Skip to main content
Top
Published in: Knee Surgery, Sports Traumatology, Arthroscopy 7/2023

11-01-2023 | Cruciate Ligament Injury | KNEE

The anterior cruciate ligament injury severity scale (ACLISS) is an effective tool to document and categorize the magnitude of associated tissue damage in knees after primary ACL injury and reconstruction

Authors: Romain Seil, Charles Pioger, Renaud Siboni, Annunziato Amendola, Caroline Mouton

Published in: Knee Surgery, Sports Traumatology, Arthroscopy | Issue 7/2023

Login to get access

Abstract

Purpose

To develop a tool allowing to classify the magnitude of structural tissue damage occurring in ACL injured knees. The proposed ACL Injury Severity Scale (ACLISS) would provide an easy description and categorization of the wide spectrum of injuries in patients undergoing primary ACL reconstruction, reaching from isolated ACL tears to ACL injuries with a complex association of combined structural damage.

Methods

A stepwise approach was used to develop the ACLISS. The eligibility of each item was based on a literature search and a consensus between the authors after considering the diagnostic modalities and clinical importance of associated injuries to the menisci, subchondral bone, articular cartilage or collateral ligaments. Then, a retrospective analysis of associated injuries was performed in 100 patients who underwent a primary ACL reconstruction (ACLR) by a single surgeon. This was based on acute preoperative MRI (within 8 weeks after injury) as well as intraoperative arthroscopic findings. Depending on their prevalence, the number of selected items was reduced. Finally, an analysis of the overall scale distribution was performed to classify the patients according to different injury profiles.

Results

A final scoring system of 12 points was developed (12 = highest severity). Six points were attributed to the medial and lateral tibiofemoral compartment respectively. The amount of associated injuries increased with ACLISS grading. The median scale value was 4.5 (lower quartile 3.0; higher quartile 7.0). Based on these quartiles, a score < 4 was considered to be an injury of mild severity (grade I), a score between ≥ 4 and ≤ 7 was defined as moderately severe (grade II) and a score > 7 displayed the most severe cases of ACL injuries (grade III). The knees were graded ACLISS I in 35%, ACLISS II in 49% and ACLISS III in 16% of patients. Overall, damage to the lateral tibiofemoral compartment was predominant (p < 0.01), but a proportional increase of tissue damage could be observed in the medial tibiofemoral compartment with the severity of ACLISS grading (p < 0.01).

Conclusions

The ACLISS allowed to easily and rapidly identify different injury severity profiles in patients who underwent primary ACLR. Injury severity was associated with an increased involvement of the medial tibiofemoral compartment. The ACLISS is convenient to use in daily clinical practice and represents a feasible grading and documentation tool for a reproducible comparison of clinical data in ACL injured patients.

Level of evidence

Level III.
Literature
1.
go back to reference Prentice HA, Lind M, Mouton C et al (2018) Patient demographic and surgical characteristics in anterior cruciate ligament reconstruction: a description of registries from six countries. Br J Sports Med 52:716–722PubMedCrossRef Prentice HA, Lind M, Mouton C et al (2018) Patient demographic and surgical characteristics in anterior cruciate ligament reconstruction: a description of registries from six countries. Br J Sports Med 52:716–722PubMedCrossRef
2.
go back to reference Claes S, Hermie L, Verdonk R et al (2013) Is osteoarthritis an inevitable consequence of anterior cruciate ligament reconstruction? A meta-analysis. Knee Surg Sports Traumatol Arthrosc 21:1967–1976PubMedCrossRef Claes S, Hermie L, Verdonk R et al (2013) Is osteoarthritis an inevitable consequence of anterior cruciate ligament reconstruction? A meta-analysis. Knee Surg Sports Traumatol Arthrosc 21:1967–1976PubMedCrossRef
3.
go back to reference Curado J, Hulet C, Hardy P et al (2020) Very long-term osteoarthritis rate after anterior cruciate ligament reconstruction: 182 cases with 22-year’ follow-up. Orthop Traumatol Surg Res 106:459–463PubMedCrossRef Curado J, Hulet C, Hardy P et al (2020) Very long-term osteoarthritis rate after anterior cruciate ligament reconstruction: 182 cases with 22-year’ follow-up. Orthop Traumatol Surg Res 106:459–463PubMedCrossRef
4.
go back to reference Keays SL, Newcombe PA, Bullock-Saxton JE et al (2010) Factors involved in the development of osteoarthritis after anterior cruciate ligament surgery. Am J Sports Med 38:455–463PubMedCrossRef Keays SL, Newcombe PA, Bullock-Saxton JE et al (2010) Factors involved in the development of osteoarthritis after anterior cruciate ligament surgery. Am J Sports Med 38:455–463PubMedCrossRef
5.
go back to reference Parkinson B, Robb C, Thomas M et al (2017) Factors that predict failure in anatomic single-bundle anterior cruciate ligament reconstruction. Am J Sports Med 45:1529–1536PubMedCrossRef Parkinson B, Robb C, Thomas M et al (2017) Factors that predict failure in anatomic single-bundle anterior cruciate ligament reconstruction. Am J Sports Med 45:1529–1536PubMedCrossRef
6.
go back to reference Pioger C, Claes S, Haidar I et al (2022) Prevalence and incidence of chondral and meniscal lesions in patients undergoing primary and subsequent revision anterior cruciate ligament reconstruction: an analysis of 213 patients from the SANTI group. Am J Sports Med 50:1798–1804PubMedCrossRef Pioger C, Claes S, Haidar I et al (2022) Prevalence and incidence of chondral and meniscal lesions in patients undergoing primary and subsequent revision anterior cruciate ligament reconstruction: an analysis of 213 patients from the SANTI group. Am J Sports Med 50:1798–1804PubMedCrossRef
7.
go back to reference Verdonk R, Madry H, Shabshin N et al (2016) The role of meniscal tissue in joint protection in early osteoarthritis. Knee Surg Sports Traumatol Arthrosc 24:1763–1774PubMedCrossRef Verdonk R, Madry H, Shabshin N et al (2016) The role of meniscal tissue in joint protection in early osteoarthritis. Knee Surg Sports Traumatol Arthrosc 24:1763–1774PubMedCrossRef
8.
go back to reference Magosch A, Jacquet C, Nuhrenborger C et al (2022) Grade III pivot shift as an early sign of knee decompensation in chronic ACL-injured knees with bimeniscal tears. Knee Surg Sports Traumatol Arthrosc 30:1611–1619PubMedCrossRef Magosch A, Jacquet C, Nuhrenborger C et al (2022) Grade III pivot shift as an early sign of knee decompensation in chronic ACL-injured knees with bimeniscal tears. Knee Surg Sports Traumatol Arthrosc 30:1611–1619PubMedCrossRef
9.
go back to reference Gracia G, Cavaignac M, Marot V et al (2022) Epidemiology of combined injuries of the secondary stabilizers in ACL-deficient knees: medial meniscal ramp lesion, lateral meniscus root tear, and all tear: a prospective case series of 602 patients with ACL tears from the SANTI study group. Am J Sports Med 50:1843–1849PubMedCrossRef Gracia G, Cavaignac M, Marot V et al (2022) Epidemiology of combined injuries of the secondary stabilizers in ACL-deficient knees: medial meniscal ramp lesion, lateral meniscus root tear, and all tear: a prospective case series of 602 patients with ACL tears from the SANTI study group. Am J Sports Med 50:1843–1849PubMedCrossRef
10.
go back to reference Magosch A, Mouton C, Nuhrenborger C et al (2021) Medial meniscus ramp and lateral meniscus posterior root lesions are present in more than a third of primary and revision ACL reconstructions. Knee Surg Sports Traumatol Arthrosc 29:3059–3067PubMedCrossRef Magosch A, Mouton C, Nuhrenborger C et al (2021) Medial meniscus ramp and lateral meniscus posterior root lesions are present in more than a third of primary and revision ACL reconstructions. Knee Surg Sports Traumatol Arthrosc 29:3059–3067PubMedCrossRef
11.
go back to reference Willinger L, Balendra G, Pai V et al (2022) High incidence of superficial and deep medial collateral ligament injuries in “isolated” anterior cruciate ligament ruptures: a long overlooked injury. Knee Surg Sports Traumatol Arthrosc 30:167–175PubMedCrossRef Willinger L, Balendra G, Pai V et al (2022) High incidence of superficial and deep medial collateral ligament injuries in “isolated” anterior cruciate ligament ruptures: a long overlooked injury. Knee Surg Sports Traumatol Arthrosc 30:167–175PubMedCrossRef
12.
go back to reference Filardo G, Andriolo L, di Laura FG et al (2019) Bone bruise in anterior cruciate ligament rupture entails a more severe joint damage affecting joint degenerative progression. Knee Surg Sports Traumatol Arthrosc 27:44–59PubMedCrossRef Filardo G, Andriolo L, di Laura FG et al (2019) Bone bruise in anterior cruciate ligament rupture entails a more severe joint damage affecting joint degenerative progression. Knee Surg Sports Traumatol Arthrosc 27:44–59PubMedCrossRef
13.
go back to reference Zhang L, Hacke JD, Garrett WE et al (2019) Bone bruises associated with anterior cruciate ligament injury as indicators of injury mechanism: a systematic review. Sports Med 49:453–462PubMedCrossRef Zhang L, Hacke JD, Garrett WE et al (2019) Bone bruises associated with anterior cruciate ligament injury as indicators of injury mechanism: a systematic review. Sports Med 49:453–462PubMedCrossRef
14.
go back to reference Beel W, Mouton C, Tradati D et al (2022) Ramp lesions are six times more likely to be observed in the presence of a posterior medial tibial bone bruise in ACL-injured patients. Knee Surg Sports Traumatol Arthrosc 30:184–191PubMedCrossRef Beel W, Mouton C, Tradati D et al (2022) Ramp lesions are six times more likely to be observed in the presence of a posterior medial tibial bone bruise in ACL-injured patients. Knee Surg Sports Traumatol Arthrosc 30:184–191PubMedCrossRef
15.
go back to reference Schenck R (2003) Classification of knee dislocations. Operative Tech Sport Med 11:193–198CrossRef Schenck R (2003) Classification of knee dislocations. Operative Tech Sport Med 11:193–198CrossRef
16.
go back to reference Grindem H, Eitzen I, Engebretsen L et al (2014) Nonsurgical or surgical treatment of ACL injuries: knee function, sports participation, and knee reinjury: the Delaware-Oslo ACL cohort study. J Bone Joint Surg Am 96:1233–1241PubMedPubMedCentralCrossRef Grindem H, Eitzen I, Engebretsen L et al (2014) Nonsurgical or surgical treatment of ACL injuries: knee function, sports participation, and knee reinjury: the Delaware-Oslo ACL cohort study. J Bone Joint Surg Am 96:1233–1241PubMedPubMedCentralCrossRef
17.
go back to reference Rasenberg EI, Lemmens JA, van Kampen A et al (1995) Grading medial collateral ligament injury: comparison of MR imaging and instrumented valgus-varus laxity test-device. A prospective double-blind patient study. Eur J Radiol 21:18–24PubMedCrossRef Rasenberg EI, Lemmens JA, van Kampen A et al (1995) Grading medial collateral ligament injury: comparison of MR imaging and instrumented valgus-varus laxity test-device. A prospective double-blind patient study. Eur J Radiol 21:18–24PubMedCrossRef
18.
go back to reference Mink JH, Deutsch AL (1989) Occult cartilage and bone injuries of the knee: detection, classification, and assessment with MR imaging. Radiology 170:823–829PubMedCrossRef Mink JH, Deutsch AL (1989) Occult cartilage and bone injuries of the knee: detection, classification, and assessment with MR imaging. Radiology 170:823–829PubMedCrossRef
19.
go back to reference Shaikh H, Herbst E, Rahnemai-Azar AA et al (2017) The Segond fracture is an avulsion of the anterolateral complex. Am J Sports Med 45:2247–2252PubMedCrossRef Shaikh H, Herbst E, Rahnemai-Azar AA et al (2017) The Segond fracture is an avulsion of the anterolateral complex. Am J Sports Med 45:2247–2252PubMedCrossRef
20.
go back to reference Bernholt DL, DePhillipo NN, Crawford MD et al (2020) Incidence of displaced posterolateral tibial plateau and lateral femoral condyle impaction fractures in the setting of primary anterior cruciate ligament tear. Am J Sports Med 48:545–553PubMedCrossRef Bernholt DL, DePhillipo NN, Crawford MD et al (2020) Incidence of displaced posterolateral tibial plateau and lateral femoral condyle impaction fractures in the setting of primary anterior cruciate ligament tear. Am J Sports Med 48:545–553PubMedCrossRef
21.
go back to reference Lucidi GA, Grassi A, Di Paolo S et al (2021) The lateral femoral notch sign is correlated with increased rotatory laxity after anterior cruciate ligament injury: pivot shift quantification with a surgical navigation system. Am J Sports Med 49:649–655PubMedCrossRef Lucidi GA, Grassi A, Di Paolo S et al (2021) The lateral femoral notch sign is correlated with increased rotatory laxity after anterior cruciate ligament injury: pivot shift quantification with a surgical navigation system. Am J Sports Med 49:649–655PubMedCrossRef
22.
go back to reference Warren RF, Kaplan N, Bach BR (1988) The lateral notch sign of anterior cruciate ligament insufficiency. Am J Knee Surg 1:119–124 Warren RF, Kaplan N, Bach BR (1988) The lateral notch sign of anterior cruciate ligament insufficiency. Am J Knee Surg 1:119–124
23.
go back to reference Sonnery-Cottet B, Conteduca J, Thaunat M et al (2014) Hidden lesions of the posterior horn of the medial meniscus: a systematic arthroscopic exploration of the concealed portion of the knee. Am J Sports Med 42:921–926PubMedCrossRef Sonnery-Cottet B, Conteduca J, Thaunat M et al (2014) Hidden lesions of the posterior horn of the medial meniscus: a systematic arthroscopic exploration of the concealed portion of the knee. Am J Sports Med 42:921–926PubMedCrossRef
24.
go back to reference LaPrade CM, James EW, Cram TR et al (2015) Meniscal root tears: a classification system based on tear morphology. Am J Sports Med 43:363–369PubMedCrossRef LaPrade CM, James EW, Cram TR et al (2015) Meniscal root tears: a classification system based on tear morphology. Am J Sports Med 43:363–369PubMedCrossRef
25.
go back to reference Jacquet C, Mouton C, Magosch A et al (2022) The aspiration test reveals an instability of the posterior horn of the lateral meniscus in almost one-third of ACL-injured patients. Knee Surg Sports Traumatol Arthrosc 30:2329–2335PubMedCrossRef Jacquet C, Mouton C, Magosch A et al (2022) The aspiration test reveals an instability of the posterior horn of the lateral meniscus in almost one-third of ACL-injured patients. Knee Surg Sports Traumatol Arthrosc 30:2329–2335PubMedCrossRef
26.
27.
go back to reference Jacquet C, Magosch A, Mouton C et al (2021) The aspiration test: an arthroscopic sign of lateral meniscus posterior horn instability. J Exp Orthop 8:17PubMedPubMedCentralCrossRef Jacquet C, Magosch A, Mouton C et al (2021) The aspiration test: an arthroscopic sign of lateral meniscus posterior horn instability. J Exp Orthop 8:17PubMedPubMedCentralCrossRef
28.
go back to reference Cameron ML, Briggs KK, Steadman JR (2003) Reproducibility and reliability of the outerbridge classification for grading chondral lesions of the knee arthroscopically. Am J Sports Med 31:83–86PubMedCrossRef Cameron ML, Briggs KK, Steadman JR (2003) Reproducibility and reliability of the outerbridge classification for grading chondral lesions of the knee arthroscopically. Am J Sports Med 31:83–86PubMedCrossRef
29.
go back to reference Noyes FR, Stabler CL (1989) A system for grading articular cartilage lesions at arthroscopy. Am J Sports Med 17:505–513PubMedCrossRef Noyes FR, Stabler CL (1989) A system for grading articular cartilage lesions at arthroscopy. Am J Sports Med 17:505–513PubMedCrossRef
30.
go back to reference McHorney CA, Tarlov AR (1995) Individual-patient monitoring in clinical practice: are available health status surveys adequate? Qual Life Res 4:293–307PubMedCrossRef McHorney CA, Tarlov AR (1995) Individual-patient monitoring in clinical practice: are available health status surveys adequate? Qual Life Res 4:293–307PubMedCrossRef
31.
go back to reference Tomczak M, Tomczak E (2014) The need to report effect size estimates revisited. An overview of some recommended measures of effect size. Trends sport sci 1:19–25 Tomczak M, Tomczak E (2014) The need to report effect size estimates revisited. An overview of some recommended measures of effect size. Trends sport sci 1:19–25
32.
go back to reference Kopf S, Beaufils P, Hirschmann MT et al (2020) Management of traumatic meniscus tears: the 2019 ESSKA meniscus consensus. Knee Surg Sports Traumatol Arthrosc 28:1177–1194PubMedPubMedCentralCrossRef Kopf S, Beaufils P, Hirschmann MT et al (2020) Management of traumatic meniscus tears: the 2019 ESSKA meniscus consensus. Knee Surg Sports Traumatol Arthrosc 28:1177–1194PubMedPubMedCentralCrossRef
33.
go back to reference Bisson LJ, Kluczynski MA, Hagstrom LS et al (2013) A prospective study of the association between bone contusion and intra-articular injuries associated with acute anterior cruciate ligament tear. Am J Sports Med 41:1801–1807PubMedCrossRef Bisson LJ, Kluczynski MA, Hagstrom LS et al (2013) A prospective study of the association between bone contusion and intra-articular injuries associated with acute anterior cruciate ligament tear. Am J Sports Med 41:1801–1807PubMedCrossRef
34.
35.
go back to reference Grassi A, Tosarelli F, Agostinone P et al (2020) Rapid posterior tibial reduction after noncontact anterior cruciate ligament rupture: mechanism description from a video analysis. Sports Health 12:462–469PubMedPubMedCentralCrossRef Grassi A, Tosarelli F, Agostinone P et al (2020) Rapid posterior tibial reduction after noncontact anterior cruciate ligament rupture: mechanism description from a video analysis. Sports Health 12:462–469PubMedPubMedCentralCrossRef
36.
go back to reference Calvo-Gurry M, Hurley ET, Withers D et al (2019) Posterior tibial bone bruising associated with posterior-medial meniscal tear in patients with acute anterior cruciate ligament injury. Knee Surg Sports Traumatol Arthrosc 27:3633–3637PubMedCrossRef Calvo-Gurry M, Hurley ET, Withers D et al (2019) Posterior tibial bone bruising associated with posterior-medial meniscal tear in patients with acute anterior cruciate ligament injury. Knee Surg Sports Traumatol Arthrosc 27:3633–3637PubMedCrossRef
37.
go back to reference Owusu-Akyaw KA, Kim SY, Spritzer CE et al (2018) Determination of the position of the knee at the time of an anterior cruciate ligament rupture for male versus female patients by an analysis of bone bruises. Am J Sports Med 46:1559–1565PubMedPubMedCentralCrossRef Owusu-Akyaw KA, Kim SY, Spritzer CE et al (2018) Determination of the position of the knee at the time of an anterior cruciate ligament rupture for male versus female patients by an analysis of bone bruises. Am J Sports Med 46:1559–1565PubMedPubMedCentralCrossRef
38.
go back to reference Patel SA, Hageman J, Quatman CE et al (2014) Prevalence and location of bone bruises associated with anterior cruciate ligament injury and implications for mechanism of injury: a systematic review. Sports Med 44:281–293PubMedPubMedCentralCrossRef Patel SA, Hageman J, Quatman CE et al (2014) Prevalence and location of bone bruises associated with anterior cruciate ligament injury and implications for mechanism of injury: a systematic review. Sports Med 44:281–293PubMedPubMedCentralCrossRef
39.
go back to reference Viskontas DG, Giuffre BM, Duggal N et al (2008) Bone bruises associated with ACL rupture: correlation with injury mechanism. Am J Sports Med 36:927–933PubMedCrossRef Viskontas DG, Giuffre BM, Duggal N et al (2008) Bone bruises associated with ACL rupture: correlation with injury mechanism. Am J Sports Med 36:927–933PubMedCrossRef
40.
go back to reference Andrade R, Rebelo-Marques A, Bastos R et al (2019) Identification of normal and injured anterolateral ligaments of the knee: a systematic review of magnetic resonance imaging studies. Arthroscopy 35:1594–1613PubMedCrossRef Andrade R, Rebelo-Marques A, Bastos R et al (2019) Identification of normal and injured anterolateral ligaments of the knee: a systematic review of magnetic resonance imaging studies. Arthroscopy 35:1594–1613PubMedCrossRef
41.
go back to reference Batty L, Murgier J, O’Sullivan R et al (2019) The Kaplan fibers of the iliotibial band can be identified on routine knee magnetic resonance imaging. Am J Sports Med 47:2895–2903PubMedCrossRef Batty L, Murgier J, O’Sullivan R et al (2019) The Kaplan fibers of the iliotibial band can be identified on routine knee magnetic resonance imaging. Am J Sports Med 47:2895–2903PubMedCrossRef
42.
go back to reference Devitt BM, O’Sullivan R, Feller JA et al (2017) MRI is not reliable in diagnosing of concomitant anterolateral ligament and anterior cruciate ligament injuries of the knee. Knee Surg Sports Traumatol Arthrosc 25:1345–1351PubMedCrossRef Devitt BM, O’Sullivan R, Feller JA et al (2017) MRI is not reliable in diagnosing of concomitant anterolateral ligament and anterior cruciate ligament injuries of the knee. Knee Surg Sports Traumatol Arthrosc 25:1345–1351PubMedCrossRef
43.
go back to reference Lynch TB, Bernot JM, Oettel DJ et al (2022) Magnetic resonance imaging does not reliably detect Kaplan fiber injury in the setting of anterior cruciate ligament tear. Knee Surg Sports Traumatol Arthrosc 30:1769–1775PubMedCrossRef Lynch TB, Bernot JM, Oettel DJ et al (2022) Magnetic resonance imaging does not reliably detect Kaplan fiber injury in the setting of anterior cruciate ligament tear. Knee Surg Sports Traumatol Arthrosc 30:1769–1775PubMedCrossRef
44.
go back to reference Cavaignac E, Laumond G, Reina N et al (2018) How to test the anterolateral ligament with ultrasound. Arthrosc Tech 7:e29–e31PubMedCrossRef Cavaignac E, Laumond G, Reina N et al (2018) How to test the anterolateral ligament with ultrasound. Arthrosc Tech 7:e29–e31PubMedCrossRef
45.
go back to reference Cavaignac E, Wytrykowski K, Reina N et al (2016) Ultrasonographic identification of the anterolateral ligament of the knee. Arthroscopy 32:120–126PubMedCrossRef Cavaignac E, Wytrykowski K, Reina N et al (2016) Ultrasonographic identification of the anterolateral ligament of the knee. Arthroscopy 32:120–126PubMedCrossRef
46.
go back to reference Batty LM, Murgier J, Feller JA et al (2020) Radiological identification of injury to the kaplan fibers of the iliotibial band in association with anterior cruciate ligament injury. Am J Sports Med 48:2213–2220PubMedCrossRef Batty LM, Murgier J, Feller JA et al (2020) Radiological identification of injury to the kaplan fibers of the iliotibial band in association with anterior cruciate ligament injury. Am J Sports Med 48:2213–2220PubMedCrossRef
47.
go back to reference Helito PVP, Bartholomeeusen S, Claes S et al (2020) Magnetic resonance imaging evaluation of the anterolateral ligament and the iliotibial band in acute anterior cruciate ligament injuries associated with Segond fractures. Arthroscopy 36:1679–1686PubMedCrossRef Helito PVP, Bartholomeeusen S, Claes S et al (2020) Magnetic resonance imaging evaluation of the anterolateral ligament and the iliotibial band in acute anterior cruciate ligament injuries associated with Segond fractures. Arthroscopy 36:1679–1686PubMedCrossRef
48.
go back to reference Wissman RD, England E, Mehta K et al (2014) Patellotibial contusions in anterior cruciate ligament tears. Skeletal Radiol 43:247–250PubMedCrossRef Wissman RD, England E, Mehta K et al (2014) Patellotibial contusions in anterior cruciate ligament tears. Skeletal Radiol 43:247–250PubMedCrossRef
49.
go back to reference Goncalves H, Steltzlen C, Boisrenoult P et al (2017) High failure rate of anterior cruciate ligament reconstruction with bimeniscal repair: a case-control study. Orthop Traumatol Surg Res 103:943–946PubMedCrossRef Goncalves H, Steltzlen C, Boisrenoult P et al (2017) High failure rate of anterior cruciate ligament reconstruction with bimeniscal repair: a case-control study. Orthop Traumatol Surg Res 103:943–946PubMedCrossRef
50.
go back to reference Svantesson E, Hamrin Senorski E, Alentorn-Geli E et al (2019) Increased risk of ACL revision with non-surgical treatment of a concomitant medial collateral ligament injury: a study on 19,457 patients from the Swedish National Knee Ligament Registry. Knee Surg Sports Traumatol Arthrosc 27:2450–2459PubMedCrossRef Svantesson E, Hamrin Senorski E, Alentorn-Geli E et al (2019) Increased risk of ACL revision with non-surgical treatment of a concomitant medial collateral ligament injury: a study on 19,457 patients from the Swedish National Knee Ligament Registry. Knee Surg Sports Traumatol Arthrosc 27:2450–2459PubMedCrossRef
51.
go back to reference Sukopp M, Schall F, Hacker SP et al (2021) Influence of Menisci on Tibiofemoral Contact Mechanics in Human Knees: A Systematic Review. Front Bioeng Biotechnol 9:765596PubMedPubMedCentralCrossRef Sukopp M, Schall F, Hacker SP et al (2021) Influence of Menisci on Tibiofemoral Contact Mechanics in Human Knees: A Systematic Review. Front Bioeng Biotechnol 9:765596PubMedPubMedCentralCrossRef
52.
go back to reference Yeo DYT, Suhaimi F, Parker DA (2019) Factors predicting failure rates and patient-reported outcome measures after arthroscopic meniscal repair. Arthroscopy 35:3146–3164PubMedCrossRef Yeo DYT, Suhaimi F, Parker DA (2019) Factors predicting failure rates and patient-reported outcome measures after arthroscopic meniscal repair. Arthroscopy 35:3146–3164PubMedCrossRef
53.
go back to reference Duchman KR, Westermann RW, Spindler KP et al (2015) The fate of meniscus tears left in situ at the time of anterior cruciate ligament reconstruction: a 6-year follow-up study from the moon cohort. Am J Sports Med 43:2688–2695PubMedPubMedCentralCrossRef Duchman KR, Westermann RW, Spindler KP et al (2015) The fate of meniscus tears left in situ at the time of anterior cruciate ligament reconstruction: a 6-year follow-up study from the moon cohort. Am J Sports Med 43:2688–2695PubMedPubMedCentralCrossRef
54.
go back to reference Kurzweil PR, Lynch NM, Coleman S et al (2014) Repair of horizontal meniscus tears: a systematic review. Arthroscopy 30:1513–1519PubMedCrossRef Kurzweil PR, Lynch NM, Coleman S et al (2014) Repair of horizontal meniscus tears: a systematic review. Arthroscopy 30:1513–1519PubMedCrossRef
55.
go back to reference Bedi A, Kelly N, Baad M et al (2012) Dynamic contact mechanics of radial tears of the lateral meniscus: implications for treatment. Arthroscopy 28:372–381PubMedCrossRef Bedi A, Kelly N, Baad M et al (2012) Dynamic contact mechanics of radial tears of the lateral meniscus: implications for treatment. Arthroscopy 28:372–381PubMedCrossRef
56.
go back to reference Koo B, Lee SH, Yun SJ et al (2020) Diagnostic performance of magnetic resonance imaging for detecting meniscal ramp lesions in patients with anterior cruciate ligament tears: a systematic review and meta-analysis. Am J Sports Med 48:2051–2059PubMedCrossRef Koo B, Lee SH, Yun SJ et al (2020) Diagnostic performance of magnetic resonance imaging for detecting meniscal ramp lesions in patients with anterior cruciate ligament tears: a systematic review and meta-analysis. Am J Sports Med 48:2051–2059PubMedCrossRef
57.
go back to reference Song GY, Zhang H, Liu X et al (2017) Complete posterolateral meniscal root tear is associated with high-grade pivot-shift phenomenon in noncontact anterior cruciate ligament injuries. Knee Surg Sports Traumatol Arthrosc 25:1030–1037PubMedCrossRef Song GY, Zhang H, Liu X et al (2017) Complete posterolateral meniscal root tear is associated with high-grade pivot-shift phenomenon in noncontact anterior cruciate ligament injuries. Knee Surg Sports Traumatol Arthrosc 25:1030–1037PubMedCrossRef
58.
go back to reference Shi H, Ding L, Jiang Y et al (2020) Bone bruise distribution patterns after acute anterior cruciate ligament ruptures: implications for the injury mechanism. Orthop J Sports Med 8:2325967120911162PubMedPubMedCentralCrossRef Shi H, Ding L, Jiang Y et al (2020) Bone bruise distribution patterns after acute anterior cruciate ligament ruptures: implications for the injury mechanism. Orthop J Sports Med 8:2325967120911162PubMedPubMedCentralCrossRef
59.
go back to reference Ward P, Chang P, Radtke L et al (2022) Clinical implications of bone bruise patterns accompanying anterior cruciate ligament tears. Sports Health 14:585–591PubMedCrossRef Ward P, Chang P, Radtke L et al (2022) Clinical implications of bone bruise patterns accompanying anterior cruciate ligament tears. Sports Health 14:585–591PubMedCrossRef
60.
go back to reference Dimitriou D, Reimond M, Foesel A et al (2021) The deep lateral femoral notch sign: a reliable diagnostic tool in identifying a concomitant anterior cruciate and anterolateral ligament injury. Knee Surg Sports Traumatol Arthrosc 29:1968–1976PubMedCrossRef Dimitriou D, Reimond M, Foesel A et al (2021) The deep lateral femoral notch sign: a reliable diagnostic tool in identifying a concomitant anterior cruciate and anterolateral ligament injury. Knee Surg Sports Traumatol Arthrosc 29:1968–1976PubMedCrossRef
61.
go back to reference Frobell RB, Roos HP, Roos EM et al (2008) The acutely ACL injured knee assessed by MRI: are large volume traumatic bone marrow lesions a sign of severe compression injury? Osteoarthritis Cartilage 16:829–836PubMedCrossRef Frobell RB, Roos HP, Roos EM et al (2008) The acutely ACL injured knee assessed by MRI: are large volume traumatic bone marrow lesions a sign of severe compression injury? Osteoarthritis Cartilage 16:829–836PubMedCrossRef
62.
go back to reference Marinetti A, Tessarolo F, Ventura L et al (2020) Morphological MRI of knee cartilage: repeatability and reproducibility of damage evaluation and correlation with gross pathology examination. Eur Radiol 30:3226–3235PubMedCrossRef Marinetti A, Tessarolo F, Ventura L et al (2020) Morphological MRI of knee cartilage: repeatability and reproducibility of damage evaluation and correlation with gross pathology examination. Eur Radiol 30:3226–3235PubMedCrossRef
63.
go back to reference Potter HG, Jain SK, Ma Y et al (2012) Cartilage injury after acute, isolated anterior cruciate ligament tear: immediate and longitudinal effect with clinical/MRI follow-up. Am J Sports Med 40:276–285PubMedCrossRef Potter HG, Jain SK, Ma Y et al (2012) Cartilage injury after acute, isolated anterior cruciate ligament tear: immediate and longitudinal effect with clinical/MRI follow-up. Am J Sports Med 40:276–285PubMedCrossRef
64.
go back to reference Borchers JR, Kaeding CC, Pedroza AD et al (2011) Intra-articular findings in primary and revision anterior cruciate ligament reconstruction surgery: a comparison of the MOON and MARS study groups. Am J Sports Med 39:1889–1893PubMedPubMedCentralCrossRef Borchers JR, Kaeding CC, Pedroza AD et al (2011) Intra-articular findings in primary and revision anterior cruciate ligament reconstruction surgery: a comparison of the MOON and MARS study groups. Am J Sports Med 39:1889–1893PubMedPubMedCentralCrossRef
Metadata
Title
The anterior cruciate ligament injury severity scale (ACLISS) is an effective tool to document and categorize the magnitude of associated tissue damage in knees after primary ACL injury and reconstruction
Authors
Romain Seil
Charles Pioger
Renaud Siboni
Annunziato Amendola
Caroline Mouton
Publication date
11-01-2023
Publisher
Springer Berlin Heidelberg
Published in
Knee Surgery, Sports Traumatology, Arthroscopy / Issue 7/2023
Print ISSN: 0942-2056
Electronic ISSN: 1433-7347
DOI
https://doi.org/10.1007/s00167-023-07311-4

Other articles of this Issue 7/2023

Knee Surgery, Sports Traumatology, Arthroscopy 7/2023 Go to the issue