Skip to main content
Top
Published in: Discover Oncology 1/2021

Open Access 01-12-2021 | Cutaneous Squamous Cell Carcinoma | Research

Involvement of transcribed lncRNA uc.291 and SWI/SNF complex in cutaneous squamous cell carcinoma

Authors: M. Mancini, A. Cappello, R. Pecorari, A. M. Lena, M. Montanaro, L. Fania, F. Ricci, G. Di Lella, M. C. Piro, D. Abeni, E. Dellambra, A. Mauriello, G. Melino, E. Candi

Published in: Discover Oncology | Issue 1/2021

Login to get access

Abstract

While non-melanoma skin cancers (NMSCs) are the most common tumours in humans, only the sub-type cutaneous squamous cell carcinoma (cSCC), might become metastatic with high lethality. We have recently identified a regulatory pathway involving the lncRNA transcript uc.291 in controlling the expression of epidermal differentiation complex genes via the interaction with ACTL6A, a component of the chromatin remodelling complex SWI/SNF. Since transcribed ultra-conserved regions (T-UCRs) are expressed in normal tissues and are deregulated in tumorigenesis, here we hypothesize a potential role for dysregulation of this axis in cSCC, accounting for the de-differentiation process observed in aggressive poorly differentiated cutaneous carcinomas. We therefore analysed their expression patterns in human tumour biopsies at mRNA and protein levels. The results suggest that by altering chromatin accessibility of the epidermal differentiation complex genes, down-regulation of uc.291 and BRG1 expression contribute to the de-differentiation process seen in keratinocyte malignancy. This provides future direction for the identification of clinical biomarkers in cutaneous SCC. Analysis of publicly available data sets indicates that the above may also be a general feature for SCCs of different origins.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bonilla X, Parmentier L, King B, et al. Genomic analysis identifies new drivers and progression pathways in skin basal cell carcinoma. Nat Genet. 2016;48:398–406.CrossRef Bonilla X, Parmentier L, King B, et al. Genomic analysis identifies new drivers and progression pathways in skin basal cell carcinoma. Nat Genet. 2016;48:398–406.CrossRef
2.
go back to reference Youssef KK, Van Keymeulen A, Lapouge G, et al. Identification of the cell lineage at the origin of basal cell carcinoma. Nat Cell Biol. 2010;12:299–305.CrossRef Youssef KK, Van Keymeulen A, Lapouge G, et al. Identification of the cell lineage at the origin of basal cell carcinoma. Nat Cell Biol. 2010;12:299–305.CrossRef
3.
go back to reference Smirnov A, Lena AM, Cappello A, et al. ZNF185 is a p63 target gene critical for epidermal differentiation and squamous cell carcinoma development. Oncogene. 2019;38:1625–38.CrossRef Smirnov A, Lena AM, Cappello A, et al. ZNF185 is a p63 target gene critical for epidermal differentiation and squamous cell carcinoma development. Oncogene. 2019;38:1625–38.CrossRef
4.
go back to reference Candi E, Smirnov A, Panatta E, Lena AM, Novelli F, Mancini M, Viticchiè G, Piro MC, Di Daniele N, Annicchiarico-Petruzzelli M, Melino G. Metabolic pathways regulated by p63. Biochem Biophys Res Commun. 2017;482(3):440–444CrossRef Candi E, Smirnov A, Panatta E, Lena AM, Novelli F, Mancini M, Viticchiè G, Piro MC, Di Daniele N, Annicchiarico-Petruzzelli M, Melino G. Metabolic pathways regulated by p63. Biochem Biophys Res Commun. 2017;482(3):440–444CrossRef
5.
go back to reference Fania L, Didona D, Morese R, et al. Basal cell carcinoma: from pathophysiology to novel therapeutic approaches. Biomedicines. 2020;8:449.CrossRef Fania L, Didona D, Morese R, et al. Basal cell carcinoma: from pathophysiology to novel therapeutic approaches. Biomedicines. 2020;8:449.CrossRef
6.
go back to reference Peterson SC, Eberl M, Vagnozzi AN, et al. Basal cell carcinoma preferentially arises from stem cells within hair follicle and mechanosensory niches. Cell Stem Cell. 2015;16:400–12.CrossRef Peterson SC, Eberl M, Vagnozzi AN, et al. Basal cell carcinoma preferentially arises from stem cells within hair follicle and mechanosensory niches. Cell Stem Cell. 2015;16:400–12.CrossRef
7.
