Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2020

01-12-2020 | Cytokines | Research

A primary neural cell culture model to study neuron, astrocyte, and microglia interactions in neuroinflammation

Authors: Noah Goshi, Rhianna K. Morgan, Pamela J. Lein, Erkin Seker

Published in: Journal of Neuroinflammation | Issue 1/2020

Login to get access

Abstract

Background

Interactions between neurons, astrocytes, and microglia critically influence neuroinflammatory responses to insult in the central nervous system. In vitro astrocyte and microglia cultures are powerful tools to study specific molecular pathways involved in neuroinflammation; however, in order to better understand the influence of cellular crosstalk on neuroinflammation, new multicellular culture models are required.

Methods

Primary cortical cells taken from neonatal rats were cultured in a serum-free “tri-culture” medium formulated to support neurons, astrocytes, and microglia, or a “co-culture” medium formulated to support only neurons and astrocytes. Caspase 3/7 activity and morphological changes were used to quantify the response of the two culture types to different neuroinflammatory stimuli mimicking sterile bacterial infection (lipopolysaccharide (LPS) exposure), mechanical injury (scratch), and seizure activity (glutamate-induced excitotoxicity). The secreted cytokine profile of control and LPS-exposed co- and tri-cultures were also compared.

Results

The tri-culture maintained a physiologically relevant representation of neurons, astrocytes, and microglia for 14 days in vitro, while the co-cultures maintained a similar population of neurons and astrocytes, but lacked microglia. The continuous presence of microglia did not negatively impact the overall health of the neurons in the tri-culture, which showed reduced caspase 3/7 activity and similar neurite outgrowth as the co-cultures, along with an increase in the microglia-secreted neurotrophic factor IGF-1 and a significantly reduced concentration of CX3CL1 in the conditioned media. LPS-exposed tri-cultures showed significant astrocyte hypertrophy, increase in caspase 3/7 activity, and the secretion of a number of pro-inflammatory cytokines (e.g., TNF, IL-1α, IL-1β, and IL-6), none of which were observed in LPS-exposed co-cultures. Following mechanical trauma, the tri-culture showed increased caspase 3/7 activity, as compared to the co-culture, along with increased astrocyte migration towards the source of injury. Finally, the microglia in the tri-culture played a significant neuroprotective role during glutamate-induced excitotoxicity, with significantly reduced neuron loss and astrocyte hypertrophy in the tri-culture.

Conclusions

The tri-culture consisting of neurons, astrocytes, and microglia more faithfully mimics in vivo neuroinflammatory responses than standard mono- and co-cultures. This tri-culture can be a useful tool to study neuroinflammation in vitro with improved accuracy in predicting in vivo neuroinflammatory phenomena.
Appendix
Available only for authorised users
Literature
2.
4.
go back to reference Eggen BJL, Raj D, Hanisch U. Microglial phenotype and adaptation. J Neuroimmune Pharmacol. 2013;8:807–23.PubMedCrossRef Eggen BJL, Raj D, Hanisch U. Microglial phenotype and adaptation. J Neuroimmune Pharmacol. 2013;8:807–23.PubMedCrossRef
5.
go back to reference Jensen CJ, Massie A, De Keyser J. Immune players in the CNS: the astrocyte. J Neuroimmune Pharmacol. 2013;8:824–39.PubMedCrossRef Jensen CJ, Massie A, De Keyser J. Immune players in the CNS: the astrocyte. J Neuroimmune Pharmacol. 2013;8:824–39.PubMedCrossRef
6.
go back to reference Polikov VS, Tresco PA, Reichert WM. Response of brain tissue to chronically implanted neural electrodes. J Neurosci Methods. 2005;148:1–18.PubMedCrossRef Polikov VS, Tresco PA, Reichert WM. Response of brain tissue to chronically implanted neural electrodes. J Neurosci Methods. 2005;148:1–18.PubMedCrossRef
10.
go back to reference Jha MK, Jo M, Kim JH, Suk K. Microglia-astrocyte crosstalk: an intimate molecular conversation. Neuroscientist. 2019;25:227–40.PubMedCrossRef Jha MK, Jo M, Kim JH, Suk K. Microglia-astrocyte crosstalk: an intimate molecular conversation. Neuroscientist. 2019;25:227–40.PubMedCrossRef
11.
go back to reference Szepesi Z, Manouchehrian O, Bachiller S, Deierborg T. Bidirectional microglia – neuron communication in health and disease. Front Cell Neurosci. 2018;12:323.PubMedPubMedCentralCrossRef Szepesi Z, Manouchehrian O, Bachiller S, Deierborg T. Bidirectional microglia – neuron communication in health and disease. Front Cell Neurosci. 2018;12:323.PubMedPubMedCentralCrossRef
12.
go back to reference Guttenplan KA, Liddelow SA. Astrocytes and microglia : models and tools. J Exp Med. 2018;216:71–83.PubMedCrossRef Guttenplan KA, Liddelow SA. Astrocytes and microglia : models and tools. J Exp Med. 2018;216:71–83.PubMedCrossRef
13.
go back to reference Harry GJ, Kraft AD. Neuroinflammation and microglia: considerations and approaches for neurotoxicity assessment. Expert Opin Drug Metab Toxicol. 2008;4:1265–77.PubMedPubMedCentralCrossRef Harry GJ, Kraft AD. Neuroinflammation and microglia: considerations and approaches for neurotoxicity assessment. Expert Opin Drug Metab Toxicol. 2008;4:1265–77.PubMedPubMedCentralCrossRef
14.
go back to reference Luna-Medina R, Cortes-Canteli M, Alonso M, Santos A, Perez-Castillo A. Regulation of inflammatory response in neural cells in vitro by thiadiazolidinones derivatives through peroxisome proliferator-activated receptor γ activation. J Biol Chem. 2005;280:21453–62.PubMedCrossRef Luna-Medina R, Cortes-Canteli M, Alonso M, Santos A, Perez-Castillo A. Regulation of inflammatory response in neural cells in vitro by thiadiazolidinones derivatives through peroxisome proliferator-activated receptor γ activation. J Biol Chem. 2005;280:21453–62.PubMedCrossRef
16.
go back to reference Culbert AA, Skaper SD, Howlett DR, Evans NA, Facci L, Soden PE, et al. MAPK-activated protein kinase 2 deficiency in microglia inhibits pro-inflammatory mediator release and resultant neurotoxicity. Relevance to neuroinflammation in a transgenic mouse model of alzheimer disease *. J Biol Chem. 2006;281:23658–67.PubMedCrossRef Culbert AA, Skaper SD, Howlett DR, Evans NA, Facci L, Soden PE, et al. MAPK-activated protein kinase 2 deficiency in microglia inhibits pro-inflammatory mediator release and resultant neurotoxicity. Relevance to neuroinflammation in a transgenic mouse model of alzheimer disease *. J Biol Chem. 2006;281:23658–67.PubMedCrossRef
17.
go back to reference Gresa-Arribas N, Vieitez C, Dentesano G, Serratosa J, Saura J, Sola C. Modelling neuroinflammation in vitro: a tool to test the potential neuroprotective effect of anti-inflammatory agents. PLoS One. 2012;7. Gresa-Arribas N, Vieitez C, Dentesano G, Serratosa J, Saura J, Sola C. Modelling neuroinflammation in vitro: a tool to test the potential neuroprotective effect of anti-inflammatory agents. PLoS One. 2012;7.
20.
go back to reference Efremova L, Schildknecht S, Adam M, Pape R, Gutbier S, Hanf B, et al. Prevention of the degeneration of human dopaminergic neurons in an astrocyte co-culture system allowing endogenous drug metabolism. Br J Pharmacol. 2015;172:4119–32.PubMedPubMedCentralCrossRef Efremova L, Schildknecht S, Adam M, Pape R, Gutbier S, Hanf B, et al. Prevention of the degeneration of human dopaminergic neurons in an astrocyte co-culture system allowing endogenous drug metabolism. Br J Pharmacol. 2015;172:4119–32.PubMedPubMedCentralCrossRef
21.
go back to reference Jones E V, Cook D, Murai KK. A Neuron-astrocyte co-culture system to investigate astrocyte-secreted factors in mouse neuronal development. Astrocytes. Humana Press; 2012. p. 341–352. Jones E V, Cook D, Murai KK. A Neuron-astrocyte co-culture system to investigate astrocyte-secreted factors in mouse neuronal development. Astrocytes. Humana Press; 2012. p. 341–352.
22.
go back to reference Ozog MA, Siushansian R, Naus CCG. Blocked gap junctional coupling increases glutamate-induced neurotoxicity in neuron-astrocyte co-cultures. J Neuropathol Exp Neurol. 2002;61:132–41.PubMedCrossRef Ozog MA, Siushansian R, Naus CCG. Blocked gap junctional coupling increases glutamate-induced neurotoxicity in neuron-astrocyte co-cultures. J Neuropathol Exp Neurol. 2002;61:132–41.PubMedCrossRef
23.
go back to reference Mizuno T, Kuno R, Nitta A, Nabeshima T, Zhang G, Kawanokuchi J, et al. Protective effects of nicergoline against neuronal cell death induced by activated microglia and astrocytes. Brain Res. 2005;1066:78–85.PubMedCrossRef Mizuno T, Kuno R, Nitta A, Nabeshima T, Zhang G, Kawanokuchi J, et al. Protective effects of nicergoline against neuronal cell death induced by activated microglia and astrocytes. Brain Res. 2005;1066:78–85.PubMedCrossRef
24.
go back to reference Chapman CAR, Wang L, Chen H, Garrison J, Lein PJ, Seker E. Nanoporous gold biointerfaces: modifying nanostructure to control neural cell coverage and enhance electrophysiological recording performance. Adv Funct Mater [Internet]. 2016;1604631:1604631. Available from: https://doi.org/10.1002/adfm.201604631. Chapman CAR, Wang L, Chen H, Garrison J, Lein PJ, Seker E. Nanoporous gold biointerfaces: modifying nanostructure to control neural cell coverage and enhance electrophysiological recording performance. Adv Funct Mater [Internet]. 2016;1604631:1604631. Available from: https://​doi.​org/​10.​1002/​adfm.​201604631.
25.
go back to reference Chapman CAR, Chen H, Stamou M, Biener J, Biener MM, Lein PJ, et al. Nanoporous gold as a neural interface coating: effects of topography, surface chemistry, and feature size. ACS Appl Mater Interfaces. 2015;7:7093–100.PubMedPubMedCentralCrossRef Chapman CAR, Chen H, Stamou M, Biener J, Biener MM, Lein PJ, et al. Nanoporous gold as a neural interface coating: effects of topography, surface chemistry, and feature size. ACS Appl Mater Interfaces. 2015;7:7093–100.PubMedPubMedCentralCrossRef
26.
go back to reference Wayman GA, Bose DD, Yang D, Lesiak A, Bruun D, Impey S, et al. PCB-95 modulates the calcium-dependent signaling pathway responsible for activity-dependent dendritic growth. Environ Health Perspect. 2012;120:1003–9.PubMedPubMedCentralCrossRef Wayman GA, Bose DD, Yang D, Lesiak A, Bruun D, Impey S, et al. PCB-95 modulates the calcium-dependent signaling pathway responsible for activity-dependent dendritic growth. Environ Health Perspect. 2012;120:1003–9.PubMedPubMedCentralCrossRef
27.
go back to reference Huang L-K, Wang M-JJ. Image thresholding by minimizing the measures of fuzziness. Pattern Recognit. 1995;28:41–55.CrossRef Huang L-K, Wang M-JJ. Image thresholding by minimizing the measures of fuzziness. Pattern Recognit. 1995;28:41–55.CrossRef
28.
go back to reference von Bartheld CS, Bahney J, Herculano-houzel S. The search for true numbers of neurons and glial cells in the human brain: a review of 150 years of cell counting. J Comp Neurol. 2016;524:3865–95.CrossRef von Bartheld CS, Bahney J, Herculano-houzel S. The search for true numbers of neurons and glial cells in the human brain: a review of 150 years of cell counting. J Comp Neurol. 2016;524:3865–95.CrossRef
29.
go back to reference Savchenko VL, Mckanna JA, Nikonenko IR, Skibo GG. Microglia and astrocytes in the adult rat brain: comparative immunocytochemical analysis demonstrates the efficacy of lipocortin 1 immunoreactivity. Neuroscience. 2000;96:195–203.PubMedCrossRef Savchenko VL, Mckanna JA, Nikonenko IR, Skibo GG. Microglia and astrocytes in the adult rat brain: comparative immunocytochemical analysis demonstrates the efficacy of lipocortin 1 immunoreactivity. Neuroscience. 2000;96:195–203.PubMedCrossRef
30.
go back to reference Nakamura Y, Si QS, Kataoka K. Lipopolysaccharide-induced microglial activation in culture: temporal profiles of morphological change and release of cytokines and nitric oxide. Neurosci Res. 1999;35:95–100.PubMedCrossRef Nakamura Y, Si QS, Kataoka K. Lipopolysaccharide-induced microglial activation in culture: temporal profiles of morphological change and release of cytokines and nitric oxide. Neurosci Res. 1999;35:95–100.PubMedCrossRef
31.
go back to reference Lehnardt S, Lachance C, Patrizi S, Lefebvre S, Follett PL, Jensen FE, et al. The toll-like receptor TLR4 is necessary for lipopolysaccharide- induced oligodendrocyte injury in the CNS. J Neurosci. 2002;22:2478–86.PubMedPubMedCentralCrossRef Lehnardt S, Lachance C, Patrizi S, Lefebvre S, Follett PL, Jensen FE, et al. The toll-like receptor TLR4 is necessary for lipopolysaccharide- induced oligodendrocyte injury in the CNS. J Neurosci. 2002;22:2478–86.PubMedPubMedCentralCrossRef
32.
go back to reference Batista CRA, Gomes GF, Candelario-jalil E, Fiebich BL, de Oliveira ACP. Lipopolysaccharide-induced neuroinflammation as a bridge to understand neurodegeneration. Int J Mol Sci. 2019;20:2293.PubMedCentralCrossRef Batista CRA, Gomes GF, Candelario-jalil E, Fiebich BL, de Oliveira ACP. Lipopolysaccharide-induced neuroinflammation as a bridge to understand neurodegeneration. Int J Mol Sci. 2019;20:2293.PubMedCentralCrossRef
33.
go back to reference Nazem A, Sankowski R, Bacher M, Al-abed Y. Rodent models of neuroinflammation for Alzheimer’s disease. J Neuroinflammation. 2015;12:74. Nazem A, Sankowski R, Bacher M, Al-abed Y. Rodent models of neuroinflammation for Alzheimer’s disease. J Neuroinflammation. 2015;12:74.
34.
go back to reference Dutta G, Zhang P, Liu B. The lipopolysaccharide Parkinson’s disease animal model: mechanistic studies and drug discovery. Fundam Clin Pharmacol. 2008;22:453–64.PubMedPubMedCentralCrossRef Dutta G, Zhang P, Liu B. The lipopolysaccharide Parkinson’s disease animal model: mechanistic studies and drug discovery. Fundam Clin Pharmacol. 2008;22:453–64.PubMedPubMedCentralCrossRef
35.
go back to reference Henry CJ, Huang Y, Wynne A, Hanke M, Himler J, Bailey MT, et al. Minocycline attenuates lipopolysaccharide (LPS)-induced neuroinflammation, sickness behavior, and anhedonia. J Neuroinflammation. 2008;5:1–14.CrossRef Henry CJ, Huang Y, Wynne A, Hanke M, Himler J, Bailey MT, et al. Minocycline attenuates lipopolysaccharide (LPS)-induced neuroinflammation, sickness behavior, and anhedonia. J Neuroinflammation. 2008;5:1–14.CrossRef
36.
go back to reference Wang X, Chen S, Ma G, Ye M, Lu G. Involvement of proinflammatory factors, apoptosis, caspase-3 activation and Ca2+ disturbance in microglia activation-mediated dopaminergic cell degeneration. Mech Ageing Dev. 2005;126:1241–54.PubMedCrossRef Wang X, Chen S, Ma G, Ye M, Lu G. Involvement of proinflammatory factors, apoptosis, caspase-3 activation and Ca2+ disturbance in microglia activation-mediated dopaminergic cell degeneration. Mech Ageing Dev. 2005;126:1241–54.PubMedCrossRef
37.
go back to reference Nimmervoll B, White R, Yang J, An S, Henn C, Sun J, et al. LPS-induced microglial secretion of TNFα increases activity-dependent neuronal apoptosis in the neonatal cerebral cortex. Cereb Cortex. 2013;23:1742–55.PubMedCrossRef Nimmervoll B, White R, Yang J, An S, Henn C, Sun J, et al. LPS-induced microglial secretion of TNFα increases activity-dependent neuronal apoptosis in the neonatal cerebral cortex. Cereb Cortex. 2013;23:1742–55.PubMedCrossRef
38.
go back to reference Schiweck J, Eickholt BJ, Murk K. Important shapeshifter: mechanisms allowing astrocytes to respond to the changing nervous system during development, injury and disease. Front Cell Neurosci. 2018;12:261.PubMedPubMedCentralCrossRef Schiweck J, Eickholt BJ, Murk K. Important shapeshifter: mechanisms allowing astrocytes to respond to the changing nervous system during development, injury and disease. Front Cell Neurosci. 2018;12:261.PubMedPubMedCentralCrossRef
39.
go back to reference Liang C, Park AY, Guan J. In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc. 2007;2:329–33.PubMedCrossRef Liang C, Park AY, Guan J. In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc. 2007;2:329–33.PubMedCrossRef
40.
go back to reference Faber-Elman A, Solomon A, Abraham JA, Marikovsky M, Schwartz M. Involvement of wound-associated factors in rat brain astrocyte migratory response to axonal injury : in vitro simulation. J Clin Invest. 1996;97:162–71.PubMedPubMedCentralCrossRef Faber-Elman A, Solomon A, Abraham JA, Marikovsky M, Schwartz M. Involvement of wound-associated factors in rat brain astrocyte migratory response to axonal injury : in vitro simulation. J Clin Invest. 1996;97:162–71.PubMedPubMedCentralCrossRef
41.
go back to reference Hirano S, Yonezawa T, Hasegawa H, Hattori S, Greenhill NS, Davis PF, et al. Astrocytes express type VIII collagen during the repair process of brain cold injury. Biochem Biophys Res Commun. 2004;317:437–43.PubMedCrossRef Hirano S, Yonezawa T, Hasegawa H, Hattori S, Greenhill NS, Davis PF, et al. Astrocytes express type VIII collagen during the repair process of brain cold injury. Biochem Biophys Res Commun. 2004;317:437–43.PubMedCrossRef
42.
go back to reference Tecoma E, Monyer H, Goldberg MP, Choi DW. Traumatic neuronal injury in vitro is attenuated by NMDA antagonists. Neruon. 1989;2:1541–5. Tecoma E, Monyer H, Goldberg MP, Choi DW. Traumatic neuronal injury in vitro is attenuated by NMDA antagonists. Neruon. 1989;2:1541–5.
43.
go back to reference Boche D, Cunningham C, Gauldie J, Perry VH. Transforming growth factor-β1-mediated neuroprotection against excitotoxic injury in vivo. J Cereb Blood Flow Metabolosm. 2003;23:1174–82.CrossRef Boche D, Cunningham C, Gauldie J, Perry VH. Transforming growth factor-β1-mediated neuroprotection against excitotoxic injury in vivo. J Cereb Blood Flow Metabolosm. 2003;23:1174–82.CrossRef
44.
go back to reference Luo J, Elwood F, Britschgi M, Villeda S, Zhang H, Ding Z, et al. Colony-stimulating factor 1 receptor (CSF1R) signaling in injured neurons facilitates protection and survival. J Exp Med. 2013;210:157–72.PubMedPubMedCentralCrossRef Luo J, Elwood F, Britschgi M, Villeda S, Zhang H, Ding Z, et al. Colony-stimulating factor 1 receptor (CSF1R) signaling in injured neurons facilitates protection and survival. J Exp Med. 2013;210:157–72.PubMedPubMedCentralCrossRef
46.
go back to reference Lewitt MS, Boyd GW. The role of insulin-like growth factors and insulin-like growth factor-binding proteins in the nervous system. Biochem Insights. 2019;12:1–18. Lewitt MS, Boyd GW. The role of insulin-like growth factors and insulin-like growth factor-binding proteins in the nervous system. Biochem Insights. 2019;12:1–18.
47.
go back to reference Su B, Cai W, Zhang C, Martinez V, Lombet A, Perbal B. The expression of ccn3 (nov)* RNA and protein in the rat central nervous system is developmentally regulated. J Clin Pathol Mol Pathol. 2001;54:184–91.CrossRef Su B, Cai W, Zhang C, Martinez V, Lombet A, Perbal B. The expression of ccn3 (nov)* RNA and protein in the rat central nervous system is developmentally regulated. J Clin Pathol Mol Pathol. 2001;54:184–91.CrossRef
48.
go back to reference Korecka XJA, Moloney XEB, Eggers XR, Hobo B, Scheffer S, Ras-verloop N, et al. Repulsive guidance molecule a ( RGMa ) induces neuropathological and behavioral changes that closely resemble Parkinson’s disease. J Neurosci. 2017;37:9361–79.PubMedPubMedCentralCrossRef Korecka XJA, Moloney XEB, Eggers XR, Hobo B, Scheffer S, Ras-verloop N, et al. Repulsive guidance molecule a ( RGMa ) induces neuropathological and behavioral changes that closely resemble Parkinson’s disease. J Neurosci. 2017;37:9361–79.PubMedPubMedCentralCrossRef
51.
go back to reference Schindowski K, Bohlen O, Von SJ, Ridder DA, Herrmann O, Schober A, et al. Regulation of GDF-15, a distant TGF-β superfamily member, in a mouse model of cerebral ischemia; 2011. p. 399–409. Schindowski K, Bohlen O, Von SJ, Ridder DA, Herrmann O, Schober A, et al. Regulation of GDF-15, a distant TGF-β superfamily member, in a mouse model of cerebral ischemia; 2011. p. 399–409.
52.
go back to reference Goldmann T, Prinz M. Role of microglia in CNS autoimmunity. Clin Dev Immunol. 2013;2013. Goldmann T, Prinz M. Role of microglia in CNS autoimmunity. Clin Dev Immunol. 2013;2013.
53.
go back to reference Ambrosini E, Columba-cabezas S, Serafini B, Muscella A, Aloisi F. Astrocytes are the major intracerebral source of macrophage inflammatory protein-3α/CCL20 in relapsing experimental autoimmune encephalomyelitis and in vitro. Glia. 2003;41:290–300.PubMedCrossRef Ambrosini E, Columba-cabezas S, Serafini B, Muscella A, Aloisi F. Astrocytes are the major intracerebral source of macrophage inflammatory protein-3α/CCL20 in relapsing experimental autoimmune encephalomyelitis and in vitro. Glia. 2003;41:290–300.PubMedCrossRef
55.
go back to reference Yu H, Liu X, Zhong Y. The effect of osteopontin on microglia. Biomed Res Int. 2017;2017. Yu H, Liu X, Zhong Y. The effect of osteopontin on microglia. Biomed Res Int. 2017;2017.
57.
58.
go back to reference Elmore MRP, Najafi AR, Koike MA, Dagher NN, Spangenberg EE, Rice RA, et al. Colony-stimulating factor 1 receptor signaling is necessary for microglia viability, unmasking a microglia progenitor cell in the adult brain. Neuron [Internet]. Elsevier Inc.; 2014;82:380–97. Available from: https://doi.org/10.1016/j.neuron.2014.02.040. Elmore MRP, Najafi AR, Koike MA, Dagher NN, Spangenberg EE, Rice RA, et al. Colony-stimulating factor 1 receptor signaling is necessary for microglia viability, unmasking a microglia progenitor cell in the adult brain. Neuron [Internet]. Elsevier Inc.; 2014;82:380–97. Available from: https://​doi.​org/​10.​1016/​j.​neuron.​2014.​02.​040.
59.
go back to reference Erblich B, Zhu L, Etgen AM, Dobrenis K, Pollard JW. Absence of colony stimulation factor-1 receptor results in loss of microglia, Disrupted Brain Development and Olfactory Deficits. PLoS One. 2011;6:e26317.PubMedPubMedCentralCrossRef Erblich B, Zhu L, Etgen AM, Dobrenis K, Pollard JW. Absence of colony stimulation factor-1 receptor results in loss of microglia, Disrupted Brain Development and Olfactory Deficits. PLoS One. 2011;6:e26317.PubMedPubMedCentralCrossRef
60.
go back to reference Abutbul S, Shapiro J, Szaingurten-solodkin I, Levy N, Carmy Y, Baron R, et al. TGF-β signaling through SMAD2/3 induces the quiescent microglial phenotype within the CNS environment. Glia. 2012;60:1160–71.PubMedCrossRef Abutbul S, Shapiro J, Szaingurten-solodkin I, Levy N, Carmy Y, Baron R, et al. TGF-β signaling through SMAD2/3 induces the quiescent microglial phenotype within the CNS environment. Glia. 2012;60:1160–71.PubMedCrossRef
61.
go back to reference Butovsky O, Jedrychowski MP, Moore CS, Cialic R, Lanser AJ, Gabriely G, et al. Identification of a unique TGF-β–dependent molecular and functional signature in microglia. Nat Neurosci. 2014;17:131.PubMedCrossRef Butovsky O, Jedrychowski MP, Moore CS, Cialic R, Lanser AJ, Gabriely G, et al. Identification of a unique TGF-β–dependent molecular and functional signature in microglia. Nat Neurosci. 2014;17:131.PubMedCrossRef
62.
63.
go back to reference Meyers EA, Kessler JA. TGF-β family signaling in neural and neuronal differentiation, development, and function. Cold Spring Harb Perspect Biol. 2017;9. Meyers EA, Kessler JA. TGF-β family signaling in neural and neuronal differentiation, development, and function. Cold Spring Harb Perspect Biol. 2017;9.
64.
go back to reference Krieglstein K, Strelau J, Schober A, Sullivan A, Unsicker K. TGF-β and the regulation of neuron survival and death. J Physiol. 2002;96:25–30. Krieglstein K, Strelau J, Schober A, Sullivan A, Unsicker K. TGF-β and the regulation of neuron survival and death. J Physiol. 2002;96:25–30.
66.
go back to reference Wang YQ, Berezovska O, Fedoroff S. Expression of colony stimulating factor-1 receptor (CSF-1R) by CNS neurons in mice. J Neurosci Res. 1999;57:616–32.PubMedCrossRef Wang YQ, Berezovska O, Fedoroff S. Expression of colony stimulating factor-1 receptor (CSF-1R) by CNS neurons in mice. J Neurosci Res. 1999;57:616–32.PubMedCrossRef
67.
go back to reference Nandi S, Gokhan S, Dai XM, Wei S, Enikolopov G, Lin H, et al. The CSF-1 receptor ligands IL-34 and CSF-1 exhibit distinct developmental brain expression patterns and regulate neural progenitor cell maintenance and maturation. Dev Biol [Internet]. Elsevier; 2012;367:100–13. Available from: https://doi.org/10.1016/j.ydbio.2012.03.026. Nandi S, Gokhan S, Dai XM, Wei S, Enikolopov G, Lin H, et al. The CSF-1 receptor ligands IL-34 and CSF-1 exhibit distinct developmental brain expression patterns and regulate neural progenitor cell maintenance and maturation. Dev Biol [Internet]. Elsevier; 2012;367:100–13. Available from: https://​doi.​org/​10.​1016/​j.​ydbio.​2012.​03.​026.
68.
go back to reference Wei S, Nandi S, Chitu V, Yeung Y-G, Yu W, Huang M, et al. Functional overlap but differential expression of CSF-1 and IL-34 in their CSF-1 receptor-mediated regulation of myeloid cells. J Leukoc Biol. 2010;88:495–505.PubMedPubMedCentralCrossRef Wei S, Nandi S, Chitu V, Yeung Y-G, Yu W, Huang M, et al. Functional overlap but differential expression of CSF-1 and IL-34 in their CSF-1 receptor-mediated regulation of myeloid cells. J Leukoc Biol. 2010;88:495–505.PubMedPubMedCentralCrossRef
69.
go back to reference Lindholm D, Castrdn E, Kiefer R, Zafra F, Thoenen H. Transforming growth factor-ßl in the rat brain: increase after injury and inhibition of astrocyte proliferation. J Cell Biol. 1992;117:395–400.PubMedCrossRef Lindholm D, Castrdn E, Kiefer R, Zafra F, Thoenen H. Transforming growth factor-ßl in the rat brain: increase after injury and inhibition of astrocyte proliferation. J Cell Biol. 1992;117:395–400.PubMedCrossRef
73.
go back to reference Cuadros MA, Navascue J. The origin and differentiation of microglial cells during development. Prog Neurobiol. 1998;56:173–89.PubMedCrossRef Cuadros MA, Navascue J. The origin and differentiation of microglial cells during development. Prog Neurobiol. 1998;56:173–89.PubMedCrossRef
74.
go back to reference Dalmau I, Vela JM, Gonzalez B, Finsen B, Castellano B. Dynamics of microglia in the developing rat brain. J Comp Neurol. 2003;458:144–57.PubMedCrossRef Dalmau I, Vela JM, Gonzalez B, Finsen B, Castellano B. Dynamics of microglia in the developing rat brain. J Comp Neurol. 2003;458:144–57.PubMedCrossRef
76.
go back to reference Reichert F, Rotshenker S. Galectin-3 (MAC-2) controls microglia phenotype whether amoeboid and phagocytic or branched and non-phagocytic by regulating the cytoskeleton. Front Cell Neurosci. 2019;13:90.PubMedPubMedCentralCrossRef Reichert F, Rotshenker S. Galectin-3 (MAC-2) controls microglia phenotype whether amoeboid and phagocytic or branched and non-phagocytic by regulating the cytoskeleton. Front Cell Neurosci. 2019;13:90.PubMedPubMedCentralCrossRef
77.
go back to reference Ueno M, Fujita Y, Tanaka T, Nakamura Y, Kikuta J, Ishii M, et al. Layer V cortical neurons require microglial support for survival during postnatal development. Nat Neurosci. Nature Publishing Group; 2013;16:543–551. Ueno M, Fujita Y, Tanaka T, Nakamura Y, Kikuta J, Ishii M, et al. Layer V cortical neurons require microglial support for survival during postnatal development. Nat Neurosci. Nature Publishing Group; 2013;16:543–551.
78.
go back to reference Arnoux I, Audinat E. Fractalkine signaling and microglia functions in the developing brain. Neural Plast. 2015;2015. Arnoux I, Audinat E. Fractalkine signaling and microglia functions in the developing brain. Neural Plast. 2015;2015.
79.
go back to reference Paolicelli RC, Bisht K, Tremblay ME. Fractalkine regulation of microglial physiology and consequences on the brain and behavior. Front Cell Neurosci. 2014;8:129.PubMedPubMedCentralCrossRef Paolicelli RC, Bisht K, Tremblay ME. Fractalkine regulation of microglial physiology and consequences on the brain and behavior. Front Cell Neurosci. 2014;8:129.PubMedPubMedCentralCrossRef
80.
81.
go back to reference Papageorgiou IE, Lewen A, Galow L V., Cesetti T, Scheffel J, Regen T, et al. TLR4-activated microglia require IFN-γ to induce severe neuronal dysfunction and death in situ. Proc Natl Acad Sci [Internet]. 2016;113:212–7. Available from: https://doi.org/10.1073/pnas.1513853113. Papageorgiou IE, Lewen A, Galow L V., Cesetti T, Scheffel J, Regen T, et al. TLR4-activated microglia require IFN-γ to induce severe neuronal dysfunction and death in situ. Proc Natl Acad Sci [Internet]. 2016;113:212–7. Available from: https://​doi.​org/​10.​1073/​pnas.​1513853113.
82.
go back to reference Fernández-Arjona MDM, Grondona JM, Granados-Durán P, Fernández-llebrez P, López-Ávalos MD. Microglia Morphological categorization in a rat model of neuroinflammation by hierarchical cluster and principal components analysis. Front Cell Neurosci. 2017;11:235.PubMedPubMedCentralCrossRef Fernández-Arjona MDM, Grondona JM, Granados-Durán P, Fernández-llebrez P, López-Ávalos MD. Microglia Morphological categorization in a rat model of neuroinflammation by hierarchical cluster and principal components analysis. Front Cell Neurosci. 2017;11:235.PubMedPubMedCentralCrossRef
83.
go back to reference Abd-El-Basset E, Fedoroff S. Effect of bacterial wall lipopolysaccharide (LPS) on morphology, motility, and cytoskeletal organization of microglia in cultures. J Neurosci Res. 1995;41:222–37.PubMedCrossRef Abd-El-Basset E, Fedoroff S. Effect of bacterial wall lipopolysaccharide (LPS) on morphology, motility, and cytoskeletal organization of microglia in cultures. J Neurosci Res. 1995;41:222–37.PubMedCrossRef
84.
go back to reference Persson M, Brantefjord M, Hansson E, Ronnback L. Lipopolysaccharide increases microglial GLT-1 expression and glutamate uptake capacity in vitro by a mechanism dependent on TNF-α. Glia. 2005;51:111–20.PubMedCrossRef Persson M, Brantefjord M, Hansson E, Ronnback L. Lipopolysaccharide increases microglial GLT-1 expression and glutamate uptake capacity in vitro by a mechanism dependent on TNF-α. Glia. 2005;51:111–20.PubMedCrossRef
85.
go back to reference Donat CK, Scott G, Gentleman SM, Sastre M. Microglial activation in traumatic brain injury. Front Aging Neurosci. 2017;9. Donat CK, Scott G, Gentleman SM, Sastre M. Microglial activation in traumatic brain injury. Front Aging Neurosci. 2017;9.
86.
go back to reference Gulino M, Kim D, Pané S, Santos SD, Pêgo AP. Tissue response to neural implants: the use of model systems toward new design solutions of implantable microelectrodes. Front Neurosci. 2019;13:1–24.CrossRef Gulino M, Kim D, Pané S, Santos SD, Pêgo AP. Tissue response to neural implants: the use of model systems toward new design solutions of implantable microelectrodes. Front Neurosci. 2019;13:1–24.CrossRef
88.
go back to reference Wang H, Song G, Chuang H, Chiu C, Abdelmaksoud A, Ye Y, et al. Portrait of glial scar in neurological diseases. Int J Immunopathol Pharmacol. 2018;31:1–6. Wang H, Song G, Chuang H, Chiu C, Abdelmaksoud A, Ye Y, et al. Portrait of glial scar in neurological diseases. Int J Immunopathol Pharmacol. 2018;31:1–6.
89.
go back to reference Salatino JW, Ludwig KA, Kozai TDY, Purcell EK. Glial responses to implanted electrodes in the brain. Nat Biomed Eng. 2017;1:1.CrossRef Salatino JW, Ludwig KA, Kozai TDY, Purcell EK. Glial responses to implanted electrodes in the brain. Nat Biomed Eng. 2017;1:1.CrossRef
90.
go back to reference Hu F, Ku M, Markovic D, Dildar O, Lehnardt S, Synowitz M, et al. Glioma-associated microglial MMP9 expression is upregulated by TLR2 signaling and sensitive to minocycline. Int J cancer. 2014;135:2569–78.PubMedPubMedCentralCrossRef Hu F, Ku M, Markovic D, Dildar O, Lehnardt S, Synowitz M, et al. Glioma-associated microglial MMP9 expression is upregulated by TLR2 signaling and sensitive to minocycline. Int J cancer. 2014;135:2569–78.PubMedPubMedCentralCrossRef
91.
go back to reference Hsu JC, Bourguignon LYW, Adams CM, Peyrollier K, Zhang H, Fandel T, et al. Matrix metalloproteinase-9 facilitates glial scar formation in the injured spinal cord. J Neurosci. 2008;28:13467–77.PubMedPubMedCentralCrossRef Hsu JC, Bourguignon LYW, Adams CM, Peyrollier K, Zhang H, Fandel T, et al. Matrix metalloproteinase-9 facilitates glial scar formation in the injured spinal cord. J Neurosci. 2008;28:13467–77.PubMedPubMedCentralCrossRef
93.
go back to reference Schousboe A, Waagepetersen HS. Role of astrocytes in glutamate homeostasis: implications for excitotoxicity. Neurotox Res. 2005;8:221–5.PubMedCrossRef Schousboe A, Waagepetersen HS. Role of astrocytes in glutamate homeostasis: implications for excitotoxicity. Neurotox Res. 2005;8:221–5.PubMedCrossRef
94.
go back to reference Bonde C, Sarup A, Schousboe A, Gegelashvili G, Zimmer J, Noraberg J. Neurotoxic and neuroprotective effects of the glutamate transporter inhibitor DL-threo-beta-benzyloxyaspartate (DL-TBOA) during physiological and ischemia-like conditions. Neurochem Int. 2003;43:371–80.PubMedCrossRef Bonde C, Sarup A, Schousboe A, Gegelashvili G, Zimmer J, Noraberg J. Neurotoxic and neuroprotective effects of the glutamate transporter inhibitor DL-threo-beta-benzyloxyaspartate (DL-TBOA) during physiological and ischemia-like conditions. Neurochem Int. 2003;43:371–80.PubMedCrossRef
95.
96.
go back to reference Eyo UB, Peng J, Murugan M, Xu P, Margolis DJ, Wu L. Regulation of physical microglia–neuron interactions by fractalkine signaling after status epilepticus. 2016;3:1–14. Eyo UB, Peng J, Murugan M, Xu P, Margolis DJ, Wu L. Regulation of physical microglia–neuron interactions by fractalkine signaling after status epilepticus. 2016;3:1–14.
97.
go back to reference Vinet J, van Weering HA, Kälin RE, Wegner A, Brouwer N, et al. Neuroprotective function for ramified microglia in hippocampal excitotoxicity. J Neuroinflammation. 2012;9:27.PubMedPubMedCentralCrossRef Vinet J, van Weering HA, Kälin RE, Wegner A, Brouwer N, et al. Neuroprotective function for ramified microglia in hippocampal excitotoxicity. J Neuroinflammation. 2012;9:27.PubMedPubMedCentralCrossRef
98.
go back to reference Kato G, Inada H, Wake H, Akiyoshi R, Miyamoto A, Eto K, et al. Microglial contact prevents excess depolarization and rescues neurons from excitotoxicity. Eneuro. 2016;3:1–9.CrossRef Kato G, Inada H, Wake H, Akiyoshi R, Miyamoto A, Eto K, et al. Microglial contact prevents excess depolarization and rescues neurons from excitotoxicity. Eneuro. 2016;3:1–9.CrossRef
99.
go back to reference Masuch A, Shieh C, van Rooijen N, van Calker D, Biber K. Mechanism of microglia neuroprotection: involvement of P2X 7, TNF α, and valproic acid. Glia. 2016;64:76–89.PubMedCrossRef Masuch A, Shieh C, van Rooijen N, van Calker D, Biber K. Mechanism of microglia neuroprotection: involvement of P2X 7, TNF α, and valproic acid. Glia. 2016;64:76–89.PubMedCrossRef
Metadata
Title
A primary neural cell culture model to study neuron, astrocyte, and microglia interactions in neuroinflammation
Authors
Noah Goshi
Rhianna K. Morgan
Pamela J. Lein
Erkin Seker
Publication date
01-12-2020
Publisher
BioMed Central
Keyword
Cytokines
Published in
Journal of Neuroinflammation / Issue 1/2020
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/s12974-020-01819-z

Other articles of this Issue 1/2020

Journal of Neuroinflammation 1/2020 Go to the issue