Skip to main content
Top
Published in:

Open Access 01-12-2022 | Chronic Kidney Disease | Research

RNA-seq analysis of extracellular vesicles from hyperphosphatemia-stimulated endothelial cells provides insight into the mechanism underlying vascular calcification

Authors: Zhong Peng, Yingjie Duan, Shuzhu Zhong, Juan Chen, Jianlong Li, Zhangxiu He

Published in: BMC Nephrology | Issue 1/2022

Login to get access

Abstract

Background

Hyperphosphatemia (HP) is associated with vascular calcification (VC) in chronic kidney disease (CKD). However, relationship between HP-induced-endothelial extracellular vesicles (HP-EC-EVs) and VC is unclear, and miR expression in HP-EC-EVs has not been determined.

Methods

We isolated HP-EC-EVs from endothelial cells with HP and observed that HP-EC-EVs were up-taken by vascular smooth muscle cells (VSMCs). HP-EC-EVs inducing calcium deposition was characterized by Alizarin Red S, colourimetric analysis and ALP activity. To investigate the mechanism of HP-EC-EVs-induced VSMC calcification, RNA-sequencing for HP-EC-EVs was performed.

Results

We first demonstrated that HP-EC-EVs induced VSMC calcification in vitro. RNA-seq analysis of HP-EC-EVs illustrated that one known miR (hsa-miR-3182) was statistically up-regulated and twelve miRs were significantly down-regulated, which was verified by qRT-PCR. We predicted 58,209 and 74,469 target genes for those down- and up-regulated miRs respectively through miRDB, miRWalk and miRanda databases. GO terms showed that down- and up-regulated targets were mostly enriched in calcium-dependent cell–cell adhesion via plama membrane cell-adhesion molecules (GO:0,016,338, BP) and cell adhesion (GO:0,007,155, BP), plasma membrane (GO:0,005,886, CC), and metal ion binding (GO:0,046,914, MF) and ATP binding (GO:0,005,524, MF) respectively. Top-20 pathways by KEGG analysis included calcium signaling pathway, cAMP signaling pathway, and ABC transporters, which were closely related to VC.

Conclusion

Our results indicated that those significantly altered miRs, which were packaged in HP-EC-EVs, may play an important role in VC by regulating related pathways. It may provide novel insight into the mechanism of CKD calcification.
Appendix
Available only for authorised users
Literature
1.
go back to reference Paniagua-Sierra JR, Galván-Plata ME. Chronic kidney disease. Rev Med Inst Mex Seguro Soc. 2017;55(Suppl 2):S116-7.PubMed Paniagua-Sierra JR, Galván-Plata ME. Chronic kidney disease. Rev Med Inst Mex Seguro Soc. 2017;55(Suppl 2):S116-7.PubMed
2.
go back to reference Yamada S, Giachelli CM. Vascular calcification in CKD-MBD: Roles for phosphate, FGF23, and Klotho. Bone. 2017;100:87–93.CrossRef Yamada S, Giachelli CM. Vascular calcification in CKD-MBD: Roles for phosphate, FGF23, and Klotho. Bone. 2017;100:87–93.CrossRef
3.
go back to reference Mizobuchi M, Towler D, Slatopolsky E. Vascular calcification: the killer of patients with chronic kidney disease. J Am Soc Nephrol. 2009;20(7):1453–64.CrossRef Mizobuchi M, Towler D, Slatopolsky E. Vascular calcification: the killer of patients with chronic kidney disease. J Am Soc Nephrol. 2009;20(7):1453–64.CrossRef
4.
go back to reference Abbasian N, Burton JO, Herbert KE, et al. Hyperphosphatemia, Phosphoprotein Phosphatases, and Microparticle Release in Vascular Endothelial Cells. J Am Soc Nephrol. 2015;26:2152–62.CrossRef Abbasian N, Burton JO, Herbert KE, et al. Hyperphosphatemia, Phosphoprotein Phosphatases, and Microparticle Release in Vascular Endothelial Cells. J Am Soc Nephrol. 2015;26:2152–62.CrossRef
5.
go back to reference Burger D, Schock S, Thompson CS, et al. extracellular vesicles: biomarkers and beyond. Clin Sci (Lond). 2013;124(7):423–41.CrossRef Burger D, Schock S, Thompson CS, et al. extracellular vesicles: biomarkers and beyond. Clin Sci (Lond). 2013;124(7):423–41.CrossRef
6.
go back to reference Alique M, Ramírez-Carracedo R, Bodega G, et al. Senescent Microvesicles: A Novel Advance in Molecular Mechanisms of Atherosclerotic Calcification. Int J Mol Sci. 2018;19(7):2003.CrossRef Alique M, Ramírez-Carracedo R, Bodega G, et al. Senescent Microvesicles: A Novel Advance in Molecular Mechanisms of Atherosclerotic Calcification. Int J Mol Sci. 2018;19(7):2003.CrossRef
7.
go back to reference Camaioni C, Gustapane M, Cialdella P, et al. extracellular vesicles and microRNAs: new players in the complex field of coagulation. Intern Emerg Med. 2013;8(4):291–6.CrossRef Camaioni C, Gustapane M, Cialdella P, et al. extracellular vesicles and microRNAs: new players in the complex field of coagulation. Intern Emerg Med. 2013;8(4):291–6.CrossRef
8.
go back to reference McCarthy EM, Wilkinson FL, Parker B, et al. Endothelial extracellular vesicles: Pathogenic or passive players in endothelial dysfunction in autoimmune rheumatic diseases? Vascul Pharmacol. 2016;86:71–6.CrossRef McCarthy EM, Wilkinson FL, Parker B, et al. Endothelial extracellular vesicles: Pathogenic or passive players in endothelial dysfunction in autoimmune rheumatic diseases? Vascul Pharmacol. 2016;86:71–6.CrossRef
9.
go back to reference Jansen F, Wang H, Przybilla D, et al. Vascular endothelial extracellular vesicles-incorporated microRNAs are altered in patients with diabetes mellitus. Cardiovasc Diabetol. 2016;15:49.CrossRef Jansen F, Wang H, Przybilla D, et al. Vascular endothelial extracellular vesicles-incorporated microRNAs are altered in patients with diabetes mellitus. Cardiovasc Diabetol. 2016;15:49.CrossRef
10.
go back to reference Nakaoka H, Hirono K, Yamamoto S, et al. MicroRNA-145-5p and microRNA-320a encapsulated in endothelial extracellular vesicles contribute to the progression of vasculitis in acute Kawasaki Disease. Sci Rep. 2018;8(1):1016.CrossRef Nakaoka H, Hirono K, Yamamoto S, et al. MicroRNA-145-5p and microRNA-320a encapsulated in endothelial extracellular vesicles contribute to the progression of vasculitis in acute Kawasaki Disease. Sci Rep. 2018;8(1):1016.CrossRef
11.
go back to reference Panizo S, Naves-Díaz M, Carrillo-López N, et al. MicroRNAs 29b, 133b, and 211 Regulate Vascular Smooth Muscle Calcification Mediated by High Phosphorus. J Am Soc Nephrol. 2016;27(3):824–34.CrossRef Panizo S, Naves-Díaz M, Carrillo-López N, et al. MicroRNAs 29b, 133b, and 211 Regulate Vascular Smooth Muscle Calcification Mediated by High Phosphorus. J Am Soc Nephrol. 2016;27(3):824–34.CrossRef
12.
go back to reference He J, Zhong X, Zhao L, Gan H. JAK2/STAT3/BMP-2 axis and NF-κB pathway are involved in erythropoietin-induced calcification in rat vascular smooth muscle cells. Clin Exp Nephrol. 2019;23:501–12.CrossRef He J, Zhong X, Zhao L, Gan H. JAK2/STAT3/BMP-2 axis and NF-κB pathway are involved in erythropoietin-induced calcification in rat vascular smooth muscle cells. Clin Exp Nephrol. 2019;23:501–12.CrossRef
13.
go back to reference Di Marco GS, Hausberg M, Hillebrand U, et al. Increased inorganic phosphate induces human endothelial cell apoptosis in vitro. Am J Physiol Renal Physiol. 2008;294:F1381–7.CrossRef Di Marco GS, Hausberg M, Hillebrand U, et al. Increased inorganic phosphate induces human endothelial cell apoptosis in vitro. Am J Physiol Renal Physiol. 2008;294:F1381–7.CrossRef
15.
go back to reference Amabile N, Guérin AP, Leroyer A, et al. Circulating Endothelial extracellular vesicles Are Associated with Vascular Dysfunction in Patients with End-Stage Renal Failure. J Am Soc Nephrol. 2005;16:3381–8.CrossRef Amabile N, Guérin AP, Leroyer A, et al. Circulating Endothelial extracellular vesicles Are Associated with Vascular Dysfunction in Patients with End-Stage Renal Failure. J Am Soc Nephrol. 2005;16:3381–8.CrossRef
16.
go back to reference Davenport C, Harper E, Forde H, et al. RANKL promotes osteoblastic activity in vascular smooth muscle cells by upregulating endothelial BMP-2 release. Int J Biochem Cell Biol. 2016;77(Pt A):171–80.CrossRef Davenport C, Harper E, Forde H, et al. RANKL promotes osteoblastic activity in vascular smooth muscle cells by upregulating endothelial BMP-2 release. Int J Biochem Cell Biol. 2016;77(Pt A):171–80.CrossRef
17.
go back to reference Chen Y, Zhao X, Wu H. Arterial Stiffness: A Focus on Vascular Calcification and Its Link to Bone Mineralization. Arterioscler Thromb Vasc Biol. 2020;40:1078–93.CrossRef Chen Y, Zhao X, Wu H. Arterial Stiffness: A Focus on Vascular Calcification and Its Link to Bone Mineralization. Arterioscler Thromb Vasc Biol. 2020;40:1078–93.CrossRef
18.
go back to reference Massy ZA, Metzinger-Le Meuth V, Metzinger L. MicroRNAs Are Associated with Uremic Toxicity, Cardiovascular Calcification, and Disease. Contrib Nephrol. 2017;189:160–8.CrossRef Massy ZA, Metzinger-Le Meuth V, Metzinger L. MicroRNAs Are Associated with Uremic Toxicity, Cardiovascular Calcification, and Disease. Contrib Nephrol. 2017;189:160–8.CrossRef
19.
go back to reference Louvet L, Metzinger L, Büchel J, et al. Magnesium Attenuates Phosphate-Induced Deregulation of a MicroRNA Signature and Prevents Modulation of Smad1 and Osterix during the Course of Vascular Calcification. Biomed Res Int. 2016;2016:7419524.CrossRef Louvet L, Metzinger L, Büchel J, et al. Magnesium Attenuates Phosphate-Induced Deregulation of a MicroRNA Signature and Prevents Modulation of Smad1 and Osterix during the Course of Vascular Calcification. Biomed Res Int. 2016;2016:7419524.CrossRef
21.
go back to reference Freise C, Querfeld U, Ludwig A, et al. Uraemic extracellular vesicles augment osteogenic transdifferentiation of vascular smooth muscle cells via enhanced AKT signalling and PiT-1 expression. J Cell Mol Med. 2021;25(12):5602–14.CrossRef Freise C, Querfeld U, Ludwig A, et al. Uraemic extracellular vesicles augment osteogenic transdifferentiation of vascular smooth muscle cells via enhanced AKT signalling and PiT-1 expression. J Cell Mol Med. 2021;25(12):5602–14.CrossRef
25.
go back to reference Vasuri F, Ciavarella C, Fittipaldi S, et al. Different histological types of active intraplaque calcification underlie alternative miR-mRNA axes in carotid atherosclerotic disease. Virchows Arch. 2020;476(2):307–16.CrossRef Vasuri F, Ciavarella C, Fittipaldi S, et al. Different histological types of active intraplaque calcification underlie alternative miR-mRNA axes in carotid atherosclerotic disease. Virchows Arch. 2020;476(2):307–16.CrossRef
28.
go back to reference Kwon MY, Hwang N, Park YJ, et al. NOD2 deficiency exacerbates hypoxia-induced pulmonary hypertension and enhances pulmonary vascular smooth muscle cell proliferation. Oncotarget. 2018;9(16):12671–81.CrossRef Kwon MY, Hwang N, Park YJ, et al. NOD2 deficiency exacerbates hypoxia-induced pulmonary hypertension and enhances pulmonary vascular smooth muscle cell proliferation. Oncotarget. 2018;9(16):12671–81.CrossRef
29.
go back to reference Kwon MY, Hwang N, Back SH, et al. Nucleotide-binding oligomerization domain protein 2 deficiency enhances CHOP expression and plaque necrosis in advanced atherosclerotic lesions. FEBS J. 2020;287(10):2055–69.CrossRef Kwon MY, Hwang N, Back SH, et al. Nucleotide-binding oligomerization domain protein 2 deficiency enhances CHOP expression and plaque necrosis in advanced atherosclerotic lesions. FEBS J. 2020;287(10):2055–69.CrossRef
30.
go back to reference Boer S, Baran Y, Garcia-Garcia HM, et al. The European Collaborative Project on Inflammation and Vascular Wall Remodeling in Atherosclerosis - Intravascular Ultrasound (ATHEROREMO-IVUS) study. Euro Intervention. 2018;14(2):194–203.PubMed Boer S, Baran Y, Garcia-Garcia HM, et al. The European Collaborative Project on Inflammation and Vascular Wall Remodeling in Atherosclerosis - Intravascular Ultrasound (ATHEROREMO-IVUS) study. Euro Intervention. 2018;14(2):194–203.PubMed
31.
go back to reference Surendran P, Drenos F, Young R, et al. Trans-ancestry meta-analyses identify rare and common variants associated with blood pressure and hypertension. Nat Genet. 2016;48(10):1151–61.CrossRef Surendran P, Drenos F, Young R, et al. Trans-ancestry meta-analyses identify rare and common variants associated with blood pressure and hypertension. Nat Genet. 2016;48(10):1151–61.CrossRef
32.
go back to reference Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30.CrossRef Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30.CrossRef
33.
go back to reference Proudfoot D. Calcium Signaling and Tissue Calcification. Cold Spring Harb Perspect Biol. 2019;11(10):a035303.CrossRef Proudfoot D. Calcium Signaling and Tissue Calcification. Cold Spring Harb Perspect Biol. 2019;11(10):a035303.CrossRef
34.
go back to reference Guauque-Olarte S, Messika-Zeitoun D, Droit A, et al. Calcium Signaling Pathway Genes RUNX2 and CACNA1C Are Associated With Calcific Aortic Valve Disease. Circ Cardiovasc Genet. 2015;8(6):812–22.CrossRef Guauque-Olarte S, Messika-Zeitoun D, Droit A, et al. Calcium Signaling Pathway Genes RUNX2 and CACNA1C Are Associated With Calcific Aortic Valve Disease. Circ Cardiovasc Genet. 2015;8(6):812–22.CrossRef
35.
go back to reference Tintut Y, Parhami F, Boström K, et al. cAMP stimulates osteoblast-like differentiation of calcifying vascular cells. Potential signaling pathway for vascular calcification. J Biol Chem. 1998;273(13):7547–53.CrossRef Tintut Y, Parhami F, Boström K, et al. cAMP stimulates osteoblast-like differentiation of calcifying vascular cells. Potential signaling pathway for vascular calcification. J Biol Chem. 1998;273(13):7547–53.CrossRef
36.
go back to reference Prosdocimo DA, Wyler SC, Romani AM, et al. Regulation of vascular smooth muscle cell calcification by extracellular pyrophosphate homeostasis: synergistic modulation by cyclic AMP and hyperphosphatemia. Am J Physiol Cell Physiol. 2010;298(3):C702–13.CrossRef Prosdocimo DA, Wyler SC, Romani AM, et al. Regulation of vascular smooth muscle cell calcification by extracellular pyrophosphate homeostasis: synergistic modulation by cyclic AMP and hyperphosphatemia. Am J Physiol Cell Physiol. 2010;298(3):C702–13.CrossRef
38.
go back to reference Ibold B, Faust I, Tiemann J, et al. Abcc6 deficiency in mice leads to altered ABC transporter gene expression in metabolic active tissues. Lipids Health Dis. 2019;18(1):2.CrossRef Ibold B, Faust I, Tiemann J, et al. Abcc6 deficiency in mice leads to altered ABC transporter gene expression in metabolic active tissues. Lipids Health Dis. 2019;18(1):2.CrossRef
39.
go back to reference Nozaki T, Sugiyama S, Sugamura K, et al. Prognostic value of endothelial extracellular vesicles in patients with heart failure. Eur J Heart Fail. 2010;12(11):1223–8.CrossRef Nozaki T, Sugiyama S, Sugamura K, et al. Prognostic value of endothelial extracellular vesicles in patients with heart failure. Eur J Heart Fail. 2010;12(11):1223–8.CrossRef
40.
go back to reference Block A, Wheeler C, Persky S, et al. Effects of phosphate binders in moderate CKD. J Am Soc Nephrol. 2012;23(8):1407–15.CrossRef Block A, Wheeler C, Persky S, et al. Effects of phosphate binders in moderate CKD. J Am Soc Nephrol. 2012;23(8):1407–15.CrossRef
Metadata
Title
RNA-seq analysis of extracellular vesicles from hyperphosphatemia-stimulated endothelial cells provides insight into the mechanism underlying vascular calcification
Authors
Zhong Peng
Yingjie Duan
Shuzhu Zhong
Juan Chen
Jianlong Li
Zhangxiu He
Publication date
01-12-2022
Publisher
BioMed Central
Published in
BMC Nephrology / Issue 1/2022
Electronic ISSN: 1471-2369
DOI
https://doi.org/10.1186/s12882-022-02823-6

Other articles of this Issue 1/2022

BMC Nephrology 1/2022 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine
Webinar | 06-02-2024 | 20:00 (CET)

Mastering chronic pancreatitis pain: A multidisciplinary approach and practical solutions

Severe pain is the most common symptom of chronic pancreatitis. In this webinar, experts share the latest insights in pain management for chronic pancreatitis patients. Experts from a range of disciplines discuss pertinent cases and provide practical suggestions for use within clinical practice.

Sponsored by: Viatris

Developed by: Springer Healthcare
Live Webinar | 01-10-2024 | 12:30 (CEST)

Recent advances in the use of CAR T-cell therapies in relapsed/refractory diffuse large B-cell lymphoma and follicular lymphoma

Live: Tuesday 1st October 2024, 12:30-14:00 (CEST)

In this live webinar, Professor Martin Dreyling and an esteemed, international panel of CAR-T experts will discuss the very latest data on the safety, efficacy and clinical impact of CAR T-cell therapies in the treatment of r/r DLBCL and r/r FL, as presented at ASH 2023, EU CAR-T 2024, and EHA 2024. 

Please note, this webinar is not intended for healthcare professionals based in the US and UK.

Sponsored by: Novartis Pharma AG

Chaired by: Prof. Martin Dreyling
Developed by: Springer Healthcare