Skip to main content
Top
Published in: Virology Journal 1/2022

Open Access 01-12-2022 | Coronavirus | Review

Spectroscopic methods for COVID-19 detection and early diagnosis

Authors: Alaa Bedair, Kamal Okasha, Fotouh R. Mansour

Published in: Virology Journal | Issue 1/2022

Login to get access

Abstract

The coronavirus pandemic is a worldwide hazard that poses a threat to millions of individuals throughout the world. This pandemic is caused by the severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2), which was initially identified in Wuhan, China's Hubei provincial capital, and has since spread throughout the world. According to the World Health Organization's Weekly Epidemiological Update, there were more than 250 million documented cases of coronavirus infections globally, with five million fatalities. Early detection of coronavirus does not only reduce the spread of the virus, but it also increases the chance of curing the infection. Spectroscopic techniques have been widely used in the early detection and diagnosis of COVID-19 using Raman, Infrared, mass spectrometry and fluorescence spectroscopy. In this review, the reported spectroscopic methods for COVID-19 detection were discussed with emphasis on the practical aspects, limitations and applications.
Literature
1.
go back to reference Whitelaw S, Mamas MA, Topol E, Van Spall HGC. Applications of digital technology in COVID-19 pandemic planning and response. Lancet Digit Heal. 2020;2:e435–40.CrossRef Whitelaw S, Mamas MA, Topol E, Van Spall HGC. Applications of digital technology in COVID-19 pandemic planning and response. Lancet Digit Heal. 2020;2:e435–40.CrossRef
2.
go back to reference Hamed M, El-Hasab M, Mansour FR. Direct acting anti-hepatitis C combinations as potential COVID-19 protease inhibitors. VirusDisease. 2021;32:279–85.PubMedPubMedCentralCrossRef Hamed M, El-Hasab M, Mansour FR. Direct acting anti-hepatitis C combinations as potential COVID-19 protease inhibitors. VirusDisease. 2021;32:279–85.PubMedPubMedCentralCrossRef
3.
4.
go back to reference Manekiya M, Donelli M. Monitoring the covid-19 diffusion by combining wearable biosensors and smartphones. Prog Electromagn Res M. 2021;100:13–21.CrossRef Manekiya M, Donelli M. Monitoring the covid-19 diffusion by combining wearable biosensors and smartphones. Prog Electromagn Res M. 2021;100:13–21.CrossRef
5.
go back to reference Suresh Kumar S, Dashtipour K, Abbasi QH, Imran MA, Ahmad W. A review on wearable and contactless sensing for COVID-19 with policy challenges. Front Commun Netw. 2021;2:1–10. Suresh Kumar S, Dashtipour K, Abbasi QH, Imran MA, Ahmad W. A review on wearable and contactless sensing for COVID-19 with policy challenges. Front Commun Netw. 2021;2:1–10.
6.
go back to reference Mirjalali S, Peng S, Fang Z, Wang C, Wu S. Wearable sensors for remote health monitoring: potential applications for early diagnosis of Covid-19