go back to reference Apalla Z, Nashan D, Weller RB, Castellsagué X. Skin cancer: epidemiology, disease burden, pathophysiology, diagnosis, and therapeutic approaches. Dermatol Ther. 2017;7:5–19.CrossRef Apalla Z, Nashan D, Weller RB, Castellsagué X. Skin cancer: epidemiology, disease burden, pathophysiology, diagnosis, and therapeutic approaches. Dermatol Ther. 2017;7:5–19.CrossRef
8.
go back to reference Harwood CA, Toland AE, Proby CM, et al. The pathogenesis of cutaneous squamous cell carcinoma in organ transplant recipients. Br J Dermatol. 2017;177:1217–24.CrossRef Harwood CA, Toland AE, Proby CM, et al. The pathogenesis of cutaneous squamous cell carcinoma in organ transplant recipients. Br J Dermatol. 2017;177:1217–24.CrossRef
9.
go back to reference Harwood CA, Proby CM, Inman GJ, Leigh IM. The promise of genomics and the development of targeted therapies for cutaneous squamous cell carcinoma. Acta Derm Venereol. 2016;96:3–16.CrossRef Harwood CA, Proby CM, Inman GJ, Leigh IM. The promise of genomics and the development of targeted therapies for cutaneous squamous cell carcinoma. Acta Derm Venereol. 2016;96:3–16.CrossRef
11.
go back to reference Amelio I, Bertolo R, Bove P, et al. Liquid biopsies and cancer omics. Cell Death Discov. 2020;6:131.CrossRef Amelio I, Bertolo R, Bove P, et al. Liquid biopsies and cancer omics. Cell Death Discov. 2020;6:131.CrossRef
12.
go back to reference Amelio I, Bertolo R, Bove P, et al. Cancer predictive studies. Biol Direct. 2020;15:18.CrossRef Amelio I, Bertolo R, Bove P, et al. Cancer predictive studies. Biol Direct. 2020;15:18.CrossRef
13.
go back to reference Cammareri P, Rose AM, Vincent DF, et al. Inactivation of TGFβ receptors in stem cells drives cutaneous squamous cell carcinoma. Nat Commun. 2016;7:12493.CrossRef Cammareri P, Rose AM, Vincent DF, et al. Inactivation of TGFβ receptors in stem cells drives cutaneous squamous cell carcinoma. Nat Commun. 2016;7:12493.CrossRef
14.
go back to reference Chitsazzadeh V, Coarfa C, Drummond JA, et al. Cross-species identification of genomic drivers of squamous cell carcinoma development across preneoplastic intermediates. Nat Commun. 2016;7:12601.CrossRef Chitsazzadeh V, Coarfa C, Drummond JA, et al. Cross-species identification of genomic drivers of squamous cell carcinoma development across preneoplastic intermediates. Nat Commun. 2016;7:12601.CrossRef
15.
go back to reference Frezza V, Fierro C, Gatti E, et al. ΔNp63 promotes IGF1 signalling through IRS1 in squamous cell carcinoma. Aging. 2018;10:4224–40.CrossRef Frezza V, Fierro C, Gatti E, et al. ΔNp63 promotes IGF1 signalling through IRS1 in squamous cell carcinoma. Aging. 2018;10:4224–40.CrossRef
16.
go back to reference Hibi K, Trink B, Patturajan M, et al. AIS is an oncogene amplified in squamous cell carcinoma. Proc Natl Acad Sci USA. 2000;97:5462–7.CrossRef Hibi K, Trink B, Patturajan M, et al. AIS is an oncogene amplified in squamous cell carcinoma. Proc Natl Acad Sci USA. 2000;97:5462–7.CrossRef
17.
go back to reference Smirnov A, Anemona L, Montanaro M, et al. Transglutaminase 3 is expressed in basal cell carcinoma of the skin. Eur J Dermatol. 2019;29:477–83.CrossRef Smirnov A, Anemona L, Montanaro M, et al. Transglutaminase 3 is expressed in basal cell carcinoma of the skin. Eur J Dermatol. 2019;29:477–83.CrossRef
18.
go back to reference Viticchiè G, Agostini M, Lena AM, et al. p63 supports aerobic respiration through hexokinase II. Proc Natl Acad Sci USA. 2015;112:11577–82.CrossRef Viticchiè G, Agostini M, Lena AM, et al. p63 supports aerobic respiration through hexokinase II. Proc Natl Acad Sci USA. 2015;112:11577–82.CrossRef
19.
go back to reference Melino S, Nepravishta R, Bellomaria A, et al. Nucleic acid binding of the RTN1-C C-terminal region: toward the functional role of a reticulon protein. Biochemistry. 2009;48:242–53.CrossRef Melino S, Nepravishta R, Bellomaria A, et al. Nucleic acid binding of the RTN1-C C-terminal region: toward the functional role of a reticulon protein. Biochemistry. 2009;48:242–53.CrossRef
20.
go back to reference Franzè E, Marafini I, De Simone V, et al. Interleukin-34 induces Cc-chemokine ligand 20 in gut epithelial cells. J Crohn’s Colitis. 2016;10:87–94.CrossRef Franzè E, Marafini I, De Simone V, et al. Interleukin-34 induces Cc-chemokine ligand 20 in gut epithelial cells. J Crohn’s Colitis. 2016;10:87–94.CrossRef
21.
go back to reference Bellomaria A, Barbato G, Melino G, et al. Recognition mechanism of p63 by the E3 ligase Itch. Cell Cycle. 2012;11:3638–48.CrossRef Bellomaria A, Barbato G, Melino G, et al. Recognition mechanism of p63 by the E3 ligase Itch. Cell Cycle. 2012;11:3638–48.CrossRef
22.
go back to reference Celardo I, Melino G, Amelio I. Commensal microbes and p53 in cancer progression. Biol Direct. 2020;15:25.CrossRef Celardo I, Melino G, Amelio I. Commensal microbes and p53 in cancer progression. Biol Direct. 2020;15:25.CrossRef
23.
go back to reference Harris ZN, Dhungel E, Mosior M, Ahn T-H. Massive metagenomic data analysis using abundance-based machine learning. Biol Direct. 2019;14:12.CrossRef Harris ZN, Dhungel E, Mosior M, Ahn T-H. Massive metagenomic data analysis using abundance-based machine learning. Biol Direct. 2019;14:12.CrossRef
24.
go back to reference Kim SY, Jeong H-H, Kim J, et al. Robust pathway-based multi-omics data integration using directed random walks for survival prediction in multiple cancer studies. Biol Direct. 2019;14:8.CrossRef Kim SY, Jeong H-H, Kim J, et al. Robust pathway-based multi-omics data integration using directed random walks for survival prediction in multiple cancer studies. Biol Direct. 2019;14:8.CrossRef
25.
go back to reference Madera S, Chervo MF, Chiauzzi VA, et al. Nuclear PDCD4 expression defines a subset of luminal B-like breast cancers with good prognosis. Horm Cancer. 2020;11:218–39.CrossRef Madera S, Chervo MF, Chiauzzi VA, et al. Nuclear PDCD4 expression defines a subset of luminal B-like breast cancers with good prognosis. Horm Cancer. 2020;11:218–39.CrossRef
26.
go back to reference MacDonald L, Jenkins J, Purvis G, et al. The thyroid tumor microenvironment: potential targets for therapeutic intervention and prognostication. Horm Cancer. 2020;11:205–17.CrossRef MacDonald L, Jenkins J, Purvis G, et al. The thyroid tumor microenvironment: potential targets for therapeutic intervention and prognostication. Horm Cancer. 2020;11:205–17.CrossRef
27.
go back to reference Chowdhury S, Beitel LK, Lumbroso R, et al. A targeted bivalent androgen receptor binding compound for prostate cancer therapy. Horm Cancer. 2019;10:24–35.CrossRef Chowdhury S, Beitel LK, Lumbroso R, et al. A targeted bivalent androgen receptor binding compound for prostate cancer therapy. Horm Cancer. 2019;10:24–35.CrossRef
28.
go back to reference Oktay K, Santaliz-Casiano A, Patel M, et al. A computational statistics approach to evaluate blood biomarkers for breast cancer risk stratification. Horm Cancer. 2020;11:17–33.CrossRef Oktay K, Santaliz-Casiano A, Patel M, et al. A computational statistics approach to evaluate blood biomarkers for breast cancer risk stratification. Horm Cancer. 2020;11:17–33.CrossRef
29.
go back to reference Han L, Zhang H-C, Li L, et al. Downregulation of long noncoding RNA HOTAIR and EZH2 induces apoptosis and inhibits proliferation, invasion, and migration of human breast cancer cells. Cancer Biother Radiopharm. 2018;33:241–51. Han L, Zhang H-C, Li L, et al. Downregulation of long noncoding RNA HOTAIR and EZH2 induces apoptosis and inhibits proliferation, invasion, and migration of human breast cancer cells. Cancer Biother Radiopharm. 2018;33:241–51.
30.
go back to reference Kadoch C, Hargreaves DC, Hodges C, et al. Proteomic and bioinformatic analysis of mammalian SWI/SNF complexes identifies extensive roles in human malignancy. Nat Genet. 2013;45:592–601.CrossRef Kadoch C, Hargreaves DC, Hodges C, et al. Proteomic and bioinformatic analysis of mammalian SWI/SNF complexes identifies extensive roles in human malignancy. Nat Genet. 2013;45:592–601.CrossRef
31.
go back to reference Liu S, Hou XL, Sui WG, et al. Direct measurement of B-cell receptor repertoire’s composition and variation in systemic lupus erythematosus. Genes Immun. 2017;18:22–7.CrossRef Liu S, Hou XL, Sui WG, et al. Direct measurement of B-cell receptor repertoire’s composition and variation in systemic lupus erythematosus. Genes Immun. 2017;18:22–7.CrossRef
32.
go back to reference Lu P, Roberts CWM. The SWI/SNF tumor suppressor complex: regulation of promoter nucleosomes and beyond. Nucleus. 2013;4:374–8.CrossRef Lu P, Roberts CWM. The SWI/SNF tumor suppressor complex: regulation of promoter nucleosomes and beyond. Nucleus. 2013;4:374–8.CrossRef
33.
go back to reference Wang L, Luo Y, Zheng Y, et al. Long non-coding RNA LINC00426 contributes to doxorubicin resistance by sponging miR-4319 in osteosarcoma. Biol Direct. 2020;15:11.CrossRef Wang L, Luo Y, Zheng Y, et al. Long non-coding RNA LINC00426 contributes to doxorubicin resistance by sponging miR-4319 in osteosarcoma. Biol Direct. 2020;15:11.CrossRef
34.
go back to reference Chen JC, Tyler AD. Systematic evaluation of supervised machine learning for sample origin prediction using metagenomic sequencing data. Biol Direct. 2020;15:29.CrossRef Chen JC, Tyler AD. Systematic evaluation of supervised machine learning for sample origin prediction using metagenomic sequencing data. Biol Direct. 2020;15:29.CrossRef
35.
go back to reference Huarte M. The emerging role of lncRNAs in cancer. Nat Med. 2015;21:1253–61.CrossRef Huarte M. The emerging role of lncRNAs in cancer. Nat Med. 2015;21:1253–61.CrossRef
36.
go back to reference Kashyap MP, Sinha R, Mukhtar MS, Athar M. Epigenetic regulation in the pathogenesis of non-melanoma skin cancer. In: Seminars in cancer biology. Academic Press; 2020. Kashyap MP, Sinha R, Mukhtar MS, Athar M. Epigenetic regulation in the pathogenesis of non-melanoma skin cancer. In: Seminars in cancer biology. Academic Press; 2020.
37.
go back to reference Piipponen M, Nissinen L, Kähäri V-M. Long non-coding RNAs in cutaneous biology and keratinocyte carcinomas. Cell Mol Life Sci. 2020;77:4601–14.CrossRef Piipponen M, Nissinen L, Kähäri V-M. Long non-coding RNAs in cutaneous biology and keratinocyte carcinomas. Cell Mol Life Sci. 2020;77:4601–14.CrossRef
38.
go back to reference Das Mahapatra K, Pasquali L, Søndergaard JN, et al. A comprehensive analysis of coding and non-coding transcriptomic changes in cutaneous squamous cell carcinoma. Sci Rep. 2020;10:3637.CrossRef Das Mahapatra K, Pasquali L, Søndergaard JN, et al. A comprehensive analysis of coding and non-coding transcriptomic changes in cutaneous squamous cell carcinoma. Sci Rep. 2020;10:3637.CrossRef
39.
go back to reference Tang L, Liang Y, Xie H, et al. Long non-coding RNAs in cutaneous biology and proliferative skin diseases: advances and perspectives. Cell Prolif. 2020;53:e12698.CrossRef Tang L, Liang Y, Xie H, et al. Long non-coding RNAs in cutaneous biology and proliferative skin diseases: advances and perspectives. Cell Prolif. 2020;53:e12698.CrossRef
40.
go back to reference Piipponen M, Nissinen L, Farshchian M, et al. Long noncoding RNA PICSAR promotes growth of cutaneous squamous cell carcinoma by regulating ERK1/2 activity. J Invest Dermatol. 2016;136:1701–10.CrossRef Piipponen M, Nissinen L, Farshchian M, et al. Long noncoding RNA PICSAR promotes growth of cutaneous squamous cell carcinoma by regulating ERK1/2 activity. J Invest Dermatol. 2016;136:1701–10.CrossRef
41.
go back to reference Piipponen M, Heino J, Kähäri V-M, Nissinen L. Long non-coding RNA PICSAR decreases adhesion and promotes migration of squamous carcinoma cells by downregulating α2β1 and α5β1 integrin expression. Biol Open. 2018;7:bio037044.CrossRef Piipponen M, Heino J, Kähäri V-M, Nissinen L. Long non-coding RNA PICSAR decreases adhesion and promotes migration of squamous carcinoma cells by downregulating α2β1 and α5β1 integrin expression. Biol Open. 2018;7:bio037044.CrossRef
42.
go back to reference Sand M, Bechara FG, Sand D, et al. Expression profiles of long noncoding RNAs in cutaneous squamous cell carcinoma. Epigenomics. 2016;8:501–18.CrossRef Sand M, Bechara FG, Sand D, et al. Expression profiles of long noncoding RNAs in cutaneous squamous cell carcinoma. Epigenomics. 2016;8:501–18.CrossRef
43.
go back to reference Mei X-L, Zhong S. Long noncoding RNA LINC00520 prevents the progression of cutaneous squamous cell carcinoma through the inactivation of the PI3K/Akt signaling pathway by downregulating EGFR. Chin Med J. 2019;132:454–65.CrossRef Mei X-L, Zhong S. Long noncoding RNA LINC00520 prevents the progression of cutaneous squamous cell carcinoma through the inactivation of the PI3K/Akt signaling pathway by downregulating EGFR. Chin Med J. 2019;132:454–65.CrossRef
44.
go back to reference Bejerano G, Pheasant M, Makunin I, et al. Ultraconserved elements in the human genome. Science (80-). 2004;304:1321–5.CrossRef Bejerano G, Pheasant M, Makunin I, et al. Ultraconserved elements in the human genome. Science (80-). 2004;304:1321–5.CrossRef
45.
go back to reference Scaruffi P. The transcribed-ultraconserved regions: a novel class of long noncoding RNAs involved in cancer susceptibility. Sci World J. 2011;11:340–52.CrossRef Scaruffi P. The transcribed-ultraconserved regions: a novel class of long noncoding RNAs involved in cancer susceptibility. Sci World J. 2011;11:340–52.CrossRef
46.
go back to reference Baira E, Greshock J, Coukos G, Zhang L. Ultraconserved elements: genomics, function and disease. RNA Biol. 2008;5:132–4.CrossRef Baira E, Greshock J, Coukos G, Zhang L. Ultraconserved elements: genomics, function and disease. RNA Biol. 2008;5:132–4.CrossRef
47.
go back to reference Panatta E, Lena AM, Mancini M, Smirnov A, Marini A, Delli Ponti R, Botta-Orfila T, Tartaglia GG, Mauriello A, Zhang X, Calin GA, Melino G, Candi E. Long non-coding RNA uc.291 controls epithelial differentiation by interfering with the ACTL6A/BAF complex. EMBO Rep. 2020;21(3):e46734.CrossRef Panatta E, Lena AM, Mancini M, Smirnov A, Marini A, Delli Ponti R, Botta-Orfila T, Tartaglia GG, Mauriello A, Zhang X, Calin GA, Melino G, Candi E. Long non-coding RNA uc.291 controls epithelial differentiation by interfering with the ACTL6A/BAF complex. EMBO Rep. 2020;21(3):e46734.CrossRef
48.
go back to reference Saladi SV, Ross K, Karaayvaz M, et al. ACTL6A is co-amplified with p63 in squamous cell carcinoma to drive YAP activation, regenerative proliferation, and poor prognosis. Cancer Cell. 2017;31:35–49.CrossRef Saladi SV, Ross K, Karaayvaz M, et al. ACTL6A is co-amplified with p63 in squamous cell carcinoma to drive YAP activation, regenerative proliferation, and poor prognosis. Cancer Cell. 2017;31:35–49.CrossRef
49.
50.
go back to reference Mardaryev AN, Gdula MR, Yarker JL, et al. p63 and Brg1 control developmentally regulated higher-order chromatin remodelling at the epidermal differentiation complex locus in epidermal progenitor cells. Development. 2014;141:3437–3437.CrossRef Mardaryev AN, Gdula MR, Yarker JL, et al. p63 and Brg1 control developmentally regulated higher-order chromatin remodelling at the epidermal differentiation complex locus in epidermal progenitor cells. Development. 2014;141:3437–3437.CrossRef
51.
go back to reference Botchkarev VA, Gdula MR, Mardaryev AN, et al. Epigenetic regulation of gene expression in keratinocytes. J Invest Dermatol. 2012;132:2505–21.CrossRef Botchkarev VA, Gdula MR, Mardaryev AN, et al. Epigenetic regulation of gene expression in keratinocytes. J Invest Dermatol. 2012;132:2505–21.CrossRef
52.
go back to reference Indra AK, Dupé V, Bornert J-M, et al. Temporally controlled targeted somatic mutagenesis in embryonic surface ectoderm and fetal epidermal keratinocytes unveils two distinct developmental functions of BRG1 in limb morphogenesis and skin barrier formation. Development. 2005;132:4533–44.CrossRef Indra AK, Dupé V, Bornert J-M, et al. Temporally controlled targeted somatic mutagenesis in embryonic surface ectoderm and fetal epidermal keratinocytes unveils two distinct developmental functions of BRG1 in limb morphogenesis and skin barrier formation. Development. 2005;132:4533–44.CrossRef
53.
go back to reference Bao X, Tang J, Lopez-Pajares V, et al. ACTL6a enforces the epidermal progenitor state by suppressing SWI/SNF-dependent induction of KLF4. Cell Stem Cell. 2013;12:193–203.CrossRef Bao X, Tang J, Lopez-Pajares V, et al. ACTL6a enforces the epidermal progenitor state by suppressing SWI/SNF-dependent induction of KLF4. Cell Stem Cell. 2013;12:193–203.CrossRef
54.
go back to reference Ciocci M, Iorio E, Carotenuto F, et al. H2S-releasing nanoemulsions: a new formulation to inhibit tumor cells proliferation and improve tissue repair. Oncotarget. 2016;7(51):84338.CrossRef Ciocci M, Iorio E, Carotenuto F, et al. H2S-releasing nanoemulsions: a new formulation to inhibit tumor cells proliferation and improve tissue repair. Oncotarget. 2016;7(51):84338.CrossRef
Metadata
Title
Involvement of transcribed lncRNA uc.291 and SWI/SNF complex in cutaneous squamous cell carcinoma
Authors
M. Mancini
A. Cappello
R. Pecorari
A. M. Lena
M. Montanaro
L. Fania
F. Ricci
G. Di Lella
M. C. Piro
D. Abeni
E. Dellambra
A. Mauriello
G. Melino
E. Candi
Publication date
01-12-2021
Publisher
Springer US
Published in
Discover Oncology / Issue 1/2021
Print ISSN: 1868-8497
Electronic ISSN: 2730-6011
DOI
https://doi.org/10.1007/s12672-021-00409-6

Other articles of this Issue 1/2021

Discover Oncology 1/2021 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine