Skip to main content
Top
Published in: BMC Nephrology 1/2022

Open Access 01-12-2022 | Research article

Corticomedullary shunting after ischaemia and reperfusion in the porcine kidney?

Authors: Michael Rehling, Stine Gram Skjøth, Jørgen Frøkiær, Lene Elsebeth Nielsen, Christian Flø, Bente Jespersen, Anna Krarup Keller

Published in: BMC Nephrology | Issue 1/2022

Login to get access

Abstract

Background

Renal perfusion may redistribute from cortex to medulla during systemic hypovolaemia and after renal ischaemia for other reasons, but there is no consensus on this matter. We studied renal perfusion after renal ischaemia and reperfusion.

Methods

Renal perfusion distribution was examined by use of 153Gadolinium-labeled microspheres (MS) after 2 h (hrs) and 4 h ischaemia of the pig kidney followed by 4 h of reperfusion. Intra-arterial injected MS are trapped in the glomeruli in renal cortex, which means that MS are not present in the medulla under normal physiological conditions.

Results

Visual evaluation after reperfusion demonstrated that MS redistributed from the renal cortex to the medulla in 6 out of 16 pigs (38%) subjected to 4 h ischaemia and in one out of 18 pigs subjected to 2 h ischaemia. Central renal uptake of MS covering the medullary/total renal uptake was significantly higher in kidneys subjected to 4 h ischaemia compared with pigs subjected to 2 h ischaemia (69 ± 5% vs. 63 ± 1%, p < 0.001), and also significantly higher than in the contralateral kidney (69 ± 5% vs. 63 ± 2%, p < 0.001). Analysis of blood and urine demonstrated no presence of radioactivity.

Conclusion

The study demonstrated the presence of MS in the renal medulla in response to renal ischaemia and reperfusion suggesting that severe ischaemia and reperfusion of the pig kidney leads to opening of functional shunts bypassing glomeruli.
Literature
1.
go back to reference Munger K, Kost C Jr, Brenner B, Maddox D. The renal circulations and glomerular ultrafiltration. In: Taal M, Chertow G, Marsden P, Skorecki K, Yu Y, Brenner B, editors. Brenner and Rectors, The Kidney. Philadelphia: Elsevier Saunders; 2012. p. 94–137.CrossRef Munger K, Kost C Jr, Brenner B, Maddox D. The renal circulations and glomerular ultrafiltration. In: Taal M, Chertow G, Marsden P, Skorecki K, Yu Y, Brenner B, editors. Brenner and Rectors, The Kidney. Philadelphia: Elsevier Saunders; 2012. p. 94–137.CrossRef
2.
go back to reference Trueta J, Barclay A, Daniel P. Studies of the renal circulation. Oxford: Blackwell Scientific Publications Ltd; 1947. Trueta J, Barclay A, Daniel P. Studies of the renal circulation. Oxford: Blackwell Scientific Publications Ltd; 1947.
3.
go back to reference Daniel P, Peabody C, Prichard M. Cortical ischaemia of the kidney with maintained blood flow through the medulla. Q J Exp Physiol Cogn Med Sci. 1952;37:11–8.PubMed Daniel P, Peabody C, Prichard M. Cortical ischaemia of the kidney with maintained blood flow through the medulla. Q J Exp Physiol Cogn Med Sci. 1952;37:11–8.PubMed
4.
go back to reference Daniel P, Peabody C, Prichard M. Observations on the circulation through the cortex and the medulla of the kidney. Q J Exp Physiol Cogn Med Sc. 1951;36:199–203. Daniel P, Peabody C, Prichard M. Observations on the circulation through the cortex and the medulla of the kidney. Q J Exp Physiol Cogn Med Sc. 1951;36:199–203.
5.
go back to reference Lilienfields L, Maganzini H, Bauer M. Blood flow in the renal medulla. Circ Res. 1961;9:614–7.CrossRef Lilienfields L, Maganzini H, Bauer M. Blood flow in the renal medulla. Circ Res. 1961;9:614–7.CrossRef
6.
go back to reference Spinelli FR, Wirz H, Brucher C, Pehling G. Non-existence of shunts between afferent and efferent arterioles of juxtamedullary glomeruli in dog and rat kidneys. Nephron. 1972;9:123–8.CrossRefPubMed Spinelli FR, Wirz H, Brucher C, Pehling G. Non-existence of shunts between afferent and efferent arterioles of juxtamedullary glomeruli in dog and rat kidneys. Nephron. 1972;9:123–8.CrossRefPubMed
7.
go back to reference Stone AM, Stein T, LaFortune J, Wise L. Changes in intrarenal blood flow during sepsis. Surg Gynecol Obstet. 1979;148:731–4.PubMed Stone AM, Stein T, LaFortune J, Wise L. Changes in intrarenal blood flow during sepsis. Surg Gynecol Obstet. 1979;148:731–4.PubMed
8.
go back to reference Greenfield SP, Lewis W III, Perry B, Wan J, Morin F III. Regional renal blood flow measurements using radioactive microspheres in a chronic porcine model with unilateral vesicoureteral reflux. J Urol. 1995;154:816–9.CrossRefPubMed Greenfield SP, Lewis W III, Perry B, Wan J, Morin F III. Regional renal blood flow measurements using radioactive microspheres in a chronic porcine model with unilateral vesicoureteral reflux. J Urol. 1995;154:816–9.CrossRefPubMed
10.
go back to reference Peters A, Myers M. Measurement of blood flow. In: Peters A, Myers M, editors. Physiological measurements with Radionuclides in Clinical Practice. Oxford: Oxford University Press; 2003. p. 63–7. Peters A, Myers M. Measurement of blood flow. In: Peters A, Myers M, editors. Physiological measurements with Radionuclides in Clinical Practice. Oxford: Oxford University Press; 2003. p. 63–7.
11.
go back to reference Pedersen SS, Keller AK, Nielsen MK, Jespersen B, Falborg L, Rasmussen JT, et al. Cell injury after ischemia and reperfusion in the porcine kidney evaluated by radiolabelled microspheres, sestamibi, and lactadherin. EJNMMI Res. 2013;3:62.CrossRefPubMedPubMedCentral Pedersen SS, Keller AK, Nielsen MK, Jespersen B, Falborg L, Rasmussen JT, et al. Cell injury after ischemia and reperfusion in the porcine kidney evaluated by radiolabelled microspheres, sestamibi, and lactadherin. EJNMMI Res. 2013;3:62.CrossRefPubMedPubMedCentral
13.
14.
go back to reference Lohmann S, Eijken M, Møldrup U, Møller BK, Hunter J, Moers C, et. al.: Ex Vivo Administration of Mesenchymal Stromal Cells in Kidney Grafts Against Ischemia-reperfusion Injury-Effective Delivery Without Kidney Function Improvement Posttransplant.Transplantation. 2021 1;105(3):517–528. doi: https://doi.org/10.1097/TP.0000000000003429. Lohmann S, Eijken M, Møldrup U, Møller BK, Hunter J, Moers C, et. al.: Ex Vivo Administration of Mesenchymal Stromal Cells in Kidney Grafts Against Ischemia-reperfusion Injury-Effective Delivery Without Kidney Function Improvement Posttransplant.Transplantation. 2021 1;105(3):517–528. doi: https://​doi.​org/​10.​1097/​TP.​0000000000003429​.
Metadata
Title
Corticomedullary shunting after ischaemia and reperfusion in the porcine kidney?
Authors
Michael Rehling
Stine Gram Skjøth
Jørgen Frøkiær
Lene Elsebeth Nielsen
Christian Flø
Bente Jespersen
Anna Krarup Keller
Publication date
01-12-2022
Publisher
BioMed Central
Published in
BMC Nephrology / Issue 1/2022
Electronic ISSN: 1471-2369
DOI
https://doi.org/10.1186/s12882-022-02780-0

Other articles of this Issue 1/2022

BMC Nephrology 1/2022 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.