arthritis. Arthritis Rheum 54(3):887–898PubMedCrossRef Min SY et al. (2006) Antigen-induced, tolerogenic CD11c+,CD11b + dendritic cells are abundant in Peyer’s patches during the induction of oral tolerance to type II collagen and suppress experimental collagen-induced arthritis. Arthritis Rheum 54(3):887–898PubMedCrossRef
40.
go back to reference Brocker T, Riedinger M, Karjalainen K (1997) Targeted expression of major histocompatibility complex (MHC) class II molecules demonstrates that dendritic cells can induce negative but not positive selection of thymocytes in vivo. J Exp Med 185(3):541–550PubMedPubMedCentralCrossRef Brocker T, Riedinger M, Karjalainen K (1997) Targeted expression of major histocompatibility complex (MHC) class II molecules demonstrates that dendritic cells can induce negative but not positive selection of thymocytes in vivo. J Exp Med 185(3):541–550PubMedPubMedCentralCrossRef
41.
go back to reference Clausen BE et al. (1998) Residual MHC class II expression on mature dendritic cells and activated B cells in RFX5-deficient mice. Immunity 8(2):143–155PubMedCrossRef Clausen BE et al. (1998) Residual MHC class II expression on mature dendritic cells and activated B cells in RFX5-deficient mice. Immunity 8(2):143–155PubMedCrossRef
42.
43.
go back to reference Hubert FX et al. (2011) Aire regulates the transfer of antigen from mTECs to dendritic cells for induction of thymic tolerance. Blood 118(9):2462–2472PubMedCrossRef Hubert FX et al. (2011) Aire regulates the transfer of antigen from mTECs to dendritic cells for induction of thymic tolerance. Blood 118(9):2462–2472PubMedCrossRef
44.
go back to reference Klein L et al. (2011) Autonomous versus dendritic cell-dependent contributions of medullary thymic epithelial cells to central tolerance. Trends Immunol 32(5):188–193PubMedCrossRef Klein L et al. (2011) Autonomous versus dendritic cell-dependent contributions of medullary thymic epithelial cells to central tolerance. Trends Immunol 32(5):188–193PubMedCrossRef
45.
go back to reference Aichinger M et al. (2013) Macroautophagy substrates are loaded onto MHC class II of medullary thymic epithelial cells for central tolerance. J Exp Med 210(2):287–300PubMedPubMedCentralCrossRef Aichinger M et al. (2013) Macroautophagy substrates are loaded onto MHC class II of medullary thymic epithelial cells for central tolerance. J Exp Med 210(2):287–300PubMedPubMedCentralCrossRef
46.
go back to reference Lei Y et al. (2011) Aire-dependent production of XCL1 mediates medullary accumulation of thymic dendritic cells and contributes to regulatory T cell development. J Exp Med 208(2):383–394PubMedPubMedCentralCrossRef Lei Y et al. (2011) Aire-dependent production of XCL1 mediates medullary accumulation of thymic dendritic cells and contributes to regulatory T cell development. J Exp Med 208(2):383–394PubMedPubMedCentralCrossRef
47.
go back to reference Proietto AI, van Dommelen S, Wu L (2009) The impact of circulating dendritic cells on the development and differentiation of thymocytes. Immunol Cell Biol 87(1):39–45PubMedCrossRef Proietto AI, van Dommelen S, Wu L (2009) The impact of circulating dendritic cells on the development and differentiation of thymocytes. Immunol Cell Biol 87(1):39–45PubMedCrossRef
48.
go back to reference Birnberg T et al. (2008) Lack of conventional dendritic cells is compatible with normal development and T cell homeostasis, but causes myeloid proliferative syndrome. Immunity 29(6):986–997PubMedCrossRef Birnberg T et al. (2008) Lack of conventional dendritic cells is compatible with normal development and T cell homeostasis, but causes myeloid proliferative syndrome. Immunity 29(6):986–997PubMedCrossRef
49.
go back to reference Yogev N et al. (2012) Dendritic cells ameliorate autoimmunity in the CNS by controlling the homeostasis of PD-1 receptor(+) regulatory T cells. Immunity 37(2):264–275PubMedCrossRef Yogev N et al. (2012) Dendritic cells ameliorate autoimmunity in the CNS by controlling the homeostasis of PD-1 receptor(+) regulatory T cells. Immunity 37(2):264–275PubMedCrossRef
50.
go back to reference Ohnmacht C et al. (2009) Constitutive ablation of dendritic cells breaks self-tolerance of CD4 T cells and results in spontaneous fatal autoimmunity. J Exp Med 206(3):549–559PubMedPubMedCentralCrossRef Ohnmacht C et al. (2009) Constitutive ablation of dendritic cells breaks self-tolerance of CD4 T cells and results in spontaneous fatal autoimmunity. J Exp Med 206(3):549–559PubMedPubMedCentralCrossRef
51.
go back to reference Stoll S et al. (2002) Dynamic imaging of T cell-dendritic cell interactions in lymph nodes. Science 296(5574):1873–1876PubMedCrossRef Stoll S et al. (2002) Dynamic imaging of T cell-dendritic cell interactions in lymph nodes. Science 296(5574):1873–1876PubMedCrossRef
52.
go back to reference Shakhar G et al. (2005) Stable T cell-dendritic cell interactions precede the development of both tolerance and immunity in vivo. Nat Immunol 6(7):707–714PubMedPubMedCentralCrossRef Shakhar G et al. (2005) Stable T cell-dendritic cell interactions precede the development of both tolerance and immunity in vivo. Nat Immunol 6(7):707–714PubMedPubMedCentralCrossRef
53.
go back to reference Hochweller K et al. (2010) Dendritic cells control T cell tonic signaling required for responsiveness to foreign antigen. Proc Natl Acad Sci U S A 107(13):5931–5936PubMedPubMedCentralCrossRef Hochweller K et al. (2010) Dendritic cells control T cell tonic signaling required for responsiveness to foreign antigen. Proc Natl Acad Sci U S A 107(13):5931–5936PubMedPubMedCentralCrossRef
54.
go back to reference Garbi N et al. (2010) Tonic T cell signalling and T cell tolerance as opposite effects of self-recognition on dendritic cells. Curr Opin Immunol 22(5):601–608PubMedCrossRef Garbi N et al. (2010) Tonic T cell signalling and T cell tolerance as opposite effects of self-recognition on dendritic cells. Curr Opin Immunol 22(5):601–608PubMedCrossRef
55.
go back to reference Steinman RM, Nussenzweig MC (2002) Avoiding horror autotoxicus: the importance of dendritic cells in peripheral T cell tolerance. Proc Natl Acad Sci U S A 99(1):351–358PubMedPubMedCentralCrossRef Steinman RM, Nussenzweig MC (2002) Avoiding horror autotoxicus: the importance of dendritic cells in peripheral T cell tolerance. Proc Natl Acad Sci U S A 99(1):351–358PubMedPubMedCentralCrossRef
56.
go back to reference Steinman RM, Hawiger D, Nussenzweig MC (2003) Tolerogenic dendritic cells. Annu Rev Immunol 21:685–711PubMedCrossRef Steinman RM, Hawiger D, Nussenzweig MC (2003) Tolerogenic dendritic cells. Annu Rev Immunol 21:685–711PubMedCrossRef
57.
go back to reference Dudziak D et al. (2007) Differential antigen processing by dendritic cell subsets in vivo. Science 315(5808):107–111PubMedCrossRef Dudziak D et al. (2007) Differential antigen processing by dendritic cell subsets in vivo. Science 315(5808):107–111PubMedCrossRef
58.
go back to reference Probst HC et al. (2003) Inducible transgenic mice reveal resting dendritic cells as potent inducers of CD8+ T cell tolerance. Immunity 18(5):713–720PubMedCrossRef Probst HC et al. (2003) Inducible transgenic mice reveal resting dendritic cells as potent inducers of CD8+ T cell tolerance. Immunity 18(5):713–720PubMedCrossRef
59.
go back to reference Probst HC et al. (2005) Resting dendritic cells induce peripheral CD8+ T cell tolerance through PD-1 and CTLA-4. Nat Immunol 6(3):280–286PubMedCrossRef Probst HC et al. (2005) Resting dendritic cells induce peripheral CD8+ T cell tolerance through PD-1 and CTLA-4. Nat Immunol 6(3):280–286PubMedCrossRef
60.
go back to reference Schildknecht A et al. (2010) FoxP3+ regulatory T cells essentially contribute to peripheral CD8+ T-cell tolerance induced by steady-state dendritic cells. Proc Natl Acad Sci U S A 107(1):199–203PubMedCrossRef Schildknecht A et al. (2010) FoxP3+ regulatory T cells essentially contribute to peripheral CD8+ T-cell tolerance induced by steady-state dendritic cells. Proc Natl Acad Sci U S A 107(1):199–203PubMedCrossRef
61.
go back to reference Hochweller K et al. (2009) Homeostasis of dendritic cells in lymphoid organs is controlled by regulation of their precursors via a feedback loop. Blood 114(20):4411–4421PubMedCrossRef Hochweller K et al. (2009) Homeostasis of dendritic cells in lymphoid organs is controlled by regulation of their precursors via a feedback loop. Blood 114(20):4411–4421PubMedCrossRef
62.
go back to reference Collin M et al. (2011) Human dendritic cell deficiency: the missing ID? Nat Rev Immunol 11(9):575–583PubMedCrossRef Collin M et al. (2011) Human dendritic cell deficiency: the missing ID? Nat Rev Immunol 11(9):575–583PubMedCrossRef
63.
go back to reference Teichmann LL et al. (2010) Dendritic cells in lupus are not required for activation of T and B cells but promote their expansion, resulting in tissue damage. Immunity 33(6):967–978PubMedPubMedCentralCrossRef Teichmann LL et al. (2010) Dendritic cells in lupus are not required for activation of T and B cells but promote their expansion, resulting in tissue damage. Immunity 33(6):967–978PubMedPubMedCentralCrossRef
64.
go back to reference Yamazaki S et al. (2003) Direct expansion of functional CD25+ CD4+ regulatory T cells by antigen-processing dendritic cells. J Exp Med 198(2):235–247PubMedPubMedCentralCrossRef Yamazaki S et al. (2003) Direct expansion of functional CD25+ CD4+ regulatory T cells by antigen-processing dendritic cells. J Exp Med 198(2):235–247PubMedPubMedCentralCrossRef
65.
go back to reference Tarbell KV et al. (2004) CD25+ CD4+ T cells, expanded with dendritic cells presenting a single autoantigenic peptide, suppress autoimmune diabetes. J Exp Med 199(11):1467–1477PubMedPubMedCentralCrossRef Tarbell KV et al. (2004) CD25+ CD4+ T cells, expanded with dendritic cells presenting a single autoantigenic peptide, suppress autoimmune diabetes. J Exp Med 199(11):1467–1477PubMedPubMedCentralCrossRef
67.
go back to reference Suffner J et al. (2010) Dendritic cells support homeostatic expansion of Foxp3+ regulatory T cells in Foxp3.LuciDTR mice. J Immunol 184(4):1810–1820PubMedCrossRef Suffner J et al. (2010) Dendritic cells support homeostatic expansion of Foxp3+ regulatory T cells in Foxp3.LuciDTR mice. J Immunol 184(4):1810–1820PubMedCrossRef
68.
go back to reference Kim JM, Rasmussen JP, Rudensky AY (2007) Regulatory T cells prevent catastrophic autoimmunity throughout the lifespan of mice. Nat Immunol 8(2):191–197PubMedCrossRef Kim JM, Rasmussen JP, Rudensky AY (2007) Regulatory T cells prevent catastrophic autoimmunity throughout the lifespan of mice. Nat Immunol 8(2):191–197PubMedCrossRef
69.
go back to reference Swee LK et al. (2009) Expansion of peripheral naturally occurring T regulatory cells by fms-like tyrosine kinase 3 ligand treatment. Blood 113(25):6277–6287PubMedCrossRef Swee LK et al. (2009) Expansion of peripheral naturally occurring T regulatory cells by fms-like tyrosine kinase 3 ligand treatment. Blood 113(25):6277–6287PubMedCrossRef
70.
go back to reference Collins CB et al. (2012) Flt3 ligand expands CD103(+) dendritic cells and FoxP3(+) T regulatory cells, and attenuates Crohn’s-like murine ileitis. Gut 61(8):1154–1162PubMedCrossRef Collins CB et al. (2012) Flt3 ligand expands CD103(+) dendritic cells and FoxP3(+) T regulatory cells, and attenuates Crohn’s-like murine ileitis. Gut 61(8):1154–1162PubMedCrossRef
71.
go back to reference Vollstedt S et al. (2004) Treatment of neonatal mice with Flt3 ligand leads to changes in dendritic cell subpopulations associated with enhanced IL-12 and IFN-alpha production. Eur J Immunol 34(7):1849–1860PubMedCrossRef Vollstedt S et al. (2004) Treatment of neonatal mice with Flt3 ligand leads to changes in dendritic cell subpopulations associated with enhanced IL-12 and IFN-alpha production. Eur J Immunol 34(7):1849–1860PubMedCrossRef
72.
go back to reference Belz GT, Nutt SL (2012) Transcriptional programming of the dendritic cell network. Nat Rev Immunol 12(2):101–113PubMedCrossRef Belz GT, Nutt SL (2012) Transcriptional programming of the dendritic cell network. Nat Rev Immunol 12(2):101–113PubMedCrossRef
73.
74.
go back to reference Salomon B et al. (2000) B7/CD28 costimulation is essential for the homeostasis of the CD4 + CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity 12(4):431–440PubMedCrossRef Salomon B et al. (2000) B7/CD28 costimulation is essential for the homeostasis of the CD4 + CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity 12(4):431–440PubMedCrossRef
75.
go back to reference Bar-On L et al. (2011) Dendritic cell-restricted CD80/86 deficiency results in peripheral regulatory T-cell reduction but is not associated with lymphocyte hyperactivation. Eur J Immunol 41(2):291–298PubMedCrossRef Bar-On L et al. (2011) Dendritic cell-restricted CD80/86 deficiency results in peripheral regulatory T-cell reduction but is not associated with lymphocyte hyperactivation. Eur J Immunol 41(2):291–298PubMedCrossRef
76.
go back to reference Coquet JM et al. (2013) Epithelial and dendritic cells in the thymic medulla promote CD4 + Foxp3+ regulatory T cell development via the CD27-CD70 pathway. J Exp Med 210(4):715–728PubMedPubMedCentralCrossRef Coquet JM et al. (2013) Epithelial and dendritic cells in the thymic medulla promote CD4 + Foxp3+ regulatory T cell development via the CD27-CD70 pathway. J Exp Med 210(4):715–728PubMedPubMedCentralCrossRef
77.
go back to reference Soares H et al. (2007) A subset of dendritic cells induces CD4+ T cells to produce IFN-gamma by an IL-12-independent but CD70-dependent mechanism in vivo. J Exp Med 204(5):1095–1106PubMedPubMedCentralCrossRef Soares H et al. (2007) A subset of dendritic cells induces CD4+ T cells to produce IFN-gamma by an IL-12-independent but CD70-dependent mechanism in vivo. J Exp Med 204(5):1095–1106PubMedPubMedCentralCrossRef
78.
go back to reference Coquet JM et al. (2013) The CD27 and CD70 costimulatory pathway inhibits effector function of T helper 17 cells and attenuates associated autoimmunity. Immunity 38(1):53–65PubMedCrossRef Coquet JM et al. (2013) The CD27 and CD70 costimulatory pathway inhibits effector function of T helper 17 cells and attenuates associated autoimmunity. Immunity 38(1):53–65PubMedCrossRef
79.
go back to reference Libregts S et al. (2011) Function of CD27 in helper T cell differentiation. Immunol Lett 136(2):177–186PubMedCrossRef Libregts S et al. (2011) Function of CD27 in helper T cell differentiation. Immunol Lett 136(2):177–186PubMedCrossRef
80.
go back to reference Akbari O et al. (2002) Antigen-specific regulatory T cells develop via the ICOS-ICOS-ligand pathway and inhibit allergen-induced airway hyperreactivity. Nat Med 8(9):1024–1032PubMedCrossRef Akbari O et al. (2002) Antigen-specific regulatory T cells develop via the ICOS-ICOS-ligand pathway and inhibit allergen-induced airway hyperreactivity. Nat Med 8(9):1024–1032PubMedCrossRef
81.
go back to reference Kool M et al. (2009) An anti-inflammatory role for plasmacytoid dendritic cells in allergic airway inflammation. J Immunol 183(2):1074–1082PubMedCrossRef Kool M et al. (2009) An anti-inflammatory role for plasmacytoid dendritic cells in allergic airway inflammation. J Immunol 183(2):1074–1082PubMedCrossRef
82.
go back to reference Wang C et al. (2010) Down-modulation of programmed death 1 alters regulatory T cells and promotes experimental autoimmune encephalomyelitis. J Neurosci Res 88(1):7–15PubMedPubMedCentralCrossRef Wang C et al. (2010) Down-modulation of programmed death 1 alters regulatory T cells and promotes experimental autoimmune encephalomyelitis. J Neurosci Res 88(1):7–15PubMedPubMedCentralCrossRef
83.
84.
go back to reference Wang L et al. (2008) Programmed death 1 ligand signaling regulates the generation of adaptive Foxp3 + CD4+ regulatory T cells. Proc Natl Acad Sci U S A 105(27):9331–9336PubMedPubMedCentralCrossRef Wang L et al. (2008) Programmed death 1 ligand signaling regulates the generation of adaptive Foxp3 + CD4+ regulatory T cells. Proc Natl Acad Sci U S A 105(27):9331–9336PubMedPubMedCentralCrossRef
85.
86.
go back to reference Kuipers H et al. (2006) Contribution of the PD-1 ligands/PD-1 signaling pathway to dendritic cell-mediated CD4+ T cell activation. Eur J Immunol 36(9):2472–2482PubMedCrossRef Kuipers H et al. (2006) Contribution of the PD-1 ligands/PD-1 signaling pathway to dendritic cell-mediated CD4+ T cell activation. Eur J Immunol 36(9):2472–2482PubMedCrossRef
87.
go back to reference Moore KW et al. (2001) Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 19:683–765PubMedCrossRef Moore KW et al. (2001) Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 19:683–765PubMedCrossRef
88.
go back to reference Li MO, Flavell RA (2008) Contextual regulation of inflammation: a duet by transforming growth factor-beta and interleukin-10. Immunity 28(4):468–476PubMedCrossRef Li MO, Flavell RA (2008) Contextual regulation of inflammation: a duet by transforming growth factor-beta and interleukin-10. Immunity 28(4):468–476PubMedCrossRef
89.
go back to reference Saraiva M, O’Garra A (2010) The regulation of IL-10 production by immune cells. Nat Rev Immunol 10(3):170–181PubMedCrossRef Saraiva M, O’Garra A (2010) The regulation of IL-10 production by immune cells. Nat Rev Immunol 10(3):170–181PubMedCrossRef
90.
go back to reference Clausen BE, Kel JM (2010) Langerhans cells: critical regulators of skin immunity? Immunol Cell Biol 88(4):351–360PubMedCrossRef Clausen BE, Kel JM (2010) Langerhans cells: critical regulators of skin immunity? Immunol Cell Biol 88(4):351–360PubMedCrossRef
92.
go back to reference Torres-Aguilar H et al. (2010) Tolerogenic dendritic cells generated with different immunosuppressive cytokines induce antigen-specific anergy and regulatory properties in memory CD4+ T cells. J Immunol 184(4):1765–1775PubMedCrossRef Torres-Aguilar H et al. (2010) Tolerogenic dendritic cells generated with different immunosuppressive cytokines induce antigen-specific anergy and regulatory properties in memory CD4+ T cells. J Immunol 184(4):1765–1775PubMedCrossRef
93.
go back to reference Steinbrink K et al. (1999) Interleukin-10-treated human dendritic cells induce a melanoma-antigen-specific anergy in CD8(+) T cells resulting in a failure to lyse tumor cells. Blood 93(5):1634–1642PubMed Steinbrink K et al. (1999) Interleukin-10-treated human dendritic cells induce a melanoma-antigen-specific anergy in CD8(+) T cells resulting in a failure to lyse tumor cells. Blood 93(5):1634–1642PubMed
94.
go back to reference Muller G et al. (2002) Interleukin-10-treated dendritic cells modulate immune responses of naive and sensitized T cells in vivo. J Investig Dermatol 119(4):836–841PubMedCrossRef Muller G et al. (2002) Interleukin-10-treated dendritic cells modulate immune responses of naive and sensitized T cells in vivo. J Investig Dermatol 119(4):836–841PubMedCrossRef
95.
go back to reference Perona-Wright G et al. (2007) IL-10 permits transient activation of dendritic cells to tolerize T cells and protect from central nervous system autoimmune disease. Int Immunol 19(9):1123–1134PubMedCrossRef Perona-Wright G et al. (2007) IL-10 permits transient activation of dendritic cells to tolerize T cells and protect from central nervous system autoimmune disease. Int Immunol 19(9):1123–1134PubMedCrossRef
96.
go back to reference Lan YY et al. (2006) “Alternatively activated” dendritic cells preferentially secrete IL-10, expand Foxp3 + CD4+ T cells, and induce long-term organ allograft survival in combination with CTLA4-Ig. J Immunol 177(9):5868–5877PubMedCrossRef Lan YY et al. (2006) “Alternatively activated” dendritic cells preferentially secrete IL-10, expand Foxp3 + CD4+ T cells, and induce long-term organ allograft survival in combination with CTLA4-Ig. J Immunol 177(9):5868–5877PubMedCrossRef
97.
go back to reference Girard-Madoux MJ et al. (2012) IL-10 controls dendritic cell-induced T-cell reactivation in the skin to limit contact hypersensitivity. J Allergy Clin Immunol 129(1):143–150 e1-10PubMedCrossRef Girard-Madoux MJ et al. (2012) IL-10 controls dendritic cell-induced T-cell reactivation in the skin to limit contact hypersensitivity. J Allergy Clin Immunol 129(1):143–150 e1-10PubMedCrossRef
98.
go back to reference Girard-Madoux MJ et al. (2015) IL-10 signaling in dendritic cells attenuates anti-Leishmania major immunity without affecting protective memory responses. J Investig Dermatol 135(11):2890–2894PubMedCrossRef Girard-Madoux MJ et al. (2015) IL-10 signaling in dendritic cells attenuates anti-Leishmania major immunity without affecting protective memory responses. J Investig Dermatol 135(11):2890–2894PubMedCrossRef
99.
go back to reference Zigmond E et al. (2014) Macrophage-restricted interleukin-10 receptor deficiency, but not IL-10 deficiency, causes severe spontaneous colitis. Immunity 40(5):720–733PubMedCrossRef Zigmond E et al. (2014) Macrophage-restricted interleukin-10 receptor deficiency, but not IL-10 deficiency, causes severe spontaneous colitis. Immunity 40(5):720–733PubMedCrossRef
100.
go back to reference Girard-Madoux MJ et al. (2016) IL-10 control of CD11c + myeloid cells is essential to maintain immune homeostasis in the small and large intestine. Oncotarget. doi:10.18632/oncotarget.8337 Girard-Madoux MJ et al. (2016) IL-10 control of CD11c + myeloid cells is essential to maintain immune homeostasis in the small and large intestine. Oncotarget. doi:10.​18632/​oncotarget.​8337
101.
go back to reference Jonuleit H et al. (2000) Induction of interleukin 10-producing, nonproliferating CD4(+) T cells with regulatory properties by repetitive stimulation with allogeneic immature human dendritic cells. J Exp Med 192(9):1213–1222PubMedPubMedCentralCrossRef Jonuleit H et al. (2000) Induction of interleukin 10-producing, nonproliferating CD4(+) T cells with regulatory properties by repetitive stimulation with allogeneic immature human dendritic cells. J Exp Med 192(9):1213–1222PubMedPubMedCentralCrossRef
102.
go back to reference Akbari O, DeKruyff RH, Umetsu DT (2001) Pulmonary dendritic cells producing IL-10 mediate tolerance induced by respiratory exposure to antigen. Nat Immunol 2(8):725–731PubMedCrossRef Akbari O, DeKruyff RH, Umetsu DT (2001) Pulmonary dendritic cells producing IL-10 mediate tolerance induced by respiratory exposure to antigen. Nat Immunol 2(8):725–731PubMedCrossRef
103.
go back to reference Wakkach A et al. (2003) Characterization of dendritic cells that induce tolerance and T regulatory 1 cell differentiation in vivo. Immunity 18(5):605–617PubMedCrossRef Wakkach A et al. (2003) Characterization of dendritic cells that induce tolerance and T regulatory 1 cell differentiation in vivo. Immunity 18(5):605–617PubMedCrossRef
104.
go back to reference Igyarto BZ et al. (2009) Langerhans cells suppress contact hypersensitivity responses via cognate CD4 interaction and langerhans cell-derived IL-10. J Immunol 183(8):5085–5093PubMedPubMedCentralCrossRef Igyarto BZ et al. (2009) Langerhans cells suppress contact hypersensitivity responses via cognate CD4 interaction and langerhans cell-derived IL-10. J Immunol 183(8):5085–5093PubMedPubMedCentralCrossRef
105.
go back to reference Kuhn R et al. (1993) Interleukin-10-deficient mice develop chronic enterocolitis. Cell 75(2):263–274PubMedCrossRef Kuhn R et al. (1993) Interleukin-10-deficient mice develop chronic enterocolitis. Cell 75(2):263–274PubMedCrossRef
106.
go back to reference Awasthi A et al. (2007) A dominant function for interleukin 27 in generating interleukin 10-producing anti-inflammatory T cells. Nat Immunol 8(12):1380–1389PubMedCrossRef Awasthi A et al. (2007) A dominant function for interleukin 27 in generating interleukin 10-producing anti-inflammatory T cells. Nat Immunol 8(12):1380–1389PubMedCrossRef
107.
go back to reference Sweeney CM et al. (2011) IL-27 mediates the response to IFN-beta therapy in multiple sclerosis patients by inhibiting Th17 cells. Brain Behav Immun 25(6):1170–1181PubMedCrossRef Sweeney CM et al. (2011) IL-27 mediates the response to IFN-beta therapy in multiple sclerosis patients by inhibiting Th17 cells. Brain Behav Immun 25(6):1170–1181PubMedCrossRef
108.
go back to reference Pot C et al. (2009) Cutting edge: IL-27 induces the transcription factor c-Maf, cytokine IL-21, and the costimulatory receptor ICOS that coordinately act together to promote differentiation of IL-10-producing Tr1 cells. J Immunol 183(2):797–801PubMedPubMedCentralCrossRef Pot C et al. (2009) Cutting edge: IL-27 induces the transcription factor c-Maf, cytokine IL-21, and the costimulatory receptor ICOS that coordinately act together to promote differentiation of IL-10-producing Tr1 cells. J Immunol 183(2):797–801PubMedPubMedCentralCrossRef
109.
go back to reference Wang H et al. (2011) IL-27 induces the differentiation of Tr1-like cells from human naive CD4+ T cells via the phosphorylation of STAT1 and STAT3. Immunol Lett 136(1):21–28PubMedCrossRef Wang H et al. (2011) IL-27 induces the differentiation of Tr1-like cells from human naive CD4+ T cells via the phosphorylation of STAT1 and STAT3. Immunol Lett 136(1):21–28PubMedCrossRef
110.
go back to reference Karakhanova S et al. (2011) IL-27 renders DC immunosuppressive by induction of B7-H1. J Leukoc Biol 89(6):837–845PubMedCrossRef Karakhanova S et al. (2011) IL-27 renders DC immunosuppressive by induction of B7-H1. J Leukoc Biol 89(6):837–845PubMedCrossRef
111.
go back to reference Mascanfroni ID et al. (2013) IL-27 acts on DCs to suppress the T cell response and autoimmunity by inducing expression of the immunoregulatory molecule CD39. Nat Immunol 14(10):1054–1063PubMedPubMedCentralCrossRef Mascanfroni ID et al. (2013) IL-27 acts on DCs to suppress the T cell response and autoimmunity by inducing expression of the immunoregulatory molecule CD39. Nat Immunol 14(10):1054–1063PubMedPubMedCentralCrossRef
112.
go back to reference Chen W et al. (2003) Conversion of peripheral CD4 + CD25- naive T cells to CD4 + CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med 198(12):1875–1886PubMedPubMedCentralCrossRef Chen W et al. (2003) Conversion of peripheral CD4 + CD25- naive T cells to CD4 + CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med 198(12):1875–1886PubMedPubMedCentralCrossRef
113.
go back to reference Marie JC, Liggitt D, Rudensky AY (2006) Cellular mechanisms of fatal early-onset autoimmunity in mice with the T cell-specific targeting of transforming growth factor-beta receptor. Immunity 25(3):441–454PubMedCrossRef Marie JC, Liggitt D, Rudensky AY (2006) Cellular mechanisms of fatal early-onset autoimmunity in mice with the T cell-specific targeting of transforming growth factor-beta receptor. Immunity 25(3):441–454PubMedCrossRef
114.
go back to reference Gorelik L, Flavell RA (2000) Abrogation of TGFbeta signaling in T cells leads to spontaneous T cell differentiation and autoimmune disease. Immunity 12(2):171–181PubMedCrossRef Gorelik L, Flavell RA (2000) Abrogation of TGFbeta signaling in T cells leads to spontaneous T cell differentiation and autoimmune disease. Immunity 12(2):171–181PubMedCrossRef
115.
go back to reference Zhang X et al. (2005) CD4-8- dendritic cells prime CD4+ T regulatory 1 cells to suppress antitumor immunity. J Immunol 175(5):2931–2937PubMedCrossRef Zhang X et al. (2005) CD4-8- dendritic cells prime CD4+ T regulatory 1 cells to suppress antitumor immunity. J Immunol 175(5):2931–2937PubMedCrossRef
116.
go back to reference Geissmann F et al. (1999) TGF-beta 1 prevents the noncognate maturation of human dendritic Langerhans cells. J Immunol 162(8):4567–4575PubMed Geissmann F et al. (1999) TGF-beta 1 prevents the noncognate maturation of human dendritic Langerhans cells. J Immunol 162(8):4567–4575PubMed
117.
go back to reference Ohtani T et al. (2009) TGF-beta1 dampens the susceptibility of dendritic cells to environmental stimulation, leading to the requirement for danger signals for activation. Immunology 126(4):485–499PubMedPubMedCentralCrossRef Ohtani T et al. (2009) TGF-beta1 dampens the susceptibility of dendritic cells to environmental stimulation, leading to the requirement for danger signals for activation. Immunology 126(4):485–499PubMedPubMedCentralCrossRef
118.
go back to reference Ramalingam R et al. (2012) Dendritic cell-specific disruption of TGF-beta receptor II leads to altered regulatory T cell phenotype and spontaneous multiorgan autoimmunity. J Immunol 189(8):3878–3893PubMedPubMedCentralCrossRef Ramalingam R et al. (2012) Dendritic cell-specific disruption of TGF-beta receptor II leads to altered regulatory T cell phenotype and spontaneous multiorgan autoimmunity. J Immunol 189(8):3878–3893PubMedPubMedCentralCrossRef
119.
go back to reference Mu D et al. (2002) The integrin alpha(v)beta8 mediates epithelial homeostasis through MT1-MMP-dependent activation of TGF-beta1. J Cell Biol 157(3):493–507PubMedPubMedCentralCrossRef Mu D et al. (2002) The integrin alpha(v)beta8 mediates epithelial homeostasis through MT1-MMP-dependent activation of TGF-beta1. J Cell Biol 157(3):493–507PubMedPubMedCentralCrossRef
120.
121.
go back to reference Kel JM et al. (2010) TGF-beta is required to maintain the pool of immature Langerhans cells in the epidermis. J Immunol 185(6):3248–3255PubMedCrossRef Kel JM et al. (2010) TGF-beta is required to maintain the pool of immature Langerhans cells in the epidermis. J Immunol 185(6):3248–3255PubMedCrossRef
122.
go back to reference Iwata M et al. (2004) Retinoic acid imprints gut-homing specificity on T cells. Immunity 21(4):527–538PubMedCrossRef Iwata M et al. (2004) Retinoic acid imprints gut-homing specificity on T cells. Immunity 21(4):527–538PubMedCrossRef
123.
go back to reference Mucida D et al. (2007) Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science 317(5835):256–260PubMedCrossRef Mucida D et al. (2007) Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science 317(5835):256–260PubMedCrossRef
124.
go back to reference Hill JA et al. (2008) Retinoic acid enhances Foxp3 induction indirectly by relieving inhibition from CD4 + CD44hi cells. Immunity 29(5):758–770PubMedPubMedCentralCrossRef Hill JA et al. (2008) Retinoic acid enhances Foxp3 induction indirectly by relieving inhibition from CD4 + CD44hi cells. Immunity 29(5):758–770PubMedPubMedCentralCrossRef
125.
go back to reference Sun CM et al. (2007) Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J Exp Med 204(8):1775–1785PubMedPubMedCentralCrossRef Sun CM et al. (2007) Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J Exp Med 204(8):1775–1785PubMedPubMedCentralCrossRef
126.
go back to reference Coombes JL et al. (2007) A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J Exp Med 204(8):1757–1764PubMedPubMedCentralCrossRef Coombes JL et al. (2007) A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J Exp Med 204(8):1757–1764PubMedPubMedCentralCrossRef
127.
go back to reference Guilliams M et al. (2010) Skin-draining lymph nodes contain dermis-derived CD103(−) dendritic cells that constitutively produce retinoic acid and induce Foxp3(+) regulatory T cells. Blood 115(10):1958–1968PubMedCrossRef Guilliams M et al. (2010) Skin-draining lymph nodes contain dermis-derived CD103(−) dendritic cells that constitutively produce retinoic acid and induce Foxp3(+) regulatory T cells. Blood 115(10):1958–1968PubMedCrossRef
128.
go back to reference Staal FJ, Luis TC, Tiemessen MM (2008) WNT signalling in the immune system: WNT is spreading its wings. Nat Rev Immunol 8(8):581–593PubMedCrossRef Staal FJ, Luis TC, Tiemessen MM (2008) WNT signalling in the immune system: WNT is spreading its wings. Nat Rev Immunol 8(8):581–593PubMedCrossRef
129.
go back to reference Jiang A et al. (2007) Disruption of E-cadherin-mediated adhesion induces a functionally distinct pathway of dendritic cell maturation. Immunity 27(4):610–624PubMedPubMedCentralCrossRef Jiang A et al. (2007) Disruption of E-cadherin-mediated adhesion induces a functionally distinct pathway of dendritic cell maturation. Immunity 27(4):610–624PubMedPubMedCentralCrossRef
130.
go back to reference Manicassamy S et al. (2010) Activation of beta-catenin in dendritic cells regulates immunity versus tolerance in the intestine. Science 329(5993):849–853PubMedPubMedCentralCrossRef Manicassamy S et al. (2010) Activation of beta-catenin in dendritic cells regulates immunity versus tolerance in the intestine. Science 329(5993):849–853PubMedPubMedCentralCrossRef
131.
go back to reference Suryawanshi A et al. (2015) Canonical wnt signaling in dendritic cells regulates Th1/Th17 responses and suppresses autoimmune neuroinflammation. J Immunol 194(7):3295–3304PubMedPubMedCentralCrossRef Suryawanshi A et al. (2015) Canonical wnt signaling in dendritic cells regulates Th1/Th17 responses and suppresses autoimmune neuroinflammation. J Immunol 194(7):3295–3304PubMedPubMedCentralCrossRef
132.
go back to reference Liang X et al. (2014) Beta-catenin mediates tumor-induced immunosuppression by inhibiting cross-priming of CD8(+) T cells. J Leukoc Biol 95(1):179–190PubMedCrossRef Liang X et al. (2014) Beta-catenin mediates tumor-induced immunosuppression by inhibiting cross-priming of CD8(+) T cells. J Leukoc Biol 95(1):179–190PubMedCrossRef
133.
go back to reference Fu C et al. (2015) Beta-catenin in dendritic cells exerts opposite functions in cross-priming and maintenance of CD8+ T cells through regulation of IL-10. Proc Natl Acad Sci U S A 112(9):2823–2828PubMedPubMedCentralCrossRef Fu C et al. (2015) Beta-catenin in dendritic cells exerts opposite functions in cross-priming and maintenance of CD8+ T cells through regulation of IL-10. Proc Natl Acad Sci U S A 112(9):2823–2828PubMedPubMedCentralCrossRef
134.
go back to reference Cohen SB et al. (2015) Beta-catenin signaling drives differentiation and proinflammatory function of IRF8-dependent dendritic cells. J Immunol 194(1):210–222PubMedPubMedCentralCrossRef Cohen SB et al. (2015) Beta-catenin signaling drives differentiation and proinflammatory function of IRF8-dependent dendritic cells. J Immunol 194(1):210–222PubMedPubMedCentralCrossRef
135.
go back to reference Mellman I, Clausen BE (2010) Immunology. Beta-catenin balances immunity. Science 329(5993):767–769PubMedCrossRef Mellman I, Clausen BE (2010) Immunology. Beta-catenin balances immunity. Science 329(5993):767–769PubMedCrossRef
136.
go back to reference Alves CH et al. (2015) Dendritic cell-specific deletion of beta-catenin results in fewer regulatory T-cells without exacerbating autoimmune collagen-induced arthritis. PLoS One 10(11):e0142972PubMedPubMedCentralCrossRef Alves CH et al. (2015) Dendritic cell-specific deletion of beta-catenin results in fewer regulatory T-cells without exacerbating autoimmune collagen-induced arthritis. PLoS One 10(11):e0142972PubMedPubMedCentralCrossRef
137.
go back to reference Fallarino F et al. (2006) The combined effects of tryptophan starvation and tryptophan catabolites down-regulate T cell receptor zeta-chain and induce a regulatory phenotype in naive T cells. J Immunol 176(11):6752–6761PubMedCrossRef Fallarino F et al. (2006) The combined effects of tryptophan starvation and tryptophan catabolites down-regulate T cell receptor zeta-chain and induce a regulatory phenotype in naive T cells. J Immunol 176(11):6752–6761PubMedCrossRef
138.
go back to reference Mezrich JD et al. (2010) An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory T cells. J Immunol 185(6):3190–3198PubMedPubMedCentralCrossRef Mezrich JD et al. (2010) An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory T cells. J Immunol 185(6):3190–3198PubMedPubMedCentralCrossRef
139.
go back to reference Nguyen NT et al. (2010) Aryl hydrocarbon receptor negatively regulates dendritic cell immunogenicity via a kynurenine-dependent mechanism. Proc Natl Acad Sci U S A 107(46):19961–19966PubMedPubMedCentralCrossRef Nguyen NT et al. (2010) Aryl hydrocarbon receptor negatively regulates dendritic cell immunogenicity via a kynurenine-dependent mechanism. Proc Natl Acad Sci U S A 107(46):19961–19966PubMedPubMedCentralCrossRef
140.
go back to reference Quintana FJ et al. (2010) An endogenous aryl hydrocarbon receptor ligand acts on dendritic cells and T cells to suppress experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 107(48):20768–20773PubMedPubMedCentralCrossRef Quintana FJ et al. (2010) An endogenous aryl hydrocarbon receptor ligand acts on dendritic cells and T cells to suppress experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 107(48):20768–20773PubMedPubMedCentralCrossRef
142.
go back to reference Grohmann U et al. (2007) Reverse signaling through GITR ligand enables dexamethasone to activate IDO in allergy. Nat Med 13(5):579–586PubMedCrossRef Grohmann U et al. (2007) Reverse signaling through GITR ligand enables dexamethasone to activate IDO in allergy. Nat Med 13(5):579–586PubMedCrossRef
143.
go back to reference Fallarino F et al. (2002) Functional expression of indoleamine 2,3-dioxygenase by murine CD8 alpha(+) dendritic cells. Int Immunol 14(1):65–68PubMedCrossRef Fallarino F et al. (2002) Functional expression of indoleamine 2,3-dioxygenase by murine CD8 alpha(+) dendritic cells. Int Immunol 14(1):65–68PubMedCrossRef
144.
go back to reference Matteoli G et al. (2010) Gut CD103+ dendritic cells express indoleamine 2,3-dioxygenase which influences T regulatory/T effector cell balance and oral tolerance induction. Gut 59(5):595–604PubMedCrossRef Matteoli G et al. (2010) Gut CD103+ dendritic cells express indoleamine 2,3-dioxygenase which influences T regulatory/T effector cell balance and oral tolerance induction. Gut 59(5):595–604PubMedCrossRef
145.
go back to reference Grohmann U et al. (2002) CTLA-4-Ig regulates tryptophan catabolism in vivo. Nat Immunol 3(11):1097–1101PubMedCrossRef Grohmann U et al. (2002) CTLA-4-Ig regulates tryptophan catabolism in vivo. Nat Immunol 3(11):1097–1101PubMedCrossRef
146.
go back to reference Fallarino F et al. (2003) Modulation of tryptophan catabolism by regulatory T cells. Nat Immunol 4(12):1206–1212PubMedCrossRef Fallarino F et al. (2003) Modulation of tryptophan catabolism by regulatory T cells. Nat Immunol 4(12):1206–1212PubMedCrossRef
147.
go back to reference Mellor AL et al. (2004) Specific subsets of murine dendritic cells acquire potent T cell regulatory functions following CTLA4-mediated induction of indoleamine 2,3 dioxygenase. Int Immunol 16(10):1391–1401PubMedCrossRef Mellor AL et al. (2004) Specific subsets of murine dendritic cells acquire potent T cell regulatory functions following CTLA4-mediated induction of indoleamine 2,3 dioxygenase. Int Immunol 16(10):1391–1401PubMedCrossRef
148.
go back to reference Yan Y et al. (2010) IDO upregulates regulatory T cells via tryptophan catabolite and suppresses encephalitogenic T cell responses in experimental autoimmune encephalomyelitis. J Immunol 185(10):5953–5961PubMedPubMedCentralCrossRef Yan Y et al. (2010) IDO upregulates regulatory T cells via tryptophan catabolite and suppresses encephalitogenic T cell responses in experimental autoimmune encephalomyelitis. J Immunol 185(10):5953–5961PubMedPubMedCentralCrossRef
150.
go back to reference Hilkens CM, Isaacs JD, Thomson AW (2010) Development of dendritic cell-based immunotherapy for autoimmunity. Int Rev Immunol 29(2):156–183PubMedCrossRef Hilkens CM, Isaacs JD, Thomson AW (2010) Development of dendritic cell-based immunotherapy for autoimmunity. Int Rev Immunol 29(2):156–183PubMedCrossRef
151.
go back to reference Brandl C et al. (2010) B7-H1-deficiency enhances the potential of tolerogenic dendritic cells by activating CD1d-restricted type II NKT cells. PLoS One 5(5):e10800PubMedPubMedCentralCrossRef Brandl C et al. (2010) B7-H1-deficiency enhances the potential of tolerogenic dendritic cells by activating CD1d-restricted type II NKT cells. PLoS One 5(5):e10800PubMedPubMedCentralCrossRef
152.
go back to reference Kleindienst P et al. (2005) Simultaneous induction of CD4 T cell tolerance and CD8 T cell immunity by semimature dendritic cells. J Immunol 174(7):3941–3947PubMedCrossRef Kleindienst P et al. (2005) Simultaneous induction of CD4 T cell tolerance and CD8 T cell immunity by semimature dendritic cells. J Immunol 174(7):3941–3947PubMedCrossRef
153.
go back to reference Lim DS et al. (2009) Semi-mature DC are immunogenic and not tolerogenic when inoculated at a high dose in collagen-induced arthritis mice. Eur J Immunol 39(5):1334–1343PubMedCrossRef Lim DS et al. (2009) Semi-mature DC are immunogenic and not tolerogenic when inoculated at a high dose in collagen-induced arthritis mice. Eur J Immunol 39(5):1334–1343PubMedCrossRef
154.
go back to reference Menges M et al. (2002) Repetitive injections of dendritic cells matured with tumor necrosis factor alpha induce antigen-specific protection of mice from autoimmunity. J Exp Med 195(1):15–21PubMedPubMedCentralCrossRef Menges M et al. (2002) Repetitive injections of dendritic cells matured with tumor necrosis factor alpha induce antigen-specific protection of mice from autoimmunity. J Exp Med 195(1):15–21PubMedPubMedCentralCrossRef
155.
go back to reference Sato K et al. (2003) Regulatory dendritic cells protect mice from murine acute graft-versus-host disease and leukemia relapse. Immunity 18(3):367–379PubMedCrossRef Sato K et al. (2003) Regulatory dendritic cells protect mice from murine acute graft-versus-host disease and leukemia relapse. Immunity 18(3):367–379PubMedCrossRef
156.
go back to reference Stoop JN et al. (2010) Therapeutic effect of tolerogenic dendritic cells in established collagen-induced arthritis is associated with a reduction in Th17 responses. Arthritis Rheum 62(12):3656–3665PubMedCrossRef Stoop JN et al. (2010) Therapeutic effect of tolerogenic dendritic cells in established collagen-induced arthritis is associated with a reduction in Th17 responses. Arthritis Rheum 62(12):3656–3665PubMedCrossRef
157.
go back to reference Verginis P, Li HS, Carayanniotis G (2005) Tolerogenic semimature dendritic cells suppress experimental autoimmune thyroiditis by activation of thyroglobulin-specific CD4 + CD25+ T cells. J Immunol 174(11):7433–7439PubMedCrossRef Verginis P, Li HS, Carayanniotis G (2005) Tolerogenic semimature dendritic cells suppress experimental autoimmune thyroiditis by activation of thyroglobulin-specific CD4 + CD25+ T cells. J Immunol 174(11):7433–7439PubMedCrossRef
158.
go back to reference Dhodapkar MV et al. (2001) Antigen-specific inhibition of effector T cell function in humans after injection of immature dendritic cells. J Exp Med 193(2):233–238PubMedPubMedCentralCrossRef Dhodapkar MV et al. (2001) Antigen-specific inhibition of effector T cell function in humans after injection of immature dendritic cells. J Exp Med 193(2):233–238PubMedPubMedCentralCrossRef
159.
go back to reference Fong L et al. (2001) Dendritic cells injected via different routes induce immunity in cancer patients. J Immunol 166(6):4254–4259PubMedCrossRef Fong L et al. (2001) Dendritic cells injected via different routes induce immunity in cancer patients. J Immunol 166(6):4254–4259PubMedCrossRef
160.
go back to reference Boks MA et al. (2012) IL-10-generated tolerogenic dendritic cells are optimal for functional regulatory T cell induction—a comparative study of human clinical-applicable DC. Clin Immunol 142(3):332–342PubMedCrossRef Boks MA et al. (2012) IL-10-generated tolerogenic dendritic cells are optimal for functional regulatory T cell induction—a comparative study of human clinical-applicable DC. Clin Immunol 142(3):332–342PubMedCrossRef
162.
go back to reference Kepp O et al. (2012) Anticancer activity of cardiac glycosides: at the frontier between cell-autonomous and immunological effects. Oncoimmunology 1(9):1640–1642PubMedPubMedCentralCrossRef Kepp O et al. (2012) Anticancer activity of cardiac glycosides: at the frontier between cell-autonomous and immunological effects. Oncoimmunology 1(9):1640–1642PubMedPubMedCentralCrossRef
163.
go back to reference Giannoukakis N et al. (2011) Phase I (safety) study of autologous tolerogenic dendritic cells in type 1 diabetic patients. Diabetes Care 34(9):2026–2032PubMedPubMedCentralCrossRef Giannoukakis N et al. (2011) Phase I (safety) study of autologous tolerogenic dendritic cells in type 1 diabetic patients. Diabetes Care 34(9):2026–2032PubMedPubMedCentralCrossRef
Metadata
Title
Dendritic cells as gatekeepers of tolerance
Authors
Ari Waisman
Dominika Lukas
Björn E. Clausen
Nir Yogev
Publication date
01-02-2017
Publisher
Springer Berlin Heidelberg
Published in
Seminars in Immunopathology / Issue 2/2017
Print ISSN: 1863-2297
Electronic ISSN: 1863-2300
DOI
https://doi.org/10.1007/s00281-016-0583-z

Other articles of this Issue 2/2017

Seminars in Immunopathology 2/2017 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.