Skip to main content
Top
Published in: BMC Oral Health 1/2023

Open Access 01-12-2023 | Research

Exploration of key factors in Gingival Crevicular fluids from patients undergoing Periodontally Accelerated Osteogenic Orthodontics (PAOO) using proteome analysis

Authors: Jiaqi Wu, Li Xu, Cuiying Li, Xiujing Wang, Jiuhui Jiang

Published in: BMC Oral Health | Issue 1/2023

Login to get access

Abstract

Background

The aims of this study are to explore protein changes in gingival crevicular fluid at different time points after PAOO by proteomics method and to select significant bone metabolization-related biomarkers.

Methods

This study included 10 adult patients experiencing PAOO. After orthodontic alignment and leveling, the maxillary anterior teeth were treated with PAOO, which is classified as the experimental area. The traditional orthodontic treatment was performed in the mandibular dentition as the control. Gingival crevicular fluid samples were collected at the following time points: the day before the PAOO (T1) and at 1 week, 2 weeks, 1 month, 2 months and 6 months after PAOO (T2, T3, T4, T5 and T6, respectively). The label-free quantitative proteomic assay was used to evaluate the gingival crevicular fluid in PAOO and control areas at time point T1, T2, and T4. Bioinformatics analysis was carried out to categorize proteins based on biological processes, cellular component and molecular function, which is in compliance with gene ontology (GO) standards. The changes of proteins were confirmed by ELISA.

Results

A total of 134 proteins were selected by keywords (Osteoblast markers, Osteoclast markers, Osteoclastogenesis regulating genes and inflammatory marker). 33 of them were statistically different between groups, and 12 were related to bone metabolism. 5 proteins selected by label-free quantitative proteomics were KLF10, SYT7, APOA1, FBN1 and NOTCH1. KLF10 decreased after PAOO, hitting a trough at T4, and then leveled off. SYT7 increased after PAOO, reaching a peak at T3, and then stabilized until T6. APOA1 ascended to a peak at T4 after PAOO, and then remained stable until T6. The FBN1 rose after PAOO, reaching a peak at T4, and then went down slowly. NOTCH1 ascended rapidly in the first two weeks after PAOO and continued its slow growth trend.

Conclusion

In this study, protein changes in gingival crevicular fluid were detected by proteomics method, and significant bone metabolization-related proteins were selected. It is speculated that APOA1, FBN1, NOTCH1, SYT7 and KLF10 played key roles in regulating bone metabolic balance and in reversible osteopenia after PAOO, which might be involved in the accelerated tooth movement.

Trial registration

This study was registered in the Chinese Clinical Trial Registry (Clinical trial registration number: ChiCTR-ONRC-13,004,129) (26/04/2013).
Appendix
Available only for authorised users
Literature
1.
go back to reference Ong MM, Wang HL. Periodontic and orthodontic treatment in adults. Am J Orthod Dentofacial Orthop. 2002;122(4):420–8.CrossRefPubMed Ong MM, Wang HL. Periodontic and orthodontic treatment in adults. Am J Orthod Dentofacial Orthop. 2002;122(4):420–8.CrossRefPubMed
2.
go back to reference Alghamdi AS. Corticotomy facilitated orthodontics: review of a technique. Saudi Dent J. 2010;22(1):1–5.CrossRefPubMed Alghamdi AS. Corticotomy facilitated orthodontics: review of a technique. Saudi Dent J. 2010;22(1):1–5.CrossRefPubMed
3.
go back to reference Alsino HI, Hajeer MY, Burhan AS, Alkhouri I, Darwich K. The effectiveness of Periodontally Accelerated Osteogenic Orthodontics (PAOO) in accelerating tooth Movement and supporting alveolar bone thickness during Orthodontic Treatment: a systematic review. Cureus. 2022;14(5):e24985.PubMedPubMedCentral Alsino HI, Hajeer MY, Burhan AS, Alkhouri I, Darwich K. The effectiveness of Periodontally Accelerated Osteogenic Orthodontics (PAOO) in accelerating tooth Movement and supporting alveolar bone thickness during Orthodontic Treatment: a systematic review. Cureus. 2022;14(5):e24985.PubMedPubMedCentral
4.
go back to reference Kamal AT, Malik DES, Fida M, Sukhia RH. Does periodontally accelerated osteogenic orthodontics improve orthodontic treatment outcome? A systematic review and meta-analysis. Int Orthod. 2019;17(2):193–201.CrossRefPubMed Kamal AT, Malik DES, Fida M, Sukhia RH. Does periodontally accelerated osteogenic orthodontics improve orthodontic treatment outcome? A systematic review and meta-analysis. Int Orthod. 2019;17(2):193–201.CrossRefPubMed
5.
go back to reference Frost HM. The regional acceleratory phenomenon: a review. Henry Ford Hosp Med J. 1983;31(1):3–9.PubMed Frost HM. The regional acceleratory phenomenon: a review. Henry Ford Hosp Med J. 1983;31(1):3–9.PubMed
6.
go back to reference Kernitsky JR, Ohira T, Shosho D, Lim J, Bamashmous A, Dibart S. Corticotomy depth and regional acceleratory phenomenon intensity. Angle Orthod. 2021;91(2):206–12.CrossRefPubMed Kernitsky JR, Ohira T, Shosho D, Lim J, Bamashmous A, Dibart S. Corticotomy depth and regional acceleratory phenomenon intensity. Angle Orthod. 2021;91(2):206–12.CrossRefPubMed
7.
go back to reference Lee W, Karapetyan G, Moats R, Yamashita DD, Moon HB, Ferguson DJ, et al. Corticotomy-/osteotomy-assisted tooth movement microCTs differ. J Dent Res. 2008;87(9):861–7.CrossRefPubMed Lee W, Karapetyan G, Moats R, Yamashita DD, Moon HB, Ferguson DJ, et al. Corticotomy-/osteotomy-assisted tooth movement microCTs differ. J Dent Res. 2008;87(9):861–7.CrossRefPubMed
8.
go back to reference Feller L, Khammissa RAG, Siebold A, Hugo A, Lemmer J. Biological events related to corticotomy-facilitated orthodontics. J Int Med Res. 2019;47(7):2856–64.CrossRefPubMedPubMedCentral Feller L, Khammissa RAG, Siebold A, Hugo A, Lemmer J. Biological events related to corticotomy-facilitated orthodontics. J Int Med Res. 2019;47(7):2856–64.CrossRefPubMedPubMedCentral
9.
go back to reference Kapoor P, Monga N, Kharbanda OP, Kapila S, Miglani R, Moganty R. Effect of orthodontic forces on levels of enzymes in gingival crevicular fluid (GCF): a systematic review. Dent Press J Orthod. 2019;24(2):40. e1- e22.CrossRef Kapoor P, Monga N, Kharbanda OP, Kapila S, Miglani R, Moganty R. Effect of orthodontic forces on levels of enzymes in gingival crevicular fluid (GCF): a systematic review. Dent Press J Orthod. 2019;24(2):40. e1- e22.CrossRef
10.
go back to reference Pang M, Bai XY, Li Y, Bai JZ, Yuan LR, Ren SA, et al. Label-free LC-MS/MS shotgun proteomics to investigate the anti-inflammatory effect of rCC16. Mol Med Rep. 2016;14(5):4496–504.CrossRefPubMedPubMedCentral Pang M, Bai XY, Li Y, Bai JZ, Yuan LR, Ren SA, et al. Label-free LC-MS/MS shotgun proteomics to investigate the anti-inflammatory effect of rCC16. Mol Med Rep. 2016;14(5):4496–504.CrossRefPubMedPubMedCentral
11.
go back to reference Liu Q, Pan L, Han F, Luo B, Jia H, Xing A, et al. Proteomic profiling for plasma biomarkers of Tuberculosis progression. Mol Med Rep. 2018;18(2):1551–9.PubMedPubMedCentral Liu Q, Pan L, Han F, Luo B, Jia H, Xing A, et al. Proteomic profiling for plasma biomarkers of Tuberculosis progression. Mol Med Rep. 2018;18(2):1551–9.PubMedPubMedCentral
13.
go back to reference Kanehisa M, Furumichi M, Sato Y, Kawashima M, Ishiguro-Watanabe M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 2023;51(D1):D587–D92.CrossRefPubMed Kanehisa M, Furumichi M, Sato Y, Kawashima M, Ishiguro-Watanabe M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 2023;51(D1):D587–D92.CrossRefPubMed
15.
go back to reference Wu JQ, Jiang JH, Xu L, Liang C, Wang XJ, Bai Y. Magnetic bead-based Salivary Peptidome profiling for accelerated osteogenic Orthodontic treatments. Chin J Dent Res. 2018;21(1):41–9.PubMed Wu JQ, Jiang JH, Xu L, Liang C, Wang XJ, Bai Y. Magnetic bead-based Salivary Peptidome profiling for accelerated osteogenic Orthodontic treatments. Chin J Dent Res. 2018;21(1):41–9.PubMed
16.
go back to reference Perrin RJ, Payton JE, Malone JP, Gilmore P, Davis AE, Xiong C, et al. Quantitative label-free proteomics for discovery of biomarkers in cerebrospinal fluid: assessment of technical and inter-individual variation. PLoS ONE. 2013;8(5):e64314.CrossRefPubMedPubMedCentral Perrin RJ, Payton JE, Malone JP, Gilmore P, Davis AE, Xiong C, et al. Quantitative label-free proteomics for discovery of biomarkers in cerebrospinal fluid: assessment of technical and inter-individual variation. PLoS ONE. 2013;8(5):e64314.CrossRefPubMedPubMedCentral
17.
go back to reference Sun H, Pan L, Jia H, Zhang Z, Gao M, Huang M, et al. Label-free quantitative proteomics identifies Novel plasma biomarkers for distinguishing pulmonary Tuberculosis and latent Infection. Front Microbiol. 2018;9:1267.CrossRefPubMedPubMedCentral Sun H, Pan L, Jia H, Zhang Z, Gao M, Huang M, et al. Label-free quantitative proteomics identifies Novel plasma biomarkers for distinguishing pulmonary Tuberculosis and latent Infection. Front Microbiol. 2018;9:1267.CrossRefPubMedPubMedCentral
18.
go back to reference Hawse JR, Cicek M, Grygo SB, Bruinsma ES, Rajamannan NM, van Wijnen AJ, et al. TIEG1/KLF10 modulates Runx2 expression and activity in osteoblasts. PLoS ONE. 2011;6(4):e19429.CrossRefPubMedPubMedCentral Hawse JR, Cicek M, Grygo SB, Bruinsma ES, Rajamannan NM, van Wijnen AJ, et al. TIEG1/KLF10 modulates Runx2 expression and activity in osteoblasts. PLoS ONE. 2011;6(4):e19429.CrossRefPubMedPubMedCentral
19.
go back to reference Subramaniam M, Pitel KS, Withers SG, Drissi H, Hawse JR. TIEG1 enhances Osterix expression and mediates its induction by TGFbeta and BMP2 in osteoblasts. Biochem Biophys Res Commun. 2016;470(3):528–33.CrossRefPubMedPubMedCentral Subramaniam M, Pitel KS, Withers SG, Drissi H, Hawse JR. TIEG1 enhances Osterix expression and mediates its induction by TGFbeta and BMP2 in osteoblasts. Biochem Biophys Res Commun. 2016;470(3):528–33.CrossRefPubMedPubMedCentral
20.
go back to reference Lee JM, Ko JY, Park JW, Lee WK, Song SU, Im GI. KLF10 is a modulatory factor of chondrocyte hypertrophy in developing skeleton. J Orthop Res. 2020;38(9):1987–95.CrossRefPubMed Lee JM, Ko JY, Park JW, Lee WK, Song SU, Im GI. KLF10 is a modulatory factor of chondrocyte hypertrophy in developing skeleton. J Orthop Res. 2020;38(9):1987–95.CrossRefPubMed
21.
go back to reference Zhao H, Ito Y, Chappel J, Andrews NW, Teitelbaum SL, Ross FP. Synaptotagmin VII regulates bone remodeling by modulating osteoclast and osteoblast secretion. Dev Cell. 2008;14(6):914–25.CrossRefPubMedPubMedCentral Zhao H, Ito Y, Chappel J, Andrews NW, Teitelbaum SL, Ross FP. Synaptotagmin VII regulates bone remodeling by modulating osteoclast and osteoblast secretion. Dev Cell. 2008;14(6):914–25.CrossRefPubMedPubMedCentral
22.
go back to reference Blair HC, Kalyvioti E, Papachristou NI, Tourkova IL, Syggelos SA, Deligianni D, et al. Apolipoprotein A-1 regulates osteoblast and lipoblast precursor cells in mice. Lab Invest. 2016;96(7):763–72.CrossRefPubMed Blair HC, Kalyvioti E, Papachristou NI, Tourkova IL, Syggelos SA, Deligianni D, et al. Apolipoprotein A-1 regulates osteoblast and lipoblast precursor cells in mice. Lab Invest. 2016;96(7):763–72.CrossRefPubMed
23.
go back to reference Nistala H, Lee-Arteaga S, Carta L, Cook JR, Smaldone S, Siciliano G, et al. Differential effects of alendronate and losartan therapy on osteopenia and aortic Aneurysm in mice with severe Marfan Syndrome. Hum Mol Genet. 2010;19(24):4790–8.CrossRefPubMedPubMedCentral Nistala H, Lee-Arteaga S, Carta L, Cook JR, Smaldone S, Siciliano G, et al. Differential effects of alendronate and losartan therapy on osteopenia and aortic Aneurysm in mice with severe Marfan Syndrome. Hum Mol Genet. 2010;19(24):4790–8.CrossRefPubMedPubMedCentral
24.
go back to reference Sekine C, Koyanagi A, Koyama N, Hozumi K, Chiba S, Yagita H. Differential regulation of osteoclastogenesis by Notch2/Delta-like 1 and Notch1/Jagged1 axes. Arthritis Res Ther. 2012;14(2):R45.CrossRefPubMedPubMedCentral Sekine C, Koyanagi A, Koyama N, Hozumi K, Chiba S, Yagita H. Differential regulation of osteoclastogenesis by Notch2/Delta-like 1 and Notch1/Jagged1 axes. Arthritis Res Ther. 2012;14(2):R45.CrossRefPubMedPubMedCentral
25.
go back to reference Baloul SS, Gerstenfeld LC, Morgan EF, Carvalho RS, Van Dyke TE, Kantarci A. Mechanism of action and morphologic changes in the alveolar bone in response to selective alveolar decortication-facilitated tooth movement. Am J Orthod Dentofacial Orthop. 2011;139(4 Suppl):83–101.CrossRef Baloul SS, Gerstenfeld LC, Morgan EF, Carvalho RS, Van Dyke TE, Kantarci A. Mechanism of action and morphologic changes in the alveolar bone in response to selective alveolar decortication-facilitated tooth movement. Am J Orthod Dentofacial Orthop. 2011;139(4 Suppl):83–101.CrossRef
26.
go back to reference Kapoor P, Kharbanda OP, Monga N, Miglani R, Kapila S. Effect of orthodontic forces on cytokine and receptor levels in gingival crevicular fluid: a systematic review. Prog Orthod. 2014;15:65.CrossRefPubMedPubMedCentral Kapoor P, Kharbanda OP, Monga N, Miglani R, Kapila S. Effect of orthodontic forces on cytokine and receptor levels in gingival crevicular fluid: a systematic review. Prog Orthod. 2014;15:65.CrossRefPubMedPubMedCentral
Metadata
Title
Exploration of key factors in Gingival Crevicular fluids from patients undergoing Periodontally Accelerated Osteogenic Orthodontics (PAOO) using proteome analysis
Authors
Jiaqi Wu
Li Xu
Cuiying Li
Xiujing Wang
Jiuhui Jiang
Publication date
01-12-2023
Publisher
BioMed Central
Published in
BMC Oral Health / Issue 1/2023
Electronic ISSN: 1472-6831
DOI
https://doi.org/10.1186/s12903-023-03606-7

Other articles of this Issue 1/2023

BMC Oral Health 1/2023 Go to the issue