Skip to main content
Top
Published in: Allergy, Asthma & Clinical Immunology 1/2019

Open Access 01-12-2019 | Cough | Research

Clinical and pulmonary function changes in cough variant asthma with small airway disease

Authors: Honglei Yuan, Xiaojing Liu, Li Li, Gang Wang, Chunfang Liu, Yuzhen Zeng, Ruolin Mao, Chunling Du, Zhihong Chen

Published in: Allergy, Asthma & Clinical Immunology | Issue 1/2019

Login to get access

Abstract

Background

It is known that small airway disease is present across all asthma severities; however, its prevalence and clinical characteristics in cough variant asthma (CVA) have not been fully illuminated.

Methods

A total of 77 CVA patients with preserved proximal airway function (FEV1/FVC > 70%) were enrolled in this study. The correlation between forced expiratory flow at 50% (FEF50%) and FEF25–75% in the CVA population was first evaluated. FEF50% was determined to be an easy and feasible parameter for identifying small airway disease. CVA with small airway disease is defined as FEF50% < 70%, whereas CVA with normal small airways is identified as FEF50% > 70%. Demographic features, clinical characteristics, lung function and induced sputum test results were determined at the initial visit and at the final visit 1 year later.

Results

FEF50% is a good marker for small airway disease. The cutoff value of 70% is more sensitive than the previously published 60% for identifying more patients with small airway problems early. Nearly half of the CVA population (45.4%) in our cohort had small airway disease. In both group, symptoms improved greatly after anti-asthmatic treatment. Interestingly, the changes in symptom scores [Asthma Control Test (ACT) and ACQ] were even greater in the CVA with small airway disease group than in the control group because of the higher medication usage in this subpopulation in real life. However anti-asthmatic therapy can not reverse small airway dysfunction. At last visit, FEF50% of CVA with small airway diseases was 57.2% ± 10.5%, still much lower than the control group (FEF50% = 92.6% ± 16.5%).

Conclusions

In our cohort, nearly half of the CVA population had small airway disease. Their demographic features, clinical characteristics, airway eosinophils and drug responsiveness were quite similar between two groups, which means these indices can not be used as markers to identify small airway obstruction. We found FEF50% is an easy and feasible marker for early identification. Regular anti-asthmatic medication helped to improve clinical scores in patients with small airway disease, but the obstruction could not be reversed over 1-year period.
Literature
1.
go back to reference Baraldo S, Saetta M, Cosio MG. Pathophysiology of the small airways. Semin Respir Crit Care Med. 2003;24:465–72.CrossRef Baraldo S, Saetta M, Cosio MG. Pathophysiology of the small airways. Semin Respir Crit Care Med. 2003;24:465–72.CrossRef
2.
go back to reference van der Wiel E, Postma DS, van der Molen T, Schiphof-Godart L, Ten Hacken NH, van den Berge M. Effects of small airway dysfunction on the clinical expression of asthma: a focus on asthma symptoms and bronchial hyper-responsiveness. Allergy. 2014;69:1681–8.CrossRef van der Wiel E, Postma DS, van der Molen T, Schiphof-Godart L, Ten Hacken NH, van den Berge M. Effects of small airway dysfunction on the clinical expression of asthma: a focus on asthma symptoms and bronchial hyper-responsiveness. Allergy. 2014;69:1681–8.CrossRef
3.
go back to reference Petsonk EL, Stansbury RC, Beeckman-Wagner LA, Long JL, Wang ML. Small airway dysfunction and abnormal exercise responses. A study in coal miners. Ann Am Thorac Soc. 2016;13:1076–80.CrossRef Petsonk EL, Stansbury RC, Beeckman-Wagner LA, Long JL, Wang ML. Small airway dysfunction and abnormal exercise responses. A study in coal miners. Ann Am Thorac Soc. 2016;13:1076–80.CrossRef
4.
go back to reference Hogg JC, Pare PD, Hackett TL. The contribution of small airway obstruction to the pathogenesis of chronic obstructive pulmonary disease. Physiol Rev. 2017;97:529–52.CrossRef Hogg JC, Pare PD, Hackett TL. The contribution of small airway obstruction to the pathogenesis of chronic obstructive pulmonary disease. Physiol Rev. 2017;97:529–52.CrossRef
5.
go back to reference Scichilone N, Contoli M, Paleari D, Pirina P, Rossi A, Sanguinetti CM, Santus P, Sofia M, Sverzellati N. Assessing and accessing the small airways; implications for asthma management. Pulm Pharmacol Ther. 2013;26:172–9.CrossRef Scichilone N, Contoli M, Paleari D, Pirina P, Rossi A, Sanguinetti CM, Santus P, Sofia M, Sverzellati N. Assessing and accessing the small airways; implications for asthma management. Pulm Pharmacol Ther. 2013;26:172–9.CrossRef
6.
go back to reference Gonem S, Natarajan S, Desai D, Corkill S, Singapuri A, Bradding P, Gustafsson P, Costanza R, Kajekar R, Parmar H, et al. Clinical significance of small airway obstruction markers in patients with asthma. Clin Exp Allergy. 2014;44:499–507.CrossRef Gonem S, Natarajan S, Desai D, Corkill S, Singapuri A, Bradding P, Gustafsson P, Costanza R, Kajekar R, Parmar H, et al. Clinical significance of small airway obstruction markers in patients with asthma. Clin Exp Allergy. 2014;44:499–507.CrossRef
7.
go back to reference Usmani OS, Singh D, Spinola M, Bizzi A, Barnes PJ. The prevalence of small airways disease in adult asthma: a systematic literature review. Respir Med. 2016;116:19–27.CrossRef Usmani OS, Singh D, Spinola M, Bizzi A, Barnes PJ. The prevalence of small airways disease in adult asthma: a systematic literature review. Respir Med. 2016;116:19–27.CrossRef
8.
go back to reference van den Berge M, ten Hacken NHT, Cohen J, Douma WR, Postma DS. Small airway disease in asthma and COPD: clinical implications. Chest. 2011;139:412–23.CrossRef van den Berge M, ten Hacken NHT, Cohen J, Douma WR, Postma DS. Small airway disease in asthma and COPD: clinical implications. Chest. 2011;139:412–23.CrossRef
9.
go back to reference Fujimura M. Pathophysiology, diagnosis and treatment of cough variant asthma. Rinsho Byori. 2014;62:464–70.PubMed Fujimura M. Pathophysiology, diagnosis and treatment of cough variant asthma. Rinsho Byori. 2014;62:464–70.PubMed
10.
go back to reference Dicpinigaitis PV. Chronic cough due to asthma: ACCP evidence-based clinical practice guidelines. Chest. 2006;129:75S–9S.CrossRef Dicpinigaitis PV. Chronic cough due to asthma: ACCP evidence-based clinical practice guidelines. Chest. 2006;129:75S–9S.CrossRef
11.
go back to reference Voorend-van Bergen S, Vaessen-Verberne AA, de Jongste JC, Pijnenburg MW. Asthma control questionnaires in the management of asthma in children: a review. Pediatr Pulmonol. 2015;50:202–8.CrossRef Voorend-van Bergen S, Vaessen-Verberne AA, de Jongste JC, Pijnenburg MW. Asthma control questionnaires in the management of asthma in children: a review. Pediatr Pulmonol. 2015;50:202–8.CrossRef
12.
go back to reference Jia CE, Zhang HP, Lv Y, Liang R, Jiang YQ, Powell H, Fu JJ, Wang L, Gibson PG, Wang G. The asthma control test and asthma control questionnaire for assessing asthma control: systematic review and meta-analysis. J Allergy Clin Immunol. 2013;131:695–703.CrossRef Jia CE, Zhang HP, Lv Y, Liang R, Jiang YQ, Powell H, Fu JJ, Wang L, Gibson PG, Wang G. The asthma control test and asthma control questionnaire for assessing asthma control: systematic review and meta-analysis. J Allergy Clin Immunol. 2013;131:695–703.CrossRef
13.
go back to reference Konstantinos Katsoulis K, Kostikas K, Kontakiotis T. Techniques for assessing small airways function: possible applications in asthma and COPD. Respir Med. 2016;119:e2–9.CrossRef Konstantinos Katsoulis K, Kostikas K, Kontakiotis T. Techniques for assessing small airways function: possible applications in asthma and COPD. Respir Med. 2016;119:e2–9.CrossRef
14.
go back to reference Yanai M, Sekizawa K, Ohrui T, Sasaki H, Takishima T. Site of airway obstruction in pulmonary disease: direct measurement of intrabronchial pressure. J Appl Physiol. 1985;1992(72):1016–23. Yanai M, Sekizawa K, Ohrui T, Sasaki H, Takishima T. Site of airway obstruction in pulmonary disease: direct measurement of intrabronchial pressure. J Appl Physiol. 1985;1992(72):1016–23.
15.
go back to reference in ‘t Veen JC, Beekman AJ, Bel EH, Sterk PJ. Recurrent exacerbations in severe asthma are associated with enhanced airway closure during stable episodes. Am J Respir Crit Care Med. 2000;161:1902–6.CrossRef in ‘t Veen JC, Beekman AJ, Bel EH, Sterk PJ. Recurrent exacerbations in severe asthma are associated with enhanced airway closure during stable episodes. Am J Respir Crit Care Med. 2000;161:1902–6.CrossRef
16.
go back to reference Perez T, Chanez P, Dusser D, Devillier P. Small airway impairment in moderate to severe asthmatics without significant proximal airway obstruction. Respir Med. 2013;107:1667–74.CrossRef Perez T, Chanez P, Dusser D, Devillier P. Small airway impairment in moderate to severe asthmatics without significant proximal airway obstruction. Respir Med. 2013;107:1667–74.CrossRef
17.
go back to reference Dosman J, Bode F, Urbanetti J, Martin R, Macklem PT. The use of a helium–oxygen mixture during maximum expiratory flow to demonstrate obstruction in small airways in smokers. J Clin Invest. 1975;55:1090–9.CrossRef Dosman J, Bode F, Urbanetti J, Martin R, Macklem PT. The use of a helium–oxygen mixture during maximum expiratory flow to demonstrate obstruction in small airways in smokers. J Clin Invest. 1975;55:1090–9.CrossRef
18.
go back to reference Marseglia GL, Cirillo I, Vizzaccaro A, Klersy C, Tosca MA, La Rosa M, Marseglia A, Licari A, Leone M, Ciprandi G. Role of forced expiratory flow at 25–75% as an early marker of small airways impairment in subjects with allergic rhinitis. Allergy Asthma Proc. 2007;28:74–8.CrossRef Marseglia GL, Cirillo I, Vizzaccaro A, Klersy C, Tosca MA, La Rosa M, Marseglia A, Licari A, Leone M, Ciprandi G. Role of forced expiratory flow at 25–75% as an early marker of small airways impairment in subjects with allergic rhinitis. Allergy Asthma Proc. 2007;28:74–8.CrossRef
19.
go back to reference Manoharan A, Anderson WJ, Lipworth J, Lipworth BJ. Assessment of spirometry and impulse oscillometry in relation to asthma control. Lung. 2015;193:47–51.CrossRef Manoharan A, Anderson WJ, Lipworth J, Lipworth BJ. Assessment of spirometry and impulse oscillometry in relation to asthma control. Lung. 2015;193:47–51.CrossRef
20.
go back to reference Cirillo I, Klersy C, Marseglia GL, Vizzaccaro A, Pallestrini E, Tosca M, Ciprandi G. Role of FEF25%–75% as a predictor of bronchial hyperreactivity in allergic patients. Ann Allergy Asthma Immunol. 2006;96:692–700.CrossRef Cirillo I, Klersy C, Marseglia GL, Vizzaccaro A, Pallestrini E, Tosca M, Ciprandi G. Role of FEF25%–75% as a predictor of bronchial hyperreactivity in allergic patients. Ann Allergy Asthma Immunol. 2006;96:692–700.CrossRef
21.
go back to reference Yuan J, An SH, Gao WJ, Du WJ, Sun JF, Zhang M, Yao CZ. Comparative analysis of conventional pulmonary function test results in children with asthma or cough variant asthma. Zhongguo Dang Dai Er Ke Za Zhi. 2013;15:171–4.PubMed Yuan J, An SH, Gao WJ, Du WJ, Sun JF, Zhang M, Yao CZ. Comparative analysis of conventional pulmonary function test results in children with asthma or cough variant asthma. Zhongguo Dang Dai Er Ke Za Zhi. 2013;15:171–4.PubMed
22.
go back to reference Usmani OS, Barnes PJ. Assessing and treating small airways disease in asthma and chronic obstructive pulmonary disease. Ann Med. 2012;44:146–56.CrossRef Usmani OS, Barnes PJ. Assessing and treating small airways disease in asthma and chronic obstructive pulmonary disease. Ann Med. 2012;44:146–56.CrossRef
23.
go back to reference Anderson WJ, Zajda E, Lipworth BJ. Are we overlooking persistent small airways dysfunction in community-managed asthma? Ann Allergy Asthma Immunol. 2012;109(185–189):e182. Anderson WJ, Zajda E, Lipworth BJ. Are we overlooking persistent small airways dysfunction in community-managed asthma? Ann Allergy Asthma Immunol. 2012;109(185–189):e182.
24.
go back to reference Denlinger LC, Phillips BR, Ramratnam S, Ross K, Bhakta NR, Cardet JC, Castro M, Peters SP, Phipatanakul W, Aujla S, et al. Inflammatory and comorbid features of patients with severe asthma and frequent exacerbations. Am J Respir Crit Care Med. 2017;195:302–13.CrossRef Denlinger LC, Phillips BR, Ramratnam S, Ross K, Bhakta NR, Cardet JC, Castro M, Peters SP, Phipatanakul W, Aujla S, et al. Inflammatory and comorbid features of patients with severe asthma and frequent exacerbations. Am J Respir Crit Care Med. 2017;195:302–13.CrossRef
25.
go back to reference Rao DR, Gaffin JM, Baxi SN, Sheehan WJ, Hoffman EB, Phipatanakul W. The utility of forced expiratory flow between 25% and 75% of vital capacity in predicting childhood asthma morbidity and severity. J Asthma. 2012;49:586–92.CrossRef Rao DR, Gaffin JM, Baxi SN, Sheehan WJ, Hoffman EB, Phipatanakul W. The utility of forced expiratory flow between 25% and 75% of vital capacity in predicting childhood asthma morbidity and severity. J Asthma. 2012;49:586–92.CrossRef
26.
go back to reference Postma DS, Brightling C, Fabbri L, van der Molen T, Nicolini G, Papi A, Rabe KF, Siddiqui S, Singh D, van den Berge M, Kraft M. Unmet needs for the assessment of small airways dysfunction in asthma: introduction to the ATLANTIS study. Eur Respir J. 2015;45:1534–8.CrossRef Postma DS, Brightling C, Fabbri L, van der Molen T, Nicolini G, Papi A, Rabe KF, Siddiqui S, Singh D, van den Berge M, Kraft M. Unmet needs for the assessment of small airways dysfunction in asthma: introduction to the ATLANTIS study. Eur Respir J. 2015;45:1534–8.CrossRef
27.
go back to reference Kemp L, Haughney J, Barnes N, Sims E, von Ziegenweidt J, Hillyer EV, Lee AJ, Chisholm A, Price D. Cost-effectiveness analysis of corticosteroid inhaler devices in primary care asthma management: a real world observational study. Clinicoecon Outcomes Res. 2010;2:75–85.PubMedPubMedCentral Kemp L, Haughney J, Barnes N, Sims E, von Ziegenweidt J, Hillyer EV, Lee AJ, Chisholm A, Price D. Cost-effectiveness analysis of corticosteroid inhaler devices in primary care asthma management: a real world observational study. Clinicoecon Outcomes Res. 2010;2:75–85.PubMedPubMedCentral
28.
go back to reference Boulet LP, Bateman ED, Voves R, Muller T, Wolf S, Engelstatter R. A randomized study comparing ciclesonide and fluticasone propionate in patients with moderate persistent asthma. Respir Med. 2007;101:1677–86.CrossRef Boulet LP, Bateman ED, Voves R, Muller T, Wolf S, Engelstatter R. A randomized study comparing ciclesonide and fluticasone propionate in patients with moderate persistent asthma. Respir Med. 2007;101:1677–86.CrossRef
29.
go back to reference Beam DS. Value of inhaled corticosteroid therapy in long-term asthma management. Pharm Ther. 2010;35:377–416. Beam DS. Value of inhaled corticosteroid therapy in long-term asthma management. Pharm Ther. 2010;35:377–416.
30.
go back to reference Lipworth B, Manoharan A, Anderson W. Unlocking the quiet zone: the small airway asthma phenotype. Lancet Respir Med. 2014;2:497–506.CrossRef Lipworth B, Manoharan A, Anderson W. Unlocking the quiet zone: the small airway asthma phenotype. Lancet Respir Med. 2014;2:497–506.CrossRef
31.
go back to reference Kjellberg S, Houltz BK, Zetterstrom O, Robinson PD, Gustafsson PM. Clinical characteristics of adult asthma associated with small airway dysfunction. Respir Med. 2016;117:92–102.CrossRef Kjellberg S, Houltz BK, Zetterstrom O, Robinson PD, Gustafsson PM. Clinical characteristics of adult asthma associated with small airway dysfunction. Respir Med. 2016;117:92–102.CrossRef
32.
go back to reference Schneider A, Faderl B, Schwarzbach J, Welker L, Karsch-Volk M, Jorres RA. Prognostic value of bronchial provocation and FENO measurement for asthma diagnosis–results of a delayed type of diagnostic study. Respir Med. 2014;108:34–40.CrossRef Schneider A, Faderl B, Schwarzbach J, Welker L, Karsch-Volk M, Jorres RA. Prognostic value of bronchial provocation and FENO measurement for asthma diagnosis–results of a delayed type of diagnostic study. Respir Med. 2014;108:34–40.CrossRef
33.
go back to reference Carr TF, Altisheh R, Zitt M. Small airways disease and severe asthma. World Allergy Organ J. 2017;10:20.CrossRef Carr TF, Altisheh R, Zitt M. Small airways disease and severe asthma. World Allergy Organ J. 2017;10:20.CrossRef
34.
go back to reference McDonough JE, Yuan R, Suzuki M, Seyednejad N, Elliott WM, Sanchez PG, Wright AC, Gefter WB, Litzky L, Coxson HO, et al. Small-airway obstruction and emphysema in chronic obstructive pulmonary disease. N Engl J Med. 2011;365:1567–75.CrossRef McDonough JE, Yuan R, Suzuki M, Seyednejad N, Elliott WM, Sanchez PG, Wright AC, Gefter WB, Litzky L, Coxson HO, et al. Small-airway obstruction and emphysema in chronic obstructive pulmonary disease. N Engl J Med. 2011;365:1567–75.CrossRef
Metadata
Title
Clinical and pulmonary function changes in cough variant asthma with small airway disease
Authors
Honglei Yuan
Xiaojing Liu
Li Li
Gang Wang
Chunfang Liu
Yuzhen Zeng
Ruolin Mao
Chunling Du
Zhihong Chen
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Allergy, Asthma & Clinical Immunology / Issue 1/2019
Electronic ISSN: 1710-1492
DOI
https://doi.org/10.1186/s13223-019-0354-1

Other articles of this Issue 1/2019

Allergy, Asthma & Clinical Immunology 1/2019 Go to the issue