Skip to main content
Top
Published in: BMC Oral Health 1/2023

Open Access 01-12-2023 | Research

Deep learning-based prediction of mandibular growth trend in children with anterior crossbite using cephalometric radiographs

Authors: Jia-Nan Zhang, Hai-Ping Lu, Jia Hou, Qiong Wang, Feng-Yang Yu, Chong Zhong, Cheng-Yi Huang, Si Chen

Published in: BMC Oral Health | Issue 1/2023

Login to get access

Abstract

Background

It is difficult for orthodontists to accurately predict the growth trend of the mandible in children with anterior crossbite. This study aims to develop a deep learning model to automatically predict the mandibular growth result into normal or overdeveloped using cephalometric radiographs.

Methods

A deep convolutional neural network (CNN) model was constructed based on the algorithm ResNet50 and trained on the basis of 256 cephalometric radiographs. The prediction behavior of the model was tested on 40 cephalograms and visualized by equipped with Grad-CAM. The prediction performance of the CNN model was compared with that of three junior orthodontists.

Results

The deep-learning model showed a good prediction accuracy about 85%, much higher when compared with the 54.2% of the junior orthodontists. The sensitivity and specificity of the model was 0.95 and 0.75 respectively, higher than that of the junior orthodontists (0.62 and 0.47 respectively). The area under the curve value of the deep-learning model was 0.9775. Visual inspection showed that the model mainly focused on the characteristics of special regions including chin, lower edge of the mandible, incisor teeth, airway and condyle to conduct the prediction.

Conclusions

The deep-learning CNN model could predict the growth trend of the mandible in anterior crossbite children with relatively high accuracy using cephalometric images. The deep learning model made the prediction decision mainly by identifying the characteristics of the regions of chin, lower edge of the mandible, incisor teeth area, airway and condyle in cephalometric images.
Literature
1.
go back to reference Ngan P, Moon W. Evolution of class III treatment in orthodontics. Am J Orthod Dentofac Orthop. 2015;148(1):22–36.CrossRef Ngan P, Moon W. Evolution of class III treatment in orthodontics. Am J Orthod Dentofac Orthop. 2015;148(1):22–36.CrossRef
2.
go back to reference Vasilakos G, Koniaris A, Wolf M, Halazonetis D, Gkantidis N. Early anterior crossbite correction through posterior bite opening: a 3D superimposition prospective cohort study. Eur J Orthod. 2018;40(4):364–71.CrossRef Vasilakos G, Koniaris A, Wolf M, Halazonetis D, Gkantidis N. Early anterior crossbite correction through posterior bite opening: a 3D superimposition prospective cohort study. Eur J Orthod. 2018;40(4):364–71.CrossRef
3.
go back to reference Ellis E 3rd, McNamara JA Jr. Components of adult class III malocclusion. J Oral Maxillofac Surg. 1984;42(5):295–305.CrossRef Ellis E 3rd, McNamara JA Jr. Components of adult class III malocclusion. J Oral Maxillofac Surg. 1984;42(5):295–305.CrossRef
4.
go back to reference Ngan P. Early treatment of Class III malocclusion: is it worth the burden? Am J Orthod Dentofac Orthop. 2006;129(4 Suppl):S82–5.CrossRef Ngan P. Early treatment of Class III malocclusion: is it worth the burden? Am J Orthod Dentofac Orthop. 2006;129(4 Suppl):S82–5.CrossRef
5.
go back to reference Sato K, Mito T, Mitani H. An accurate method of predicting mandibular growth potential based on bone maturity. Am J Orthod Dentofac Orthop. 2001;120(3):286–93.CrossRef Sato K, Mito T, Mitani H. An accurate method of predicting mandibular growth potential based on bone maturity. Am J Orthod Dentofac Orthop. 2001;120(3):286–93.CrossRef
6.
go back to reference Mito T, Sato K, Mitani H. Predicting mandibular growth potential with cervical vertebral bone age. Am J Orthod Dentofac Orthop. 2003;124(2):173–7.CrossRef Mito T, Sato K, Mitani H. Predicting mandibular growth potential with cervical vertebral bone age. Am J Orthod Dentofac Orthop. 2003;124(2):173–7.CrossRef
7.
go back to reference Moshfeghi M, Rahimi H, Rahimi H, Nouri M, Bagheban AA. Predicting mandibular growth increment on the basis of cervical vertebral dimensions in Iranian girls. Prog Orthod. 2013;14(1):3.CrossRef Moshfeghi M, Rahimi H, Rahimi H, Nouri M, Bagheban AA. Predicting mandibular growth increment on the basis of cervical vertebral dimensions in Iranian girls. Prog Orthod. 2013;14(1):3.CrossRef
8.
go back to reference Franchi L, Nieri M, McNamara JA Jr, Giuntini V. Predicting mandibular growth based on CVM stage and gender and with chronological age as a curvilinear variable. Orthod Craniofac Res. 2021;24(3):414–20.CrossRef Franchi L, Nieri M, McNamara JA Jr, Giuntini V. Predicting mandibular growth based on CVM stage and gender and with chronological age as a curvilinear variable. Orthod Craniofac Res. 2021;24(3):414–20.CrossRef
9.
go back to reference Buschang PH, Tanguay R, LaPalme L, Demirjian A. Mandibular growth prediction: mean growth increments versus mathematical models. Eur J Orthod. 1990;12(3):290–6.CrossRef Buschang PH, Tanguay R, LaPalme L, Demirjian A. Mandibular growth prediction: mean growth increments versus mathematical models. Eur J Orthod. 1990;12(3):290–6.CrossRef
10.
go back to reference Gao XW, Hui R, Tian Z. Classification of CT brain images based on deep learning networks. Comput Methods Programs Biomed. 2017;138:49–56.CrossRef Gao XW, Hui R, Tian Z. Classification of CT brain images based on deep learning networks. Comput Methods Programs Biomed. 2017;138:49–56.CrossRef
11.
go back to reference Czajkowska J, Badura P, Korzekwa S, Płatkowska-Szczerek A, Słowińska M. Deep learning-based high-frequency ultrasound skin image classification with multicriteria model evaluation. Sensors (Basel). 2021;21(17):5846.CrossRef Czajkowska J, Badura P, Korzekwa S, Płatkowska-Szczerek A, Słowińska M. Deep learning-based high-frequency ultrasound skin image classification with multicriteria model evaluation. Sensors (Basel). 2021;21(17):5846.CrossRef
12.
go back to reference Anwar SM, Majid M, Qayyum A, Awais M, Alnowami M, Khan MK. Medical image analysis using convolutional neural networks: a review. J Med Syst. 2018;42(11):226.CrossRef Anwar SM, Majid M, Qayyum A, Awais M, Alnowami M, Khan MK. Medical image analysis using convolutional neural networks: a review. J Med Syst. 2018;42(11):226.CrossRef
13.
go back to reference Cantu AG, Gehrung S, Krois J, Chaurasia A, Rossi JG, Gaudin R, Elhennawy K, Schwendicke F. Detecting caries lesions of different radiographic extension on bitewings using deep learning. J Dent. 2020;100: 103425.CrossRef Cantu AG, Gehrung S, Krois J, Chaurasia A, Rossi JG, Gaudin R, Elhennawy K, Schwendicke F. Detecting caries lesions of different radiographic extension on bitewings using deep learning. J Dent. 2020;100: 103425.CrossRef
14.
go back to reference Fu Q, Chen Y, Li Z, Jing Q, Hu C, et al. A deep learning algorithm for detection of oral cavity squamous cell carcinoma from photographic images: a retrospective study. EClinicalMedicine. 2020;27: 100558.CrossRef Fu Q, Chen Y, Li Z, Jing Q, Hu C, et al. A deep learning algorithm for detection of oral cavity squamous cell carcinoma from photographic images: a retrospective study. EClinicalMedicine. 2020;27: 100558.CrossRef
15.
go back to reference Kim I, Misra D, Rodriguez L, Gill M, Liberton DK, Almpani K, Lee JS, Antani S. Malocclusion classification on 3D cone-beam CT craniofacial images using multi-channel deep learning models. Annu Int Conf IEEE Eng Med Biol Soc. 2020;2020:1294–8. Kim I, Misra D, Rodriguez L, Gill M, Liberton DK, Almpani K, Lee JS, Antani S. Malocclusion classification on 3D cone-beam CT craniofacial images using multi-channel deep learning models. Annu Int Conf IEEE Eng Med Biol Soc. 2020;2020:1294–8.
16.
go back to reference Yu HJ, Cho SR, Kim MJ, Kim WH, Kim JW, Choi J. Automated skeletal classification with lateral cephalometry based on artificial intelligence. J Dent Res. 2020;99(3):249–56.CrossRef Yu HJ, Cho SR, Kim MJ, Kim WH, Kim JW, Choi J. Automated skeletal classification with lateral cephalometry based on artificial intelligence. J Dent Res. 2020;99(3):249–56.CrossRef
17.
go back to reference Kerr WJ, Miller S, Dawber JE. Class III malocclusion: surgery or orthodontics? Br J Orthod. 1992;19(1):21–4.CrossRef Kerr WJ, Miller S, Dawber JE. Class III malocclusion: surgery or orthodontics? Br J Orthod. 1992;19(1):21–4.CrossRef
18.
go back to reference Yu H, Li J, Zhang L, Cao Y, Yu X, Sun J. Design of lung nodules segmentation and recognition algorithm based on deep learning. BMC Bioinform. 2021;22(Suppl 5):314.CrossRef Yu H, Li J, Zhang L, Cao Y, Yu X, Sun J. Design of lung nodules segmentation and recognition algorithm based on deep learning. BMC Bioinform. 2021;22(Suppl 5):314.CrossRef
19.
go back to reference Jiang H, Xu J, Shi R, Yang K, Zhang D, Gao M, Ma H, Qian W. A multi-label deep learning model with interpretable grad-CAM for diabetic retinopathy classification. Annu Int Conf IEEE Eng Med Biol Soc. 2020;2020:1560–3. Jiang H, Xu J, Shi R, Yang K, Zhang D, Gao M, Ma H, Qian W. A multi-label deep learning model with interpretable grad-CAM for diabetic retinopathy classification. Annu Int Conf IEEE Eng Med Biol Soc. 2020;2020:1560–3.
20.
go back to reference England JR, Cheng PM. Artificial intelligence for medical image analysis: a guide for authors and reviewers. AJR Am J Roentgenol. 2019;212(3):513–9.CrossRef England JR, Cheng PM. Artificial intelligence for medical image analysis: a guide for authors and reviewers. AJR Am J Roentgenol. 2019;212(3):513–9.CrossRef
21.
go back to reference Reyes BC, Baccetti T, McNamara JA Jr. An estimate of craniofacial growth in Class III malocclusion. Angle Orthod. 2006;76(4):577–84. Reyes BC, Baccetti T, McNamara JA Jr. An estimate of craniofacial growth in Class III malocclusion. Angle Orthod. 2006;76(4):577–84.
22.
go back to reference Tai K, Park JH, Ohmura S, Okadakage-Hayashi S. Timing of Class III treatment with unfavorable growth pattern. J Clin Pediatr Dent. 2014;38(4):370–9.CrossRef Tai K, Park JH, Ohmura S, Okadakage-Hayashi S. Timing of Class III treatment with unfavorable growth pattern. J Clin Pediatr Dent. 2014;38(4):370–9.CrossRef
23.
go back to reference Chan HP, Samala RK, Hadjiiski LM, Zhou C. Deep learning in medical image analysis. Adv Exp Med Biol. 2020;1213:3–21.CrossRef Chan HP, Samala RK, Hadjiiski LM, Zhou C. Deep learning in medical image analysis. Adv Exp Med Biol. 2020;1213:3–21.CrossRef
24.
go back to reference Yu X, Kang C, Guttery DS, Kadry S, Chen Y, Zhang YD. ResNet-SCDA-50 for breast abnormality classification. IEEE/ACM Trans Comput Biol Bioinform. 2021;18(1):94–102.CrossRef Yu X, Kang C, Guttery DS, Kadry S, Chen Y, Zhang YD. ResNet-SCDA-50 for breast abnormality classification. IEEE/ACM Trans Comput Biol Bioinform. 2021;18(1):94–102.CrossRef
25.
go back to reference Poplin R, Varadarajan AV, Blumer K, Liu Y, McConnell MV, Corrado GS, Peng L, Webster DR. Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nat Biomed Eng. 2018;2(3):158–64.CrossRef Poplin R, Varadarajan AV, Blumer K, Liu Y, McConnell MV, Corrado GS, Peng L, Webster DR. Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nat Biomed Eng. 2018;2(3):158–64.CrossRef
26.
go back to reference Buschang PH, Gandini Júnior LG. Mandibular skeletal growth and modelling between 10 and 15 years of age. Eur J Orthod. 2002;24(1):69–79.CrossRef Buschang PH, Gandini Júnior LG. Mandibular skeletal growth and modelling between 10 and 15 years of age. Eur J Orthod. 2002;24(1):69–79.CrossRef
27.
go back to reference Patcas R, Herzog G, Peltomäki T, Markic G. New perspectives on the relationship between mandibular and statural growth. Eur J Orthod. 2016;38(1):13–21.CrossRef Patcas R, Herzog G, Peltomäki T, Markic G. New perspectives on the relationship between mandibular and statural growth. Eur J Orthod. 2016;38(1):13–21.CrossRef
28.
go back to reference Brito FC, Brunetto DP, Nojima MCG. Three-dimensional study of the upper airway in different skeletal Class II malocclusion patterns. Angle Orthod. 2019;89(1):93–101.CrossRef Brito FC, Brunetto DP, Nojima MCG. Three-dimensional study of the upper airway in different skeletal Class II malocclusion patterns. Angle Orthod. 2019;89(1):93–101.CrossRef
29.
go back to reference Iwasaki T, Hayasaki H, Takemoto Y, Kanomi R, Yamasaki Y. Oropharyngeal airway in children with Class III malocclusion evaluated by cone-beam computed tomography. Am J Orthod Dentofac Orthop. 2009;136(3):318.CrossRef Iwasaki T, Hayasaki H, Takemoto Y, Kanomi R, Yamasaki Y. Oropharyngeal airway in children with Class III malocclusion evaluated by cone-beam computed tomography. Am J Orthod Dentofac Orthop. 2009;136(3):318.CrossRef
30.
go back to reference Zhang J, Liu W, Li W, Gao X. Three-dimensional evaluation of the upper airway in children of skeletal class III. J Craniofac Surg. 2017;28(2):394–400.CrossRef Zhang J, Liu W, Li W, Gao X. Three-dimensional evaluation of the upper airway in children of skeletal class III. J Craniofac Surg. 2017;28(2):394–400.CrossRef
Metadata
Title
Deep learning-based prediction of mandibular growth trend in children with anterior crossbite using cephalometric radiographs
Authors
Jia-Nan Zhang
Hai-Ping Lu
Jia Hou
Qiong Wang
Feng-Yang Yu
Chong Zhong
Cheng-Yi Huang
Si Chen
Publication date
01-12-2023
Publisher
BioMed Central
Published in
BMC Oral Health / Issue 1/2023
Electronic ISSN: 1472-6831
DOI
https://doi.org/10.1186/s12903-023-02734-4

Other articles of this Issue 1/2023

BMC Oral Health 1/2023 Go to the issue