Skip to main content
Top
Published in: Radiation Oncology 1/2017

Open Access 01-12-2017 | Research

Quality assurance of the SCOPE 1 trial in oesophageal radiotherapy

Authors: Lucy Wills, Rhydian Maggs, Geraint Lewis, Gareth Jones, Lisette Nixon, John Staffurth, Tom Crosby, on behalf of the SCOPE 1 trial management group and collaborators

Published in: Radiation Oncology | Issue 1/2017

Login to get access

Abstract

Background

SCOPE 1 was the first UK based multi-centre trial involving radiotherapy of the oesophagus. A comprehensive radiotherapy trials quality assurance programme was launched with two main aims:
1.
To assist centres, where needed, to adapt their radiotherapy techniques in order to achieve protocol compliance and thereby enable their participation in the trial.
 
2.
To support the trial’s clinical outcomes by ensuring the consistent planning and delivery of radiotherapy across all participating centres.
 

Methods

A detailed information package was provided and centres were required to complete a benchmark case in which the delineated target volumes and organs at risk, dose distribution and completion of a plan assessment form were assessed prior to recruiting patients into the trial. Upon recruiting, the quality assurance (QA) programme continued to monitor the outlining and planning of radiotherapy treatments. Completion of a questionnaire was requested in order to gather information about each centre’s equipment and techniques relating to their trial participation and to assess the impact of the trial nationally on standard practice for radiotherapy of the oesophagus. During the trial, advice was available for individual planning issues, and was circulated amongst the SCOPE 1 community in response to common areas of concern using bulletins.

Results

36 centres were supported through QA processes to enable their participation in SCOPE1. We discuss the issues which have arisen throughout this process and present details of the benchmark case solutions, centre questionnaires and on-trial protocol compliance. The range of submitted benchmark case GTV volumes was 29.8–67.8cm3; and PTV volumes 221.9–513.3 cm3. For the dose distributions associated with these volumes, the percentage volume of the lungs receiving 20Gy (V20Gy) ranged from 20.4 to 33.5%. Similarly, heart V40Gy ranged from 16.1 to 33.0%. Incidence of incorrect outlining of OAR volumes increased from 50% of centres at benchmark case, to 64% on trial. Sixty-five percent of centres, who returned the trial questionnaire, stated that their standard practice had changed as a result of their participation in the SCOPE1 trial.

Conclusions

The SCOPE 1 QA programme outcomes lend support to the trial’s clinical conclusions. The range of patient planning outcomes for the benchmark case indicated, at the outset of the trial, the significant degree of variation present in UK oesophageal radiotherapy planning outcomes, despite the presence of a protocol. This supports the case for increasingly detailed definition of practice by means of consensus protocols, training and peer review. The incidence of minor inconsistencies of technique highlights the potential for improved QA systems and the need for sufficient resource for this to be addressed within future trials. As indicated in questionnaire responses, the QA exercise as a whole has contributed to greater consistency of oesophageal radiotherapy in the UK via the adoption into standard practice of elements of the protocol.

Trial registration

The SCOPE1 trial is an International Standard Randomized Controlled Trial, ISRCTN47718479.
Appendix
Available only for authorised users
Literature
2.
go back to reference Crosby T, Hurt C, Falk S, Gollins S, Mukherjee S, Staffurth J, et al. Chemoradiotherapy with or without cetuximab in patients with oesophageal cancer (SCOPE1): a multicentre, phase 2/3 randomised trial. Lancet Oncol. 2013;14:627–37.CrossRefPubMed Crosby T, Hurt C, Falk S, Gollins S, Mukherjee S, Staffurth J, et al. Chemoradiotherapy with or without cetuximab in patients with oesophageal cancer (SCOPE1): a multicentre, phase 2/3 randomised trial. Lancet Oncol. 2013;14:627–37.CrossRefPubMed
4.
go back to reference Olch AJ. Quality assurance for clinical trials: a primer for physicists. AAPM reports. Madison: Medical physics publishing; 2004. Report no 86. https://www.aapm.org/pubs/reports/rpt_86.pdf Olch AJ. Quality assurance for clinical trials: a primer for physicists. AAPM reports. Madison: Medical physics publishing; 2004. Report no 86. https://​www.​aapm.​org/​pubs/​reports/​rpt_​86.​pdf
6.
go back to reference Button M, Staffurth J, Crosby T. National variations in the treatment of oesophageal carcinoma with chemo-radiotherapy. Clin Oncol. 2007;19(3):S25. Button M, Staffurth J, Crosby T. National variations in the treatment of oesophageal carcinoma with chemo-radiotherapy. Clin Oncol. 2007;19(3):S25.
7.
go back to reference Miles E, Venables K. Radiotherapy quality assurance: facilitation of radiotherapy research and implementation of technology. Clin Oncol. 2012;24:710–2. http://dx.doi.org/10.1016/j.clon.2012.06.006CrossRef Miles E, Venables K. Radiotherapy quality assurance: facilitation of radiotherapy research and implementation of technology. Clin Oncol. 2012;24:710–2. http://​dx.​doi.​org/​10.​1016/​j.​clon.​2012.​06.​006CrossRef
8.
go back to reference ICRU Report 50: prescribing, recording and reporting photon beam therapy. International Commission on Radiological Units and Measurements; 1993. ICRU Report 50: prescribing, recording and reporting photon beam therapy. International Commission on Radiological Units and Measurements; 1993.
9.
go back to reference ICRU report 62: prescribing, recording and reporting photon beam therapy (supplement to ICRU report 50). International Commission on Radiological Units and Measurements; 1993. ICRU report 62: prescribing, recording and reporting photon beam therapy (supplement to ICRU report 50). International Commission on Radiological Units and Measurements; 1993.
10.
go back to reference Mukherjee S, Aston D, Minette M, Brewster AE, Crosby TDL. The significance of cardiac doses received during chemoradiation of oesophageal and gastro-oesophageal junctional cancers. Clin Oncol. 2003;15:115–20.CrossRef Mukherjee S, Aston D, Minette M, Brewster AE, Crosby TDL. The significance of cardiac doses received during chemoradiation of oesophageal and gastro-oesophageal junctional cancers. Clin Oncol. 2003;15:115–20.CrossRef
11.
go back to reference Knöös T, Wieslander E, Cozzi L, Brink C, Fogliata A, Albers D, et al. Comparison of dose calculation algorithms for treatment planning in external beam therapy for clinical situations. Phys Med Biol. 2006;51:5785–807.CrossRefPubMed Knöös T, Wieslander E, Cozzi L, Brink C, Fogliata A, Albers D, et al. Comparison of dose calculation algorithms for treatment planning in external beam therapy for clinical situations. Phys Med Biol. 2006;51:5785–807.CrossRefPubMed
12.
go back to reference Wills L, Millin A, Paterson J, Crosby T, Staffurth J. The effect of planning algorithms in oesophageal radiotherapy in the context of the SCOPE 1 trial. Radiother Oncol. 2009;93:462–7.CrossRefPubMed Wills L, Millin A, Paterson J, Crosby T, Staffurth J. The effect of planning algorithms in oesophageal radiotherapy in the context of the SCOPE 1 trial. Radiother Oncol. 2009;93:462–7.CrossRefPubMed
13.
go back to reference Ulin K, Yorty J, Hanusik R, Urie M, Bosch WR, Apte A, et al. Use of CERR at the quality assurance review center to assess protocol compliance of radiation therapy treatment plans submitted in digital format. Int J Radiat Oncol Biol Phys. 2008;72:S-673.CrossRef Ulin K, Yorty J, Hanusik R, Urie M, Bosch WR, Apte A, et al. Use of CERR at the quality assurance review center to assess protocol compliance of radiation therapy treatment plans submitted in digital format. Int J Radiat Oncol Biol Phys. 2008;72:S-673.CrossRef
14.
go back to reference Gwynne S, Spezi E, Wills L, Nixon L, Hurt C, Joseph G, et al. Toward semi-automated assessment of target volume delineation in radiotherapy trials: the SCOPE 1 pre-trial test case. Int J Radiat Oncol Biol Phys. 2012;84:1037–42.CrossRefPubMed Gwynne S, Spezi E, Wills L, Nixon L, Hurt C, Joseph G, et al. Toward semi-automated assessment of target volume delineation in radiotherapy trials: the SCOPE 1 pre-trial test case. Int J Radiat Oncol Biol Phys. 2012;84:1037–42.CrossRefPubMed
15.
go back to reference Bekelman J, Deye J, Vikram B, Bentzen S, Bruner D, Curran W Jr, et al. Redesigning radiotherapy quality assurance: opportunities to develop an efficient, evidence-based system to support clinical trials—report of the National Cancer Institute work group on radiotherapy quality assurance. Int J Radiat Oncol Biol Phys. 2012;83:782–90.CrossRefPubMedPubMedCentral Bekelman J, Deye J, Vikram B, Bentzen S, Bruner D, Curran W Jr, et al. Redesigning radiotherapy quality assurance: opportunities to develop an efficient, evidence-based system to support clinical trials—report of the National Cancer Institute work group on radiotherapy quality assurance. Int J Radiat Oncol Biol Phys. 2012;83:782–90.CrossRefPubMedPubMedCentral
16.
go back to reference Gwynne S, Jones G, Maggs R, Eaton D, Miles E, Staffurth J, et al. Prospective review of radiotherapy trials through implementation of standardized multicentre workflow and IT infrastructure. Br J Radiol. 2016;89:20160020. http://dx.doi.org/10.1259/bjr.20160020CrossRefPubMedCentral Gwynne S, Jones G, Maggs R, Eaton D, Miles E, Staffurth J, et al. Prospective review of radiotherapy trials through implementation of standardized multicentre workflow and IT infrastructure. Br J Radiol. 2016;89:20160020. http://​dx.​doi.​org/​10.​1259/​bjr.​20160020CrossRefPubMedCentral
17.
go back to reference Fokas E, Spezi E, Patel N, Hurt C, Nixon L, Chu K, et al. Comparison of investigator-delineated gross tumour volumes and quality assurance in pancreatic cancer: Analysis of the on-trial cases for the SCALOP trial. Radiother Oncol. 2016;120:212–6.CrossRefPubMedPubMedCentral Fokas E, Spezi E, Patel N, Hurt C, Nixon L, Chu K, et al. Comparison of investigator-delineated gross tumour volumes and quality assurance in pancreatic cancer: Analysis of the on-trial cases for the SCALOP trial. Radiother Oncol. 2016;120:212–6.CrossRefPubMedPubMedCentral
18.
go back to reference Spoelstra F, Senan S, Le Pechoux C, Ishikura S, Casas F, Ball D, et al. Variations in target volume delineation for post-operative radiotherapy in stage III non-small-cell lung cancer: analysis of an international contouring study. Int J Radiat Oncol Biol Phys. 2010;76:1106–13.CrossRefPubMed Spoelstra F, Senan S, Le Pechoux C, Ishikura S, Casas F, Ball D, et al. Variations in target volume delineation for post-operative radiotherapy in stage III non-small-cell lung cancer: analysis of an international contouring study. Int J Radiat Oncol Biol Phys. 2010;76:1106–13.CrossRefPubMed
19.
go back to reference Eminowicz G, Rompokos V, Stacey C, McCormack M. The dosimetric impact of target volume delineation variation for cervical cancer radiotherapy. Radiother Oncol. 2016;120:493–9.CrossRefPubMed Eminowicz G, Rompokos V, Stacey C, McCormack M. The dosimetric impact of target volume delineation variation for cervical cancer radiotherapy. Radiother Oncol. 2016;120:493–9.CrossRefPubMed
20.
go back to reference Breen S, Publicover J, De Silva S, Pond G, Brock K, O’Sullivan B, et al. Intraobserver and Interobserver Variability in GTV Delineation on FDG-PET-CT Images of Head and Neck Cancers Int. J Radiat Oncol Biol Phys. 2007;68:763–70.CrossRef Breen S, Publicover J, De Silva S, Pond G, Brock K, O’Sullivan B, et al. Intraobserver and Interobserver Variability in GTV Delineation on FDG-PET-CT Images of Head and Neck Cancers Int. J Radiat Oncol Biol Phys. 2007;68:763–70.CrossRef
22.
go back to reference Goodman K, Regine W, Dawson L, Ben-Josef E, Haustermans K, Bosch W, et al. Radiation therapy oncology group consensus panel guidelines for the delineation of the clinical target volume in the postoperative treatment of pancreatic head cancer. Int J Radiat Oncol Biol Phys. 2012;83:901–8.CrossRefPubMed Goodman K, Regine W, Dawson L, Ben-Josef E, Haustermans K, Bosch W, et al. Radiation therapy oncology group consensus panel guidelines for the delineation of the clinical target volume in the postoperative treatment of pancreatic head cancer. Int J Radiat Oncol Biol Phys. 2012;83:901–8.CrossRefPubMed
23.
go back to reference Myerson R, Garofalo M, El Naqa I, Abrams R, Apte A, Bosch W, et al. Elective clinical target volumes for conformal therapy in Anorectal cancer: a radiation therapy group consensus panel contouring atlas. Int J Rad Oncol Biol Phys. 2008;74:824–30.CrossRef Myerson R, Garofalo M, El Naqa I, Abrams R, Apte A, Bosch W, et al. Elective clinical target volumes for conformal therapy in Anorectal cancer: a radiation therapy group consensus panel contouring atlas. Int J Rad Oncol Biol Phys. 2008;74:824–30.CrossRef
24.
go back to reference Eminowicz G, Hall-Craggs M, Diez P, McCormack M. Improving target volume delineation in intact cervical carcinoma: Literature review and step-by-step pictorial atlas to aid contouring. Practical Radiat Oncol. 2016;6:203–13.CrossRef Eminowicz G, Hall-Craggs M, Diez P, McCormack M. Improving target volume delineation in intact cervical carcinoma: Literature review and step-by-step pictorial atlas to aid contouring. Practical Radiat Oncol. 2016;6:203–13.CrossRef
25.
go back to reference The FAST Trialists group. First results of the randomised UK FAST Trial of radiotherapy hypofractionation for treatment of early breast cancer (CRUKE/04/015). Radiother Oncol. 2011;100:93–100.CrossRef The FAST Trialists group. First results of the randomised UK FAST Trial of radiotherapy hypofractionation for treatment of early breast cancer (CRUKE/04/015). Radiother Oncol. 2011;100:93–100.CrossRef
26.
go back to reference Lester J, Nixon L, Mayles P, Mayles H, Tsang Y, Ionescu A, et al. The I-START trial: ISoToxic Accelerated RadioTherapy in locally advanced non-small cell lung cancer. Lung Cancer. 2012;75(S1):S51.CrossRef Lester J, Nixon L, Mayles P, Mayles H, Tsang Y, Ionescu A, et al. The I-START trial: ISoToxic Accelerated RadioTherapy in locally advanced non-small cell lung cancer. Lung Cancer. 2012;75(S1):S51.CrossRef
27.
go back to reference Gwynne S, Falk S, Gollins S, Wills S, Bateman A, Cummins S, et al. Oesophageal Chemoradiotherapy in the UK – current and future directions. Clin Oncol. 2013;25:368–77.CrossRef Gwynne S, Falk S, Gollins S, Wills S, Bateman A, Cummins S, et al. Oesophageal Chemoradiotherapy in the UK – current and future directions. Clin Oncol. 2013;25:368–77.CrossRef
28.
go back to reference Button M, Morgan C, Croydon E, Roberts S, Crosby T. Study to determine adequate margins in radiotherapy planning for esophageal carcinoma by detailing patterns of recurrence after definitive chemoradiotherapy. Int J Radiat Oncol Biol Phys. 2009;73(3):818–23.CrossRefPubMed Button M, Morgan C, Croydon E, Roberts S, Crosby T. Study to determine adequate margins in radiotherapy planning for esophageal carcinoma by detailing patterns of recurrence after definitive chemoradiotherapy. Int J Radiat Oncol Biol Phys. 2009;73(3):818–23.CrossRefPubMed
29.
go back to reference M Cominos, M A Mosleh-Shirazi, D Tait, A Henrys, and P Cornes Quantification and reduction of cardiac dose in radical radiotherapy for oesophageal cancer. Br J Radiol 2005;78:936. 1069-1074. M Cominos, M A Mosleh-Shirazi, D Tait, A Henrys, and P Cornes Quantification and reduction of cardiac dose in radical radiotherapy for oesophageal cancer. Br J Radiol 2005;78:936. 1069-1074.
30.
go back to reference Wills L, Lewis DG, Passant H, Crosby TDL. A single versus two phase conformal-planning study for Oesophageal radiotherapy. Clin Oncol. 2005;17:S1. S33.CrossRef Wills L, Lewis DG, Passant H, Crosby TDL. A single versus two phase conformal-planning study for Oesophageal radiotherapy. Clin Oncol. 2005;17:S1. S33.CrossRef
Metadata
Title
Quality assurance of the SCOPE 1 trial in oesophageal radiotherapy
Authors
Lucy Wills
Rhydian Maggs
Geraint Lewis
Gareth Jones
Lisette Nixon
John Staffurth
Tom Crosby
on behalf of the SCOPE 1 trial management group and collaborators
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2017
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-017-0916-7

Other articles of this Issue 1/2017

Radiation Oncology 1/2017 Go to the issue