Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2012

Open Access 01-12-2012 | Research

Neuroprotective function for ramified microglia in hippocampal excitotoxicity

Authors: Jonathan Vinet, Hilmar RJ van Weering, Annette Heinrich, Roland E Kälin, Anja Wegner, Nieske Brouwer, Frank L Heppner, Nico van Rooijen, Hendrikus WGM Boddeke, Knut Biber

Published in: Journal of Neuroinflammation | Issue 1/2012

Login to get access

Abstract

Background

Most of the known functions of microglia, including neurotoxic and neuroprotective properties, are attributed to morphologically-activated microglia. Resting, ramified microglia are suggested to primarily monitor their environment including synapses. Here, we show an active protective role of ramified microglia in excitotoxicity-induced neurodegeneration.

Methods

Mouse organotypic hippocampal slice cultures were treated with N-methyl-D-aspartic acid (NMDA) to induce excitotoxic neuronal cell death. This procedure was performed in slices containing resting microglia or slices that were chemically or genetically depleted of their endogenous microglia.

Results

Treatment of mouse organotypic hippocampal slice cultures with 10-50 μM N-methyl-D-aspartic acid (NMDA) induced region-specific excitotoxic neuronal cell death with CA1 neurons being most vulnerable, whereas CA3 and DG neurons were affected less. Ablation of ramified microglia severely enhanced NMDA-induced neuronal cell death in the CA3 and DG region rendering them almost as sensitive as CA1 neurons. Replenishment of microglia-free slices with microglia restored the original resistance of CA3 and DG neurons towards NMDA.

Conclusions

Our data strongly suggest that ramified microglia not only screen their microenvironment but additionally protect hippocampal neurons under pathological conditions. Morphological activation of ramified microglia is thus not required to influence neuronal survival.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bechmann I, Galea I, Perry VH: What is the blood-brain barrier (not)? Trends Immunol 2007, 28:5–11.CrossRefPubMed Bechmann I, Galea I, Perry VH: What is the blood-brain barrier (not)? Trends Immunol 2007, 28:5–11.CrossRefPubMed
2.
go back to reference Kreutzberg GW: Microglia: a sensor for pathological events in the CNS. Trends Neurosci 1996, 19:312–318.CrossRefPubMed Kreutzberg GW: Microglia: a sensor for pathological events in the CNS. Trends Neurosci 1996, 19:312–318.CrossRefPubMed
4.
go back to reference Hanisch UK, Kettenmann H: Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 2007, 10:1387–1394.CrossRefPubMed Hanisch UK, Kettenmann H: Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 2007, 10:1387–1394.CrossRefPubMed
5.
go back to reference Streit WJ: Microglia as neuroprotective, immunocompetent cells of the CNS. Glia 2002, 40:133–139.CrossRefPubMed Streit WJ: Microglia as neuroprotective, immunocompetent cells of the CNS. Glia 2002, 40:133–139.CrossRefPubMed
6.
go back to reference Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, Littman DR, Dustin ML, Gan WB: ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 2005, 8:752–758.CrossRefPubMed Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, Littman DR, Dustin ML, Gan WB: ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 2005, 8:752–758.CrossRefPubMed
7.
go back to reference Haynes SE, Hollopeter G, Yang G, Kurpius D, Dailey ME, Gan WB, Julius D: The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nat Neurosci 2006, 9:1512–1519.CrossRefPubMed Haynes SE, Hollopeter G, Yang G, Kurpius D, Dailey ME, Gan WB, Julius D: The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nat Neurosci 2006, 9:1512–1519.CrossRefPubMed
8.
go back to reference Nimmerjahn A, Kirchhoff F, Helmchen F: Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 2005, 308:1314–1318.CrossRefPubMed Nimmerjahn A, Kirchhoff F, Helmchen F: Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 2005, 308:1314–1318.CrossRefPubMed
9.
go back to reference Hailer NP, Grampp A, Nitsch R: Proliferation of microglia and astrocytes in the dentate gyrus following entorhinal cortex lesion: a quantitative bromodeoxyuridine-labelling study. Eur J Neurosci 1999, 11:3359–3364.CrossRefPubMed Hailer NP, Grampp A, Nitsch R: Proliferation of microglia and astrocytes in the dentate gyrus following entorhinal cortex lesion: a quantitative bromodeoxyuridine-labelling study. Eur J Neurosci 1999, 11:3359–3364.CrossRefPubMed
10.
go back to reference O'Donnell SL, Frederick TJ, Krady JK, Vannucci SJ, Wood TL: IGF-I and microglia/macrophage proliferation in the ischemic mouse brain. Glia 2002, 39:85–97.CrossRefPubMed O'Donnell SL, Frederick TJ, Krady JK, Vannucci SJ, Wood TL: IGF-I and microglia/macrophage proliferation in the ischemic mouse brain. Glia 2002, 39:85–97.CrossRefPubMed
12.
go back to reference Schwartz M, Butovsky O, Bruck W, Hanisch UK: Microglial phenotype: is the commitment reversible? Trends Neurosci 2006, 29:68–74.CrossRefPubMed Schwartz M, Butovsky O, Bruck W, Hanisch UK: Microglial phenotype: is the commitment reversible? Trends Neurosci 2006, 29:68–74.CrossRefPubMed
13.
go back to reference Turrin NP, Rivest S: Tumor necrosis factor alpha but not interleukin 1 beta mediates neuroprotection in response to acute nitric oxide excitotoxicity. J Neurosci 2006, 26:143–151.CrossRefPubMed Turrin NP, Rivest S: Tumor necrosis factor alpha but not interleukin 1 beta mediates neuroprotection in response to acute nitric oxide excitotoxicity. J Neurosci 2006, 26:143–151.CrossRefPubMed
14.
go back to reference Lalancette-Hebert M, Gowing G, Simard A, Weng YC, Kriz J: Selective ablation of proliferating microglial cells exacerbates ischemic injury in the brain. J Neurosci 2007, 27:2596–2605.CrossRefPubMed Lalancette-Hebert M, Gowing G, Simard A, Weng YC, Kriz J: Selective ablation of proliferating microglial cells exacerbates ischemic injury in the brain. J Neurosci 2007, 27:2596–2605.CrossRefPubMed
15.
go back to reference Boillee S, Yamanaka K, Lobsiger CS, Copeland NG, Jenkins NA, Kassiotis G, Kollias G, Cleveland DW: Onset and progression in inherited ALS determined by motor neurons and microglia. Science 2006, 312:1389–1392.CrossRefPubMed Boillee S, Yamanaka K, Lobsiger CS, Copeland NG, Jenkins NA, Kassiotis G, Kollias G, Cleveland DW: Onset and progression in inherited ALS determined by motor neurons and microglia. Science 2006, 312:1389–1392.CrossRefPubMed
16.
go back to reference El Khoury J, Toft M, Hickman SE, Means TK, Terada K, Geula C, Luster AD: Ccr2 deficiency impairs microglial accumulation and accelerates progression of Alzheimer-like disease. Nat Med 2007, 13:432–438.CrossRefPubMed El Khoury J, Toft M, Hickman SE, Means TK, Terada K, Geula C, Luster AD: Ccr2 deficiency impairs microglial accumulation and accelerates progression of Alzheimer-like disease. Nat Med 2007, 13:432–438.CrossRefPubMed
17.
go back to reference Cardona AE, Pioro EP, Sasse ME, Kostenko V, Cardona SM, Dijkstra IM, Huang D, Kidd G, Dombrowski S, Dutta R, et al.: Control of microglial neurotoxicity by the fractalkine receptor. Nat Neurosci 2006, 9:917–924.CrossRefPubMed Cardona AE, Pioro EP, Sasse ME, Kostenko V, Cardona SM, Dijkstra IM, Huang D, Kidd G, Dombrowski S, Dutta R, et al.: Control of microglial neurotoxicity by the fractalkine receptor. Nat Neurosci 2006, 9:917–924.CrossRefPubMed
18.
go back to reference Neumann H, Takahashi K: Essential role of the microglial triggering receptor expressed on myeloid cells-2 (TREM2) for central nervous tissue immune homeostasis. J Neuroimmunol 2007, 184:92–99.CrossRefPubMed Neumann H, Takahashi K: Essential role of the microglial triggering receptor expressed on myeloid cells-2 (TREM2) for central nervous tissue immune homeostasis. J Neuroimmunol 2007, 184:92–99.CrossRefPubMed
19.
go back to reference Streit WJ: Microglial senescence: does the brain's immune system have an expiration date? Trends Neurosci 2006, 29:506–510.CrossRefPubMed Streit WJ: Microglial senescence: does the brain's immune system have an expiration date? Trends Neurosci 2006, 29:506–510.CrossRefPubMed
21.
go back to reference Fontainhas AM, Wang M, Liang KJ, Chen S, Mettu P, Damani M, Fariss RN, Li W, Wong WT: Microglial morphology and dynamic behavior is regulated by ionotropic glutamatergic and GABAergic neurotransmission. PLoS One 2011, 6:e15973.CrossRefPubMedPubMedCentral Fontainhas AM, Wang M, Liang KJ, Chen S, Mettu P, Damani M, Fariss RN, Li W, Wong WT: Microglial morphology and dynamic behavior is regulated by ionotropic glutamatergic and GABAergic neurotransmission. PLoS One 2011, 6:e15973.CrossRefPubMedPubMedCentral
22.
go back to reference Kohl A, Dehghani F, Korf HW, Hailer NP: The bisphosphonate clodronate depletes microglial cells in excitotoxically injured organotypic hippocampal slice cultures. Exp Neurol 2003, 181:1–11.CrossRefPubMed Kohl A, Dehghani F, Korf HW, Hailer NP: The bisphosphonate clodronate depletes microglial cells in excitotoxically injured organotypic hippocampal slice cultures. Exp Neurol 2003, 181:1–11.CrossRefPubMed
23.
go back to reference Marin-Teva JL, Dusart I, Colin C, Gervais A, van Rooijen N, Mallat M: Microglia promote the death of developing Purkinje cells. Neuron 2004, 41:535–547.CrossRefPubMed Marin-Teva JL, Dusart I, Colin C, Gervais A, van Rooijen N, Mallat M: Microglia promote the death of developing Purkinje cells. Neuron 2004, 41:535–547.CrossRefPubMed
24.
go back to reference Markovic DS, Glass R, Synowitz M, Rooijen N, Kettenmann H: Microglia stimulate the invasiveness of glioma cells by increasing the activity of metalloprotease-2. J Neuropathol Exp Neurol 2005, 64:754–762.CrossRefPubMed Markovic DS, Glass R, Synowitz M, Rooijen N, Kettenmann H: Microglia stimulate the invasiveness of glioma cells by increasing the activity of metalloprotease-2. J Neuropathol Exp Neurol 2005, 64:754–762.CrossRefPubMed
25.
go back to reference Heppner FL, Greter M, Marino D, Falsig J, Raivich G, Hovelmeyer N, Waisman A, Rulicke T, Prinz M, Priller J, et al.: Experimental autoimmune encephalomyelitis repressed by microglial paralysis. Nat Med 2005, 11:146–152.CrossRefPubMed Heppner FL, Greter M, Marino D, Falsig J, Raivich G, Hovelmeyer N, Waisman A, Rulicke T, Prinz M, Priller J, et al.: Experimental autoimmune encephalomyelitis repressed by microglial paralysis. Nat Med 2005, 11:146–152.CrossRefPubMed
26.
go back to reference Van Rooijen N, Sanders A: Liposome mediated depletion of macrophages: mechanism of action, preparation of liposomes and applications. J Immunol Methods 1994, 174:83–93.CrossRefPubMed Van Rooijen N, Sanders A: Liposome mediated depletion of macrophages: mechanism of action, preparation of liposomes and applications. J Immunol Methods 1994, 174:83–93.CrossRefPubMed
27.
go back to reference Stoppini L, Buchs PA, Muller D: A simple method for organotypic cultures of nervous tissue. J Neurosci Methods 1991, 37:173–182.CrossRefPubMed Stoppini L, Buchs PA, Muller D: A simple method for organotypic cultures of nervous tissue. J Neurosci Methods 1991, 37:173–182.CrossRefPubMed
28.
go back to reference de Jong EK, Vinet J, Stanulovic VS, Meijer M, Wesseling E, Sjollema K, Boddeke HW, Biber K: Expression, transport, and axonal sorting of neuronal CCL21 in large dense-core vesicles. FASEB J 2008, 22:4136–4145.CrossRefPubMed de Jong EK, Vinet J, Stanulovic VS, Meijer M, Wesseling E, Sjollema K, Boddeke HW, Biber K: Expression, transport, and axonal sorting of neuronal CCL21 in large dense-core vesicles. FASEB J 2008, 22:4136–4145.CrossRefPubMed
29.
go back to reference Biber K, Klotz KN, Berger M, Gebicke-Harter PJ, van Calker D: Adenosine A1 receptor-mediated activation of phospholipase C in cultured astrocytes depends on the level of receptor expression. J Neurosci 1997, 17:4956–4964.PubMed Biber K, Klotz KN, Berger M, Gebicke-Harter PJ, van Calker D: Adenosine A1 receptor-mediated activation of phospholipase C in cultured astrocytes depends on the level of receptor expression. J Neurosci 1997, 17:4956–4964.PubMed
30.
go back to reference Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25:402–408.CrossRefPubMed Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25:402–408.CrossRefPubMed
31.
go back to reference Pozzo Miller LD, Mahanty NK, Connor JA, Landis DM: Spontaneous pyramidal cell death in organotypic slice cultures from rat hippocampus is prevented by glutamate receptor antagonists. Neuroscience 1994, 63:471–487.CrossRefPubMed Pozzo Miller LD, Mahanty NK, Connor JA, Landis DM: Spontaneous pyramidal cell death in organotypic slice cultures from rat hippocampus is prevented by glutamate receptor antagonists. Neuroscience 1994, 63:471–487.CrossRefPubMed
32.
go back to reference Vornov JJ, Tasker RC, Coyle JT: Direct observation of the agonist-specific regional vulnerability to glutamate, NMDA, and kainate neurotoxicity in organotypic hippocampal cultures. Exp Neurol 1991, 114:11–22.CrossRefPubMed Vornov JJ, Tasker RC, Coyle JT: Direct observation of the agonist-specific regional vulnerability to glutamate, NMDA, and kainate neurotoxicity in organotypic hippocampal cultures. Exp Neurol 1991, 114:11–22.CrossRefPubMed
33.
go back to reference van Weering HR, Boddeke HW, Vinet J, Brouwer N, de Haas AH, van Rooijen N, Thomsen AR, Biber KP: CXCL10/CXCR3 signaling in glia cells differentially affects NMDA-induced cell death in CA and DG neurons of the mouse hippocampus. Hippocampus 2011, 21:220–232.CrossRefPubMed van Weering HR, Boddeke HW, Vinet J, Brouwer N, de Haas AH, van Rooijen N, Thomsen AR, Biber KP: CXCL10/CXCR3 signaling in glia cells differentially affects NMDA-induced cell death in CA and DG neurons of the mouse hippocampus. Hippocampus 2011, 21:220–232.CrossRefPubMed
34.
go back to reference Kirino T, Sano K: Selective vulnerability in the gerbil hippocampus following transient ischemia. Acta Neuropathol 1984, 62:201–208.CrossRefPubMed Kirino T, Sano K: Selective vulnerability in the gerbil hippocampus following transient ischemia. Acta Neuropathol 1984, 62:201–208.CrossRefPubMed
35.
go back to reference Horn M, Schlote W: Delayed neuronal death and delayed neuronal recovery in the human brain following global ischemia. Acta Neuropathol 1992, 85:79–87.CrossRefPubMed Horn M, Schlote W: Delayed neuronal death and delayed neuronal recovery in the human brain following global ischemia. Acta Neuropathol 1992, 85:79–87.CrossRefPubMed
36.
go back to reference Acarin L, Gonzalez B, Castellano B, Castro AJ: Microglial response to N-methyl-D-aspartate-mediated excitotoxicity in the immature rat brain. J Comp Neurol 1996, 367:361–374.CrossRefPubMed Acarin L, Gonzalez B, Castellano B, Castro AJ: Microglial response to N-methyl-D-aspartate-mediated excitotoxicity in the immature rat brain. J Comp Neurol 1996, 367:361–374.CrossRefPubMed
37.
go back to reference Schauwecker PE: Modulation of cell death by mouse genotype: differential vulnerability to excitatory amino acid-induced lesions. Exp Neurol 2002, 178:219–235.CrossRefPubMed Schauwecker PE: Modulation of cell death by mouse genotype: differential vulnerability to excitatory amino acid-induced lesions. Exp Neurol 2002, 178:219–235.CrossRefPubMed
38.
go back to reference Won SJ, Ko HW, Kim EY, Park EC, Huh K, Jung NP, Choi I, Oh YK, Shin HC, Gwag BJ: Nuclear factor kappa B-mediated kainate neurotoxicity in the rat and hamster hippocampus. Neuroscience 1999, 94:83–91.CrossRefPubMed Won SJ, Ko HW, Kim EY, Park EC, Huh K, Jung NP, Choi I, Oh YK, Shin HC, Gwag BJ: Nuclear factor kappa B-mediated kainate neurotoxicity in the rat and hamster hippocampus. Neuroscience 1999, 94:83–91.CrossRefPubMed
39.
go back to reference Gee CE, Benquet P, Raineteau O, Rietschin L, Kirbach SW, Gerber U: NMDA receptors and the differential ischemic vulnerability of hippocampal neurons. Eur J Neurosci 2006, 23:2595–2603.CrossRefPubMed Gee CE, Benquet P, Raineteau O, Rietschin L, Kirbach SW, Gerber U: NMDA receptors and the differential ischemic vulnerability of hippocampal neurons. Eur J Neurosci 2006, 23:2595–2603.CrossRefPubMed
40.
go back to reference Boscia F, Annunziato L, Taglialatela M: Retigabine and flupirtine exert neuroprotective actions in organotypic hippocampal cultures. Neuropharmacology 2006, 51:283–294.CrossRefPubMed Boscia F, Annunziato L, Taglialatela M: Retigabine and flupirtine exert neuroprotective actions in organotypic hippocampal cultures. Neuropharmacology 2006, 51:283–294.CrossRefPubMed
41.
go back to reference Cronberg T, Jensen K, Rytter A, Wieloch T: Selective sparing of hippocampal CA3 cells following in vitro ischemia is due to selective inhibition by acidosis. Eur J Neurosci 2005, 22:310–316.CrossRefPubMed Cronberg T, Jensen K, Rytter A, Wieloch T: Selective sparing of hippocampal CA3 cells following in vitro ischemia is due to selective inhibition by acidosis. Eur J Neurosci 2005, 22:310–316.CrossRefPubMed
42.
go back to reference Keynes RG, Duport S, Garthwaite J: Hippocampal neurons in organotypic slice culture are highly resistant to damage by endogenous and exogenous nitric oxide. Eur J Neurosci 2004, 19:1163–1173.CrossRefPubMed Keynes RG, Duport S, Garthwaite J: Hippocampal neurons in organotypic slice culture are highly resistant to damage by endogenous and exogenous nitric oxide. Eur J Neurosci 2004, 19:1163–1173.CrossRefPubMed
43.
go back to reference Kristensen BW, Noraberg J, Zimmer J: Comparison of excitotoxic profiles of ATPA, AMPA, KA and NMDA in organotypic hippocampal slice cultures. Brain Res 2001, 917:21–44.CrossRefPubMed Kristensen BW, Noraberg J, Zimmer J: Comparison of excitotoxic profiles of ATPA, AMPA, KA and NMDA in organotypic hippocampal slice cultures. Brain Res 2001, 917:21–44.CrossRefPubMed
44.
go back to reference Strasser U, Fischer G: Quantitative measurement of neuronal degeneration in organotypic hippocampal cultures after combined oxygen/glucose deprivation. J Neurosci Methods 1995, 57:177–186.CrossRefPubMed Strasser U, Fischer G: Quantitative measurement of neuronal degeneration in organotypic hippocampal cultures after combined oxygen/glucose deprivation. J Neurosci Methods 1995, 57:177–186.CrossRefPubMed
45.
go back to reference Ikegaya Y, Matsuki N: Regionally selective neurotoxicity of NMDA and colchicine is independent of hippocampal neural circuitry. Neuroscience 2002, 113:253–256.CrossRefPubMed Ikegaya Y, Matsuki N: Regionally selective neurotoxicity of NMDA and colchicine is independent of hippocampal neural circuitry. Neuroscience 2002, 113:253–256.CrossRefPubMed
46.
go back to reference Martens U, Capito B, Wree A: Septotemporal distribution of [3H]MK-801, [3H]AMPA and [3H]Kainate binding sites in the rat hippocampus. Anat Embryol (Berl) 1998, 198:195–204.CrossRef Martens U, Capito B, Wree A: Septotemporal distribution of [3H]MK-801, [3H]AMPA and [3H]Kainate binding sites in the rat hippocampus. Anat Embryol (Berl) 1998, 198:195–204.CrossRef
47.
go back to reference Coultrap SJ, Nixon KM, Alvestad RM, Valenzuela CF, Browning MD: Differential expression of NMDA receptor subunits and splice variants among the CA1, CA3 and dentate gyrus of the adult rat. Brain Res Mol Brain Res 2005, 135:104–111.CrossRefPubMed Coultrap SJ, Nixon KM, Alvestad RM, Valenzuela CF, Browning MD: Differential expression of NMDA receptor subunits and splice variants among the CA1, CA3 and dentate gyrus of the adult rat. Brain Res Mol Brain Res 2005, 135:104–111.CrossRefPubMed
48.
go back to reference Mirrione MM, Konomos DK, Gravanis I, Dewey SL, Aguzzi A, Heppner FL, Tsirka SE: Microglial ablation and lipopolysaccharide preconditioning affects pilocarpine-induced seizures in mice. Neurobiol Dis 2010, 39:85–97.CrossRefPubMedPubMedCentral Mirrione MM, Konomos DK, Gravanis I, Dewey SL, Aguzzi A, Heppner FL, Tsirka SE: Microglial ablation and lipopolysaccharide preconditioning affects pilocarpine-induced seizures in mice. Neurobiol Dis 2010, 39:85–97.CrossRefPubMedPubMedCentral
49.
go back to reference Chen Y, Chad JE, Cannon RC, Wheal HV: Reduced Mg2+ blockade of synaptically activated N-methyl-D-aspartate receptor-channels in CA1 pyramidal neurons in kainic acid-lesioned rat hippocampus. Neuroscience 1999, 88:727–739.CrossRefPubMed Chen Y, Chad JE, Cannon RC, Wheal HV: Reduced Mg2+ blockade of synaptically activated N-methyl-D-aspartate receptor-channels in CA1 pyramidal neurons in kainic acid-lesioned rat hippocampus. Neuroscience 1999, 88:727–739.CrossRefPubMed
50.
go back to reference Grishin AA, Gee CE, Gerber U, Benquet P: Differential calcium-dependent modulation of NMDA currents in CA1 and CA3 hippocampal pyramidal cells. J Neurosci 2004, 24:350–355.CrossRefPubMed Grishin AA, Gee CE, Gerber U, Benquet P: Differential calcium-dependent modulation of NMDA currents in CA1 and CA3 hippocampal pyramidal cells. J Neurosci 2004, 24:350–355.CrossRefPubMed
51.
go back to reference Sakaguchi T, Okada M, Kuno M, Kawasaki K: Dual mode of N-methyl-D-aspartate-induced neuronal death in hippocampal slice cultures in relation to N-methyl-D-aspartate receptor properties. Neuroscience 1997, 76:411–423.CrossRefPubMed Sakaguchi T, Okada M, Kuno M, Kawasaki K: Dual mode of N-methyl-D-aspartate-induced neuronal death in hippocampal slice cultures in relation to N-methyl-D-aspartate receptor properties. Neuroscience 1997, 76:411–423.CrossRefPubMed
52.
go back to reference Grathwohl SA, Kalin RE, Bolmont T, Prokop S, Winkelmann G, Kaeser SA, Odenthal J, Radde R, Eldh T, Gandy S, et al.: Formation and maintenance of Alzheimer's disease beta-amyloid plaques in the absence of microglia. Nat Neurosci 2009, 12:1361–1363.CrossRefPubMedPubMedCentral Grathwohl SA, Kalin RE, Bolmont T, Prokop S, Winkelmann G, Kaeser SA, Odenthal J, Radde R, Eldh T, Gandy S, et al.: Formation and maintenance of Alzheimer's disease beta-amyloid plaques in the absence of microglia. Nat Neurosci 2009, 12:1361–1363.CrossRefPubMedPubMedCentral
53.
go back to reference Imai F, Suzuki H, Oda J, Ninomiya T, Ono K, Sano H, Sawada M: Neuroprotective effect of exogenous microglia in global brain ischemia. J Cereb Blood Flow Metab 2007, 27:488–500.CrossRefPubMed Imai F, Suzuki H, Oda J, Ninomiya T, Ono K, Sano H, Sawada M: Neuroprotective effect of exogenous microglia in global brain ischemia. J Cereb Blood Flow Metab 2007, 27:488–500.CrossRefPubMed
54.
go back to reference Kitamura Y, Takata K, Inden M, Tsuchiya D, Yanagisawa D, Nakata J, Taniguchi T: Intracerebroventricular injection of microglia protects against focal brain ischemia. J Pharmacol Sci 2004, 94:203–206.CrossRefPubMed Kitamura Y, Takata K, Inden M, Tsuchiya D, Yanagisawa D, Nakata J, Taniguchi T: Intracerebroventricular injection of microglia protects against focal brain ischemia. J Pharmacol Sci 2004, 94:203–206.CrossRefPubMed
55.
go back to reference Montero M, Gonzalez B, Zimmer J: Immunotoxic depletion of microglia in mouse hippocampal slice cultures enhances ischemia-like neurodegeneration. Brain Res 2009, 1291:140–152.CrossRefPubMed Montero M, Gonzalez B, Zimmer J: Immunotoxic depletion of microglia in mouse hippocampal slice cultures enhances ischemia-like neurodegeneration. Brain Res 2009, 1291:140–152.CrossRefPubMed
56.
go back to reference Rio-Hortega PD, Rio-Hortega PD: Microglia. In In Cytology and cellular pathology of the nervous system. Edited by: Penfield W. New York: Hoeber; 1932:482–534. Rio-Hortega PD, Rio-Hortega PD: Microglia. In In Cytology and cellular pathology of the nervous system. Edited by: Penfield W. New York: Hoeber; 1932:482–534.
57.
go back to reference Bernardino L, Xapelli S, Silva AP, Jakobsen B, Poulsen FR, Oliveira CR, Vezzani A, Malva JO, Zimmer J: Modulator effects of interleukin-1beta and tumor necrosis factor-alpha on AMPA-induced excitotoxicity in mouse organotypic hippocampal slice cultures. J Neurosci 2005, 25:6734–6744.CrossRefPubMed Bernardino L, Xapelli S, Silva AP, Jakobsen B, Poulsen FR, Oliveira CR, Vezzani A, Malva JO, Zimmer J: Modulator effects of interleukin-1beta and tumor necrosis factor-alpha on AMPA-induced excitotoxicity in mouse organotypic hippocampal slice cultures. J Neurosci 2005, 25:6734–6744.CrossRefPubMed
58.
go back to reference Lauro C, Cipriani R, Catalano M, Trettel F, Chece G, Brusadin V, Antonilli L, van Rooijen N, Eusebi F, Fredholm BB, Limatola C: Adenosine A1 receptors and microglial cells mediate CX3CL1-induced protection of hippocampal neurons against Glu-induced death. Neuropsychopharmacology 2010, 35:1550–1559.CrossRefPubMedPubMedCentral Lauro C, Cipriani R, Catalano M, Trettel F, Chece G, Brusadin V, Antonilli L, van Rooijen N, Eusebi F, Fredholm BB, Limatola C: Adenosine A1 receptors and microglial cells mediate CX3CL1-induced protection of hippocampal neurons against Glu-induced death. Neuropsychopharmacology 2010, 35:1550–1559.CrossRefPubMedPubMedCentral
59.
go back to reference Boscia F, Esposito CL, Di Crisci A, de Franciscis V, Annunziato L, Cerchia L: GDNF selectively induces microglial activation and neuronal survival in CA1/CA3 hippocampal regions exposed to NMDA insult through Ret/ERK signalling. PLoS One 2009, 4:e6486.CrossRefPubMedPubMedCentral Boscia F, Esposito CL, Di Crisci A, de Franciscis V, Annunziato L, Cerchia L: GDNF selectively induces microglial activation and neuronal survival in CA1/CA3 hippocampal regions exposed to NMDA insult through Ret/ERK signalling. PLoS One 2009, 4:e6486.CrossRefPubMedPubMedCentral
60.
go back to reference Palazuelos J, Aguado T, Pazos MR, Julien B, Carrasco C, Resel E, Sagredo O, Benito C, Romero J, Azcoitia I, et al.: Microglial CB2 cannabinoid receptors are neuroprotective in Huntington's disease excitotoxicity. Brain 2009, 132:3152–3164.CrossRefPubMed Palazuelos J, Aguado T, Pazos MR, Julien B, Carrasco C, Resel E, Sagredo O, Benito C, Romero J, Azcoitia I, et al.: Microglial CB2 cannabinoid receptors are neuroprotective in Huntington's disease excitotoxicity. Brain 2009, 132:3152–3164.CrossRefPubMed
61.
go back to reference Lambertsen KL, Clausen BH, Babcock AA, Gregersen R, Fenger C, Nielsen HH, Haugaard LS, Wirenfeldt M, Nielsen M, Dagnaes-Hansen F, et al.: Microglia protect neurons against ischemia by synthesis of tumor necrosis factor. J Neurosci 2009, 29:1319–1330.CrossRefPubMed Lambertsen KL, Clausen BH, Babcock AA, Gregersen R, Fenger C, Nielsen HH, Haugaard LS, Wirenfeldt M, Nielsen M, Dagnaes-Hansen F, et al.: Microglia protect neurons against ischemia by synthesis of tumor necrosis factor. J Neurosci 2009, 29:1319–1330.CrossRefPubMed
62.
go back to reference Narantuya D, Nagai A, Sheikh AM, Masuda J, Kobayashi S, Yamaguchi S, Kim SU: Human microglia transplanted in rat focal ischemia brain induce neuroprotection and behavioral improvement. PLoS One 2010, 5:e11746.CrossRefPubMedPubMedCentral Narantuya D, Nagai A, Sheikh AM, Masuda J, Kobayashi S, Yamaguchi S, Kim SU: Human microglia transplanted in rat focal ischemia brain induce neuroprotection and behavioral improvement. PLoS One 2010, 5:e11746.CrossRefPubMedPubMedCentral
63.
go back to reference Neumann J, Gunzer M, Gutzeit HO, Ullrich O, Reymann KG, Dinkel K: Microglia provide neuroprotection after ischemia. FASEB J 2006, 20:714–716.PubMed Neumann J, Gunzer M, Gutzeit HO, Ullrich O, Reymann KG, Dinkel K: Microglia provide neuroprotection after ischemia. FASEB J 2006, 20:714–716.PubMed
64.
go back to reference Murugan M, Sivakumar V, Lu J, Ling EA, Kaur C: Expression of N-methyl D-aspartate receptor subunits in amoeboid microglia mediates production of nitric oxide via NF-kappaB signaling pathway and oligodendrocyte cell death in hypoxic postnatal rats. Glia 2011, 59:521–539.CrossRefPubMed Murugan M, Sivakumar V, Lu J, Ling EA, Kaur C: Expression of N-methyl D-aspartate receptor subunits in amoeboid microglia mediates production of nitric oxide via NF-kappaB signaling pathway and oligodendrocyte cell death in hypoxic postnatal rats. Glia 2011, 59:521–539.CrossRefPubMed
65.
go back to reference Olah M, Amor S, Brouwer N, Vinet J, Eggen B, Biber K, Boddeke HW: Identification of a microglia phenotype supportive of remyelination. Glia 2011, 60:306–321.CrossRefPubMed Olah M, Amor S, Brouwer N, Vinet J, Eggen B, Biber K, Boddeke HW: Identification of a microglia phenotype supportive of remyelination. Glia 2011, 60:306–321.CrossRefPubMed
66.
go back to reference Olah M, Biber K, Vinet J, Boddeke HW: Microglia phenotype diversity. CNS Neurol Disord Drug Targets 2011, 10:108–118.CrossRefPubMed Olah M, Biber K, Vinet J, Boddeke HW: Microglia phenotype diversity. CNS Neurol Disord Drug Targets 2011, 10:108–118.CrossRefPubMed
67.
go back to reference Biber K, Neumann H, Inoue K, Boddeke HW: Neuronal'On' and'Off' signals control microglia. Trends Neurosci 2007, 30:596–602.CrossRefPubMed Biber K, Neumann H, Inoue K, Boddeke HW: Neuronal'On' and'Off' signals control microglia. Trends Neurosci 2007, 30:596–602.CrossRefPubMed
68.
go back to reference Elkabes S, DiCicco-Bloom EM, Black IB: Brain microglia/macrophages express neurotrophins that selectively regulate microglial proliferation and function. J Neurosci 1996, 16:2508–2521.PubMed Elkabes S, DiCicco-Bloom EM, Black IB: Brain microglia/macrophages express neurotrophins that selectively regulate microglial proliferation and function. J Neurosci 1996, 16:2508–2521.PubMed
69.
go back to reference Xapelli S, Bernardino L, Ferreira R, Grade S, Silva AP, Salgado JR, Cavadas C, Grouzmann E, Poulsen FR, Jakobsen B, et al.: Interaction between neuropeptide Y (NPY) and brain-derived neurotrophic factor in NPY-mediated neuroprotection against excitotoxicity: a role for microglia. Eur J Neurosci 2008, 27:2089–2102.CrossRefPubMed Xapelli S, Bernardino L, Ferreira R, Grade S, Silva AP, Salgado JR, Cavadas C, Grouzmann E, Poulsen FR, Jakobsen B, et al.: Interaction between neuropeptide Y (NPY) and brain-derived neurotrophic factor in NPY-mediated neuroprotection against excitotoxicity: a role for microglia. Eur J Neurosci 2008, 27:2089–2102.CrossRefPubMed
Metadata
Title
Neuroprotective function for ramified microglia in hippocampal excitotoxicity
Authors
Jonathan Vinet
Hilmar RJ van Weering
Annette Heinrich
Roland E Kälin
Anja Wegner
Nieske Brouwer
Frank L Heppner
Nico van Rooijen
Hendrikus WGM Boddeke
Knut Biber
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2012
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/1742-2094-9-27

Other articles of this Issue 1/2012

Journal of Neuroinflammation 1/2012 Go to the issue