Skip to main content
Top
Published in: Discover Oncology 1/2021

Open Access 01-12-2021 | Prostate Cancer | Brief Communication

IGF-1R nuclear import and recruitment to chromatin involves both alpha and beta subunits

Authors: Jack V. Mills, Eliot Osher, Guillaume Rieunier, Ian G. Mills, Valentine M. Macaulay

Published in: Discover Oncology | Issue 1/2021

Login to get access

Abstract

Mature type 1 insulin-like growth factor receptors (IGF-1Rs) are heterotetrameric structures comprising two extracellular α-subunits disulphide-bonded to two transmembrane β-subunits with tyrosine kinase activity. IGF-1R is a well-known cell surface mediator of malignant growth, with an incompletely understood role upon nuclear import as a transcriptional regulator. Previous characterisation of nuclear IGF-1R focused on IGF-1Rβ. Here, we aimed to clarify the source of nuclear IGF-1R and investigate whether α-subunits contribute to nuclear IGF-1R function. Using prostate cancer cell lines DU145 and 22Rv1 we detected nuclear α- and β-subunits, with increase in nuclear signal upon IGF-treatment and reduction in response to IGF-1R inhibitor BMS-754807. Following biotinylation of cell surface proteins, biotinylated α- and β-subunits were detected in nuclear extracts of both cell lines. Furthermore, α- and β-subunits reciprocally co-precipitated from nuclear extract. Finally, we detected recruitment of both subunits to regulatory regions of chromatin, including the promoter of the oncogene JUN, that we previously identified in ChIP-seq as sites of IGF-1Rβ enrichment. These data confirm the cell surface origin of nuclear IGF-1R, suggest the presence of nuclear αβ complexes and reveal that both IGF-1Rα- and β-subunits contribute to pro-tumorigenic functions of nuclear IGF-1R.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ullrich A, et al. Insulin-like growth factor I receptor primary structure: comparison with insulin receptor suggests structural determinants that define functional specificity. EMBO J. 1986;5(10):2503–12.CrossRef Ullrich A, et al. Insulin-like growth factor I receptor primary structure: comparison with insulin receptor suggests structural determinants that define functional specificity. EMBO J. 1986;5(10):2503–12.CrossRef
2.
go back to reference Le Roith D, Werner H, Beitner-Johnson D, Roberts CT. Molecular and cellular aspects of the insulin-like growth factor I receptor. Endocr Rev. 1995;16(2):143–63.CrossRef Le Roith D, Werner H, Beitner-Johnson D, Roberts CT. Molecular and cellular aspects of the insulin-like growth factor I receptor. Endocr Rev. 1995;16(2):143–63.CrossRef
3.
go back to reference Adams TE, Epa VC, Garrett TPJ, Ward CW. Structure and function of the type 1 insulin-like growth factor receptor. Cell Mol Life Sci. 2000;57:1050–93.CrossRef Adams TE, Epa VC, Garrett TPJ, Ward CW. Structure and function of the type 1 insulin-like growth factor receptor. Cell Mol Life Sci. 2000;57:1050–93.CrossRef
4.
go back to reference Li J, Choi E, Yu H, Bai X chen. Structural basis of the activation of type 1 insulin-like growth factor receptor. Nat Commun. 2019;10(1):1–11. Li J, Choi E, Yu H, Bai X chen. Structural basis of the activation of type 1 insulin-like growth factor receptor. Nat Commun. 2019;10(1):1–11.
5.
go back to reference Baserga R, Peruzzi F, Reiss K. The IGF-1 receptor in cancer biology. Int J Cancer. 2003;107(6):873–7.CrossRef Baserga R, Peruzzi F, Reiss K. The IGF-1 receptor in cancer biology. Int J Cancer. 2003;107(6):873–7.CrossRef
6.
go back to reference Resnicoff M, et al. The insulin-like growth factor I receptor protects tumor cells from apoptosis in vivo. Cancer Res. 1995;55(11):2463–9.PubMed Resnicoff M, et al. The insulin-like growth factor I receptor protects tumor cells from apoptosis in vivo. Cancer Res. 1995;55(11):2463–9.PubMed
7.
go back to reference Osher E, Macaulay VM. Therapeutic targeting of the IGF axis. Cells. 2019;8(895):1–25. Osher E, Macaulay VM. Therapeutic targeting of the IGF axis. Cells. 2019;8(895):1–25.
8.
go back to reference Aleksic T, et al. Durable response of spinal chordoma to combined inhibition of IGF-1R and EGFR. Front Oncol. 2016;6(98):1–6. Aleksic T, et al. Durable response of spinal chordoma to combined inhibition of IGF-1R and EGFR. Front Oncol. 2016;6(98):1–6.
9.
go back to reference Simpson A, Petnga W, Macaulay VM, Weyer-czernilofsky U, Bogenrieder T. Insulin-like growth factor (IGF) pathway targeting in cancer : role of the IGF axis and opportunities for future combination studies. Targ Oncol. 2017;12(5):571–97.CrossRef Simpson A, Petnga W, Macaulay VM, Weyer-czernilofsky U, Bogenrieder T. Insulin-like growth factor (IGF) pathway targeting in cancer : role of the IGF axis and opportunities for future combination studies. Targ Oncol. 2017;12(5):571–97.CrossRef
10.
go back to reference Baserga R. The decline and fall of the IGF-I receptor. J Cell Physiol. 2013;228(4):675–9.CrossRef Baserga R. The decline and fall of the IGF-I receptor. J Cell Physiol. 2013;228(4):675–9.CrossRef
11.
go back to reference Aleksic T, et al. Type 1 insulin-like growth factor receptor translocates to the nucleus of human tumor cells. Cancer Res. 2010;70(16):6412–20.CrossRef Aleksic T, et al. Type 1 insulin-like growth factor receptor translocates to the nucleus of human tumor cells. Cancer Res. 2010;70(16):6412–20.CrossRef
12.
go back to reference Sehat B, et al. SUMOylation mediates the nuclear translocation and signaling of the IGF-1 receptor. Sci Signal. 2010;3(108):1–12.CrossRef Sehat B, et al. SUMOylation mediates the nuclear translocation and signaling of the IGF-1 receptor. Sci Signal. 2010;3(108):1–12.CrossRef
13.
go back to reference Sarfstein R, et al. Insulin-like growth factor-I receptor (IGF-IR) translocates to nucleus and autoregulates IGF-IR gene expression in breast cancer cells. J Biol Chem. 2012;287(4):2766–76.CrossRef Sarfstein R, et al. Insulin-like growth factor-I receptor (IGF-IR) translocates to nucleus and autoregulates IGF-IR gene expression in breast cancer cells. J Biol Chem. 2012;287(4):2766–76.CrossRef
14.
go back to reference Packham S, et al. Nuclear translocation of IGF-1R via p150 Glued and an importin-β/RanBP2-dependent pathway in cancer cells. Oncogene. 2014;34(17):2227–38.CrossRef Packham S, et al. Nuclear translocation of IGF-1R via p150 Glued and an importin-β/RanBP2-dependent pathway in cancer cells. Oncogene. 2014;34(17):2227–38.CrossRef
15.
go back to reference Aleksic T, et al. Nuclear IGF1R interacts with regulatory regions of chromatin to promote RNA polymerase II recruitment and gene expression associated with advanced tumor stage. Cancer Res. 2018;78(13):3497–509.PubMedPubMedCentralCrossRef Aleksic T, et al. Nuclear IGF1R interacts with regulatory regions of chromatin to promote RNA polymerase II recruitment and gene expression associated with advanced tumor stage. Cancer Res. 2018;78(13):3497–509.PubMedPubMedCentralCrossRef
16.
go back to reference Solomon-Zemler R, Pozniak Y, Geiger T, Werner H. Identification of nucleolar protein NOM1 as a novel nuclear IGF1R-interacting protein. Mol Genet Metab. 2019;126(3):259–65.CrossRef Solomon-Zemler R, Pozniak Y, Geiger T, Werner H. Identification of nucleolar protein NOM1 as a novel nuclear IGF1R-interacting protein. Mol Genet Metab. 2019;126(3):259–65.CrossRef
17.
go back to reference Warsito D, Sjöström S, Andersson S, Larsson O, Sehat B. Nuclear IGF1R is a transcriptional co-activator of LEF1/TCF. EMBO Rep. 2012;13(3):244–50.CrossRef Warsito D, Sjöström S, Andersson S, Larsson O, Sehat B. Nuclear IGF1R is a transcriptional co-activator of LEF1/TCF. EMBO Rep. 2012;13(3):244–50.CrossRef
18.
go back to reference Waraky A, et al. Nuclear insulin-like growth factor 1 receptor phosphorylates proliferating cell nuclear antigen and rescues stalled replication forks after DNA damage. JBC. 2017;292(44):18227–39.CrossRef Waraky A, et al. Nuclear insulin-like growth factor 1 receptor phosphorylates proliferating cell nuclear antigen and rescues stalled replication forks after DNA damage. JBC. 2017;292(44):18227–39.CrossRef
19.
go back to reference Asmane I, et al. Insulin-like growth factor type 1 receptor (IGF-1R) exclusive nuclear staining: a predictive biomarker for IGF-1R monoclonal antibody (Ab) therapy in sarcomas. Eur J Cancer. 2012;48(16):3027–35.CrossRef Asmane I, et al. Insulin-like growth factor type 1 receptor (IGF-1R) exclusive nuclear staining: a predictive biomarker for IGF-1R monoclonal antibody (Ab) therapy in sarcomas. Eur J Cancer. 2012;48(16):3027–35.CrossRef
20.
go back to reference Hoa N, et al. Nuclear targeting of IGF-1 receptor in orbital fibroblasts from Graves’ disease: apparent role of ADAM17. PLoS ONE. 2012;7(4):1–9.CrossRef Hoa N, et al. Nuclear targeting of IGF-1 receptor in orbital fibroblasts from Graves’ disease: apparent role of ADAM17. PLoS ONE. 2012;7(4):1–9.CrossRef
21.
go back to reference Massie CE, et al. The androgen receptor fuels prostate cancer by regulating central metabolism and biosynthesis. EMBO J. 2011;30(13):2719–33.CrossRef Massie CE, et al. The androgen receptor fuels prostate cancer by regulating central metabolism and biosynthesis. EMBO J. 2011;30(13):2719–33.CrossRef
22.
go back to reference Heinlein CA, Chang C. Androgen receptor in prostate cancer. Endocr Rev. 2004;25(2):276–308.CrossRef Heinlein CA, Chang C. Androgen receptor in prostate cancer. Endocr Rev. 2004;25(2):276–308.CrossRef
23.
go back to reference Turney BW, Turner GDH, Brewster SF, Macaulay VM. Serial analysis of resected prostate cancer suggests up-regulation of type 1 IGF receptor with disease progression. BJU Int. 2011;107(9):1488–99.CrossRef Turney BW, Turner GDH, Brewster SF, Macaulay VM. Serial analysis of resected prostate cancer suggests up-regulation of type 1 IGF receptor with disease progression. BJU Int. 2011;107(9):1488–99.CrossRef
24.
go back to reference Krueckl SL, et al. Increased insulin-like growth factor I receptor expression and signaling are components of androgen-independent progression in a lineage-derived prostate cancer progression model. Cancer Res. 2004;64(23):8620–9.CrossRef Krueckl SL, et al. Increased insulin-like growth factor I receptor expression and signaling are components of androgen-independent progression in a lineage-derived prostate cancer progression model. Cancer Res. 2004;64(23):8620–9.CrossRef
25.
go back to reference Ungricht R, Klann M, Horvath P, Kutay U. Diffusion and retention are major determinants of protein targeting to the inner nuclear membrane. J Cell Biol. 2015;209(5):687–704.CrossRef Ungricht R, Klann M, Horvath P, Kutay U. Diffusion and retention are major determinants of protein targeting to the inner nuclear membrane. J Cell Biol. 2015;209(5):687–704.CrossRef
26.
go back to reference Pierce TM Cell Surface Protein Biotinylation and Isolation Kit User Guide. ThermoScientific. 2020. Pierce TM Cell Surface Protein Biotinylation and Isolation Kit User Guide. ThermoScientific. 2020.
27.
go back to reference Lin S, et al. Nuclear localization of EGF receptor and its potential new role as a transcription factor. Nat Cell Biol. 2001;3(9):802–8.CrossRef Lin S, et al. Nuclear localization of EGF receptor and its potential new role as a transcription factor. Nat Cell Biol. 2001;3(9):802–8.CrossRef
28.
go back to reference Bryant DM, Stow JL. Nuclear translocation of cell-surface receptors: Lessons from fibroblast growth factor. Traffic. 2005;6(10):947–53.CrossRef Bryant DM, Stow JL. Nuclear translocation of cell-surface receptors: Lessons from fibroblast growth factor. Traffic. 2005;6(10):947–53.CrossRef
29.
go back to reference Wang SC, Hung MC. Nuclear translocation of the epidermal growth factor receptor family membrane tyrosine kinase receptors. Clin Cancer Res. 2009;15(21):6484–9.CrossRef Wang SC, Hung MC. Nuclear translocation of the epidermal growth factor receptor family membrane tyrosine kinase receptors. Clin Cancer Res. 2009;15(21):6484–9.CrossRef
30.
go back to reference Nelson JD, LeBoeuf RC, Bomsztyk K. Direct recruitment of insulin receptor and ERK signaling cascade to insulin-inducible gene loci. Diabetes. 2011;60(1):127–37.CrossRef Nelson JD, LeBoeuf RC, Bomsztyk K. Direct recruitment of insulin receptor and ERK signaling cascade to insulin-inducible gene loci. Diabetes. 2011;60(1):127–37.CrossRef
31.
go back to reference Hancock ML, et al. Insulin receptor associates with promoters genome-wide and regulates gene expression. Cell. 2019;177(3):722–36.CrossRef Hancock ML, et al. Insulin receptor associates with promoters genome-wide and regulates gene expression. Cell. 2019;177(3):722–36.CrossRef
32.
go back to reference Sevier CS, Kaiser CA. Formation and transfer of disulphide bonds in living cells. Nat Rev Mol Cell Biol. 2002;3(11):836–47.CrossRef Sevier CS, Kaiser CA. Formation and transfer of disulphide bonds in living cells. Nat Rev Mol Cell Biol. 2002;3(11):836–47.CrossRef
33.
go back to reference Calo E, Wysocka J. Modification of enhancer chromatin: what, how, and why? Mol Cell. 2013;49(5):825–37.CrossRef Calo E, Wysocka J. Modification of enhancer chromatin: what, how, and why? Mol Cell. 2013;49(5):825–37.CrossRef
34.
go back to reference Brzozowski AM, et al. Structural origins of the functional divergence of human insulin-like growth factor-I and insulin. Biochemistry. 2002;41(30):9389–97.CrossRef Brzozowski AM, et al. Structural origins of the functional divergence of human insulin-like growth factor-I and insulin. Biochemistry. 2002;41(30):9389–97.CrossRef
35.
go back to reference De Meyts P, Whittaker J. Structural biology of insulin and IGF1 receptors: Implications for drug design. Nat Rev Drug Discov. 2002;1(10):769–83.CrossRef De Meyts P, Whittaker J. Structural biology of insulin and IGF1 receptors: Implications for drug design. Nat Rev Drug Discov. 2002;1(10):769–83.CrossRef
36.
go back to reference Warsito D, Lin Y, Gnirck AC, Sehat B, Larsson O. Nuclearly translocated insulin-like growth factor 1 receptor phosphorylates histone H3 at tyrosine 41 and induces SNAI2 expression via Brg1 chromatin remodeling protein. Oncotarget. 2016;7(27):42288–302.CrossRef Warsito D, Lin Y, Gnirck AC, Sehat B, Larsson O. Nuclearly translocated insulin-like growth factor 1 receptor phosphorylates histone H3 at tyrosine 41 and induces SNAI2 expression via Brg1 chromatin remodeling protein. Oncotarget. 2016;7(27):42288–302.CrossRef
Metadata
Title
IGF-1R nuclear import and recruitment to chromatin involves both alpha and beta subunits
Authors
Jack V. Mills
Eliot Osher
Guillaume Rieunier
Ian G. Mills
Valentine M. Macaulay
Publication date
01-12-2021
Publisher
Springer US
Published in
Discover Oncology / Issue 1/2021
Print ISSN: 1868-8497
Electronic ISSN: 2730-6011
DOI
https://doi.org/10.1007/s12672-021-00407-8

Other articles of this Issue 1/2021

Discover Oncology 1/2021 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine