Skip to main content
Top
Published in: Diabetes Therapy 8/2023

Open Access 07-06-2023 | Cytokines | Brief Report

Circulating Cytokine Levels and Cardiovascular Disease Risk Profile in Young Adult Offspring of Women with Type 1 Diabetes

Authors: Erik Somersalo, Krista Kuuliala, Antti Kuuliala, Niko S. Wasenius, Miira M. Klemetti, Anne S. Kivimäki, Hannu Kautiainen, Johan G. Eriksson, Merja K. Laine

Published in: Diabetes Therapy | Issue 8/2023

Login to get access

Abstract

Introduction

Cytokines are key players in the development of both type 1 diabetes (T1D) and cardiovascular disease (CVD). Offspring of women with T1D are known to have an increased risk of early-onset CVD. We studied whether an increased risk of CVD can be observed in the cytokine profile among young adult offspring of women with T1D.

Methods

This cross-sectional case–control study included 67 offspring of women with T1D (cases) and 79 control participants (controls). At an age of 18–23 years, they participated in a clinical assessment including laboratory tests and questionnaires. Cytokine levels were analyzed from venous blood samples after 10 h fasting using Quansys biosciences Q-Plex™ High Sensitivity Human Cytokine Array.

Results

Circulating cytokine levels were in general similar between the groups. The circulating levels of interferon-γ (1.78 [IQR 1.20, 2.36] pg/mL versus 2.57 [IQR 1.50, 3.89] pg/mL) (p = 0.006) were lower in cases than controls.

