Skip to main content
Top
Published in: BMC Infectious Diseases 1/2021

Open Access 01-12-2021 | Cough | Research

Creating symptom-based criteria for diagnostic testing: a case study based on a multivariate analysis of data collected during the first wave of the COVID-19 pandemic in New Zealand

Authors: Nigel French, Geoff Jones, Cord Heuer, Virginia Hope, Sarah Jefferies, Petra Muellner, Andrea McNeill, Stephen Haslett, Patricia Priest

Published in: BMC Infectious Diseases | Issue 1/2021

Login to get access

Abstract

Background

Diagnostic testing using PCR is a fundamental component of COVID-19 pandemic control. Criteria for determining who should be tested by PCR vary between countries, and ultimately depend on resource constraints and public health objectives. Decisions are often based on sets of symptoms in individuals presenting to health services, as well as demographic variables, such as age, and travel history. The objective of this study was to determine the sensitivity and specificity of sets of symptoms used for triaging individuals for confirmatory testing, with the aim of optimising public health decision making under different scenarios.

Methods

Data from the first wave of COVID-19 in New Zealand were analysed; comprising 1153 PCR-confirmed and 4750 symptomatic PCR negative individuals. Data were analysed using Multiple Correspondence Analysis (MCA), automated search algorithms, Bayesian Latent Class Analysis, Decision Tree Analysis and Random Forest (RF) machine learning.

Results

Clinical criteria used to guide who should be tested by PCR were based on a set of mostly respiratory symptoms: a new or worsening cough, sore throat, shortness of breath, coryza, anosmia, with or without fever. This set has relatively high sensitivity (> 90%) but low specificity (< 10%), using PCR as a quasi-gold standard. In contrast, a group of mostly non-respiratory symptoms, including weakness, muscle pain, joint pain, headache, anosmia and ageusia, explained more variance in the MCA and were associated with higher specificity, at the cost of reduced sensitivity. Using RF models, the incorporation of 15 common symptoms, age, sex and prioritised ethnicity provided algorithms that were both sensitive and specific (> 85% for both) for predicting PCR outcomes.

Conclusions

 If predominantly respiratory symptoms are used for test-triaging,  a large proportion of the individuals being tested may not have COVID-19. This could overwhelm testing capacity and hinder attempts to trace and eliminate infection. Specificity can be increased using alternative rules based on sets of symptoms informed by multivariate analysis and automated search algorithms, albeit at the cost of sensitivity. Both sensitivity and specificity can be improved through machine learning algorithms, incorporating symptom and demographic data, and hence may provide an alternative approach to test-triaging that can be optimised according to prevailing conditions.
Appendix
Available only for authorised users
Footnotes
2
See methods section for the key to symptom symbols.
 
Literature
15.
go back to reference Husson F, Lê S, Pagès J. Exploratory multivariate analysis by example using R. Boca Raton: CRC Press; 2017.CrossRef Husson F, Lê S, Pagès J. Exploratory multivariate analysis by example using R. Boca Raton: CRC Press; 2017.CrossRef
16.
go back to reference Breiman L, Friedman J, Olshen R, Stone C. Classification and regression trees (The Wadsworth Statistics/Probability Series). New York: Chapman and Hall; 1984. p. 1–358. Breiman L, Friedman J, Olshen R, Stone C. Classification and regression trees (The Wadsworth Statistics/Probability Series). New York: Chapman and Hall; 1984. p. 1–358.
17.
go back to reference Liaw A, Wiener M. Classification and regression by randomForest. R J. 2002;2(3):18–22. Liaw A, Wiener M. Classification and regression by randomForest. R J. 2002;2(3):18–22.
18.
go back to reference Kuhn M. Building predictive models in R using the caret package. J Stat Softw. 2008;28(5):1–26.CrossRef Kuhn M. Building predictive models in R using the caret package. J Stat Softw. 2008;28(5):1–26.CrossRef
19.
go back to reference Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: synthetic minority over-sampling technique. J Artif Intell Res. 2002;16:321–57.CrossRef Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: synthetic minority over-sampling technique. J Artif Intell Res. 2002;16:321–57.CrossRef
20.
go back to reference Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez J-C, Müller M. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics. 2011;12(1):1–8.CrossRef Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez J-C, Müller M. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics. 2011;12(1):1–8.CrossRef
21.
go back to reference Joseph L, Gyorkos TW, Coupal L. Bayesian estimation of disease prevalence and the parameters of diagnostic tests in the absence of a gold standard. Am J Epidemiol. 1995;141(3):263–72.CrossRefPubMed Joseph L, Gyorkos TW, Coupal L. Bayesian estimation of disease prevalence and the parameters of diagnostic tests in the absence of a gold standard. Am J Epidemiol. 1995;141(3):263–72.CrossRefPubMed
35.
go back to reference Steyn N, Binny RN, Hannah K, Hendy SC, James A, Kukutai T, Lustig A, McLeod M, Plank MJ, Ridings K, et al. Estimated inequities in COVID-19 infection fatality rates by ethnicity for Aotearoa New Zealand. N Z Med J. 2020;133(1521):28–39.PubMed Steyn N, Binny RN, Hannah K, Hendy SC, James A, Kukutai T, Lustig A, McLeod M, Plank MJ, Ridings K, et al. Estimated inequities in COVID-19 infection fatality rates by ethnicity for Aotearoa New Zealand. N Z Med J. 2020;133(1521):28–39.PubMed
Metadata
Title
Creating symptom-based criteria for diagnostic testing: a case study based on a multivariate analysis of data collected during the first wave of the COVID-19 pandemic in New Zealand
Authors
Nigel French
Geoff Jones
Cord Heuer
Virginia Hope
Sarah Jefferies
Petra Muellner
Andrea McNeill
Stephen Haslett
Patricia Priest
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2021
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-021-06810-4

Other articles of this Issue 1/2021

BMC Infectious Diseases 1/2021 Go to the issue