Conclusion

The findings did not support our hypothesis that serum cytokine profile, determined in early adulthood, was associated with a more adverse CVD risk profile in offspring of women with T1D. Further studies are warranted to find out whether cytokines could serve as early biomarkers of CVD development or whether changes in the cytokine levels over years could be used to monitor CVD progression in offspring of women with T1D.
Literature
2.
go back to reference Olli Silvennoinen MH. Uutta sytokiineista. Lääketieteellinen aikakauskirja Duodecim. 2003;119(8):773–9. Olli Silvennoinen MH. Uutta sytokiineista. Lääketieteellinen aikakauskirja Duodecim. 2003;119(8):773–9.
3.
go back to reference Lu J, Liu J, Li L, Lan Y, Liang Y. Cytokines in type 1 diabetes: mechanisms of action and immunotherapeutic targets. Clin Transl Immunol. 2020;9(3): e1122.CrossRef Lu J, Liu J, Li L, Lan Y, Liang Y. Cytokines in type 1 diabetes: mechanisms of action and immunotherapeutic targets. Clin Transl Immunol. 2020;9(3): e1122.CrossRef
4.
go back to reference Marroqui L, Perez-Serna AA, Babiloni-Chust I, Dos Santos RS. Type I interferons as key players in pancreatic β-cell dysfunction in type 1 diabetes. Int Rev Cell Mol Biol. 2021;359:1–80.CrossRefPubMed Marroqui L, Perez-Serna AA, Babiloni-Chust I, Dos Santos RS. Type I interferons as key players in pancreatic β-cell dysfunction in type 1 diabetes. Int Rev Cell Mol Biol. 2021;359:1–80.CrossRefPubMed
5.
go back to reference Lopez-Lopez J, Lopez-Jaramillo P, Camacho PA, Gomez-Arbelaez D, Cohen DD. The link between fetal programming, inflammation, muscular strength, and blood pressure. Mediators Inflamm. 2015;2015: 710613.CrossRefPubMedPubMedCentral Lopez-Lopez J, Lopez-Jaramillo P, Camacho PA, Gomez-Arbelaez D, Cohen DD. The link between fetal programming, inflammation, muscular strength, and blood pressure. Mediators Inflamm. 2015;2015: 710613.CrossRefPubMedPubMedCentral
6.
go back to reference Randeria SN, Thomson GJA, Nell TA, Roberts T, Pretorius E. Inflammatory cytokines in type 2 diabetes mellitus as facilitators of hypercoagulation and abnormal clot formation. Cardiovasc Diabetol. 2019;18(1):72.CrossRefPubMedPubMedCentral Randeria SN, Thomson GJA, Nell TA, Roberts T, Pretorius E. Inflammatory cytokines in type 2 diabetes mellitus as facilitators of hypercoagulation and abnormal clot formation. Cardiovasc Diabetol. 2019;18(1):72.CrossRefPubMedPubMedCentral
7.
go back to reference Schmidt FM, Weschenfelder J, Sander C, et al. Inflammatory cytokines in general and central obesity and modulating effects of physical activity. PLoS ONE. 2015;10(3):e0121971.CrossRefPubMedPubMedCentral Schmidt FM, Weschenfelder J, Sander C, et al. Inflammatory cytokines in general and central obesity and modulating effects of physical activity. PLoS ONE. 2015;10(3):e0121971.CrossRefPubMedPubMedCentral
9.
go back to reference Kawasaki M, Arata N, Miyazaki C, et al. Obesity and abnormal glucose tolerance in offspring of diabetic mothers: a systematic review and meta-analysis. PLoS ONE. 2018;13(1):e0190676.CrossRefPubMedPubMedCentral Kawasaki M, Arata N, Miyazaki C, et al. Obesity and abnormal glucose tolerance in offspring of diabetic mothers: a systematic review and meta-analysis. PLoS ONE. 2018;13(1):e0190676.CrossRefPubMedPubMedCentral
10.
go back to reference Boisen AB, Knorr S, Hansen TK, et al. Signs of low-grade systemic inflammation in female offspring of women with type 1 diabetes: the EPICOM study. Diabetes Metab. 2016;42(6):462–5.CrossRefPubMed Boisen AB, Knorr S, Hansen TK, et al. Signs of low-grade systemic inflammation in female offspring of women with type 1 diabetes: the EPICOM study. Diabetes Metab. 2016;42(6):462–5.CrossRefPubMed
11.
go back to reference Vlachova Z, Bytoft B, Knorr S, et al. Increased metabolic risk in adolescent offspring of mothers with type 1 diabetes: the EPICOM study. Diabetologia. 2015;58(7):1454–63.CrossRefPubMed Vlachova Z, Bytoft B, Knorr S, et al. Increased metabolic risk in adolescent offspring of mothers with type 1 diabetes: the EPICOM study. Diabetologia. 2015;58(7):1454–63.CrossRefPubMed
12.
go back to reference Clausen TD, Mathiesen ER, Hansen T, et al. High prevalence of type 2 diabetes and pre-diabetes in adult offspring of women with gestational diabetes mellitus or type 1 diabetes: the role of intrauterine hyperglycemia. Diabetes Care. 2008;31(2):340–6.CrossRefPubMed Clausen TD, Mathiesen ER, Hansen T, et al. High prevalence of type 2 diabetes and pre-diabetes in adult offspring of women with gestational diabetes mellitus or type 1 diabetes: the role of intrauterine hyperglycemia. Diabetes Care. 2008;31(2):340–6.CrossRefPubMed
13.
go back to reference Weiss PA, Scholz HS, Haas J, Tamussino KF, Seissler J, Borkenstein MH. Long-term follow-up of infants of mothers with type 1 diabetes: evidence for hereditary and nonhereditary transmission of diabetes and precursors. Diabetes Care. 2000;23(7):905–11.CrossRefPubMed Weiss PA, Scholz HS, Haas J, Tamussino KF, Seissler J, Borkenstein MH. Long-term follow-up of infants of mothers with type 1 diabetes: evidence for hereditary and nonhereditary transmission of diabetes and precursors. Diabetes Care. 2000;23(7):905–11.CrossRefPubMed
14.
go back to reference Mitanchez D, Yzydorczyk C, Siddeek B, Boubred F, Benahmed M, Simeoni U. The offspring of the diabetic mother–short- and long-term implications. Best Pract Res Clin Obstet Gynaecol. 2015;29(2):256–69.CrossRefPubMed Mitanchez D, Yzydorczyk C, Siddeek B, Boubred F, Benahmed M, Simeoni U. The offspring of the diabetic mother–short- and long-term implications. Best Pract Res Clin Obstet Gynaecol. 2015;29(2):256–69.CrossRefPubMed
15.
go back to reference Pathirana MM, Lassi ZS, Roberts CT, Andraweera PH. Cardiovascular risk factors in offspring exposed to gestational diabetes mellitus in utero: systematic review and meta-analysis. J Dev Orig Health Dis. 2020;11(6):599–616.CrossRefPubMed Pathirana MM, Lassi ZS, Roberts CT, Andraweera PH. Cardiovascular risk factors in offspring exposed to gestational diabetes mellitus in utero: systematic review and meta-analysis. J Dev Orig Health Dis. 2020;11(6):599–616.CrossRefPubMed
17.
go back to reference Silverman BL, Rizzo TA, Cho NH, Metzger BE. Long-term effects of the intrauterine environment. The Northwestern University Diabetes in Pregnancy Center. Diabetes Care. 1998;21(2):B142–9.PubMed Silverman BL, Rizzo TA, Cho NH, Metzger BE. Long-term effects of the intrauterine environment. The Northwestern University Diabetes in Pregnancy Center. Diabetes Care. 1998;21(2):B142–9.PubMed
18.
go back to reference Assadi F, Mazaheri M. Long-term cardiometabolic consequences among adolescent offspring born to women with type1 diabetes. Prim Care Diabetes. 2022;16(1):122–6.CrossRefPubMed Assadi F, Mazaheri M. Long-term cardiometabolic consequences among adolescent offspring born to women with type1 diabetes. Prim Care Diabetes. 2022;16(1):122–6.CrossRefPubMed
19.
go back to reference Elyasi A, Voloshyna I, Ahmed S, et al. The role of interferon-γ in cardiovascular disease: an update. Inflamm Res. 2020;69(10):975–88.CrossRefPubMed Elyasi A, Voloshyna I, Ahmed S, et al. The role of interferon-γ in cardiovascular disease: an update. Inflamm Res. 2020;69(10):975–88.CrossRefPubMed
20.
go back to reference Bergström I, Backteman K, Lundberg A, Ernerudh J, Jonasson L. Persistent accumulation of interferon-γ-producing CD8+CD56+ T cells in blood from patients with coronary artery disease. Atherosclerosis. 2012;224(2):515–20.CrossRefPubMed Bergström I, Backteman K, Lundberg A, Ernerudh J, Jonasson L. Persistent accumulation of interferon-γ-producing CD8+CD56+ T cells in blood from patients with coronary artery disease. Atherosclerosis. 2012;224(2):515–20.CrossRefPubMed
21.
go back to reference Ding R, Gao W, He Z, et al. Circulating CD4(+)CXCR5(+) T cells contribute to proinflammatory responses in multiple ways in coronary artery disease. Int Immunopharmacol. 2017;52:318–23.CrossRefPubMed Ding R, Gao W, He Z, et al. Circulating CD4(+)CXCR5(+) T cells contribute to proinflammatory responses in multiple ways in coronary artery disease. Int Immunopharmacol. 2017;52:318–23.CrossRefPubMed
22.
go back to reference Eid RE, Rao DA, Zhou J, et al. Interleukin-17 and interferon-gamma are produced concomitantly by human coronary artery-infiltrating T cells and act synergistically on vascular smooth muscle cells. Circulation. 2009;119(10):1424–32.CrossRefPubMedPubMedCentral Eid RE, Rao DA, Zhou J, et al. Interleukin-17 and interferon-gamma are produced concomitantly by human coronary artery-infiltrating T cells and act synergistically on vascular smooth muscle cells. Circulation. 2009;119(10):1424–32.CrossRefPubMedPubMedCentral
23.
go back to reference Liu C, Yu Z, Chen H, et al. Relationship between immunoinflammation and coronary physiology evaluated by quantitative flow ratio in patients with coronary artery disease. Front Cardiovasc Med. 2021;8: 714276.CrossRefPubMedPubMedCentral Liu C, Yu Z, Chen H, et al. Relationship between immunoinflammation and coronary physiology evaluated by quantitative flow ratio in patients with coronary artery disease. Front Cardiovasc Med. 2021;8: 714276.CrossRefPubMedPubMedCentral
24.
go back to reference Inoue T, Komoda H, Nonaka M, Kameda M, Uchida T, Node K. Interleukin-8 as an independent predictor of long-term clinical outcome in patients with coronary artery disease. Int J Cardiol. 2008;124(3):319–25.CrossRefPubMed Inoue T, Komoda H, Nonaka M, Kameda M, Uchida T, Node K. Interleukin-8 as an independent predictor of long-term clinical outcome in patients with coronary artery disease. Int J Cardiol. 2008;124(3):319–25.CrossRefPubMed
25.
go back to reference Koczwara K, Bonifacio E, Ziegler AG. Transmission of maternal islet antibodies and risk of autoimmune diabetes in offspring of mothers with type 1 diabetes. Diabetes. 2004;53(1):1–4.CrossRefPubMed Koczwara K, Bonifacio E, Ziegler AG. Transmission of maternal islet antibodies and risk of autoimmune diabetes in offspring of mothers with type 1 diabetes. Diabetes. 2004;53(1):1–4.CrossRefPubMed
26.
go back to reference Holm BC, Svensson J, Akesson C, et al. Evidence for immunological priming and increased frequency of CD4+ CD25+ cord blood T cells in children born to mothers with type 1 diabetes. Clin Exp Immunol. 2006;146(3):493–502.CrossRefPubMedPubMedCentral Holm BC, Svensson J, Akesson C, et al. Evidence for immunological priming and increased frequency of CD4+ CD25+ cord blood T cells in children born to mothers with type 1 diabetes. Clin Exp Immunol. 2006;146(3):493–502.CrossRefPubMedPubMedCentral
27.
go back to reference Knorr S, Lydolph MC, Bytoft B, et al. GAD65 autoantibodies and glucose tolerance in offspring born to women with and without type 1 diabetes (the EPICOM study). Endocrinol Diabetes Metab. 2022;5(1):e00310.CrossRefPubMed Knorr S, Lydolph MC, Bytoft B, et al. GAD65 autoantibodies and glucose tolerance in offspring born to women with and without type 1 diabetes (the EPICOM study). Endocrinol Diabetes Metab. 2022;5(1):e00310.CrossRefPubMed
28.
go back to reference Vaseghi H, Sanati MH, Jadali Z. T-helper cell type-1 transcription factor T-bet is down-regulated in type 1 diabetes. Iran J Allergy Asthma Immunol. 2016;15(5):386–93.PubMed Vaseghi H, Sanati MH, Jadali Z. T-helper cell type-1 transcription factor T-bet is down-regulated in type 1 diabetes. Iran J Allergy Asthma Immunol. 2016;15(5):386–93.PubMed
29.
go back to reference Zilverschoon GR, Tack CJ, Joosten LA, Kullberg BJ, van der Meer JW, Netea MG. Interleukin-18 resistance in patients with obesity and type 2 diabetes mellitus. Int J Obes (Lond). 2008;32(9):1407–14.CrossRefPubMed Zilverschoon GR, Tack CJ, Joosten LA, Kullberg BJ, van der Meer JW, Netea MG. Interleukin-18 resistance in patients with obesity and type 2 diabetes mellitus. Int J Obes (Lond). 2008;32(9):1407–14.CrossRefPubMed
30.
go back to reference Tsiavou A, Hatziagelaki E, Chaidaroglou A, Koniavitou K, Degiannis D, Raptis SA. Correlation between intracellular interferon-gamma (IFN-gamma) production by CD4+ and CD8+ lymphocytes and IFN-gamma gene polymorphism in patients with type 2 diabetes mellitus and latent autoimmune diabetes of adults (LADA). Cytokine. 2005;31(2):135–41.CrossRefPubMed Tsiavou A, Hatziagelaki E, Chaidaroglou A, Koniavitou K, Degiannis D, Raptis SA. Correlation between intracellular interferon-gamma (IFN-gamma) production by CD4+ and CD8+ lymphocytes and IFN-gamma gene polymorphism in patients with type 2 diabetes mellitus and latent autoimmune diabetes of adults (LADA). Cytokine. 2005;31(2):135–41.CrossRefPubMed
31.
go back to reference Costa FRC, Leite JA, Rassi DM, et al. NLRP1 acts as a negative regulator of Th17 cell programming in mice and humans with autoimmune diabetes. Cell Rep. 2021;35(8):109176.CrossRefPubMed Costa FRC, Leite JA, Rassi DM, et al. NLRP1 acts as a negative regulator of Th17 cell programming in mice and humans with autoimmune diabetes. Cell Rep. 2021;35(8):109176.CrossRefPubMed
32.
go back to reference Simioni PU, Costa EH, Tamashiro WM. Aging reduces the primary humoral response and the in vitro cytokine production in mice. Braz J Med Biol Res. 2007;40(8):1111–20.CrossRefPubMed Simioni PU, Costa EH, Tamashiro WM. Aging reduces the primary humoral response and the in vitro cytokine production in mice. Braz J Med Biol Res. 2007;40(8):1111–20.CrossRefPubMed
33.
go back to reference Walker EM, Slisarenko N, Gerrets GL, et al. Inflammaging phenotype in rhesus macaques is associated with a decline in epithelial barrier-protective functions and increased pro-inflammatory function in CD161-expressing cells. Geroscience. 2019;41(6):739–57.CrossRefPubMedPubMedCentral Walker EM, Slisarenko N, Gerrets GL, et al. Inflammaging phenotype in rhesus macaques is associated with a decline in epithelial barrier-protective functions and increased pro-inflammatory function in CD161-expressing cells. Geroscience. 2019;41(6):739–57.CrossRefPubMedPubMedCentral
34.
go back to reference Forsey RJ, Thompson JM, Ernerudh J, et al. Plasma cytokine profiles in elderly humans. Mech Ageing Dev. 2003;124(4):487–93.CrossRefPubMed Forsey RJ, Thompson JM, Ernerudh J, et al. Plasma cytokine profiles in elderly humans. Mech Ageing Dev. 2003;124(4):487–93.CrossRefPubMed
35.
go back to reference Valiathan R, Ashman M, Asthana D. Effects of ageing on the immune system: infants to elderly. Scand J Immunol. 2016;83(4):255–66.CrossRefPubMed Valiathan R, Ashman M, Asthana D. Effects of ageing on the immune system: infants to elderly. Scand J Immunol. 2016;83(4):255–66.CrossRefPubMed
Metadata
Title
Circulating Cytokine Levels and Cardiovascular Disease Risk Profile in Young Adult Offspring of Women with Type 1 Diabetes
Authors
Erik Somersalo
Krista Kuuliala
Antti Kuuliala
Niko S. Wasenius
Miira M. Klemetti
Anne S. Kivimäki
Hannu Kautiainen
Johan G. Eriksson
Merja K. Laine
Publication date
07-06-2023
Publisher
Springer Healthcare
Published in
Diabetes Therapy / Issue 8/2023
Print ISSN: 1869-6953
Electronic ISSN: 1869-6961
DOI
https://doi.org/10.1007/s13300-023-01428-y

Other articles of this Issue 8/2023

Diabetes Therapy 8/2023 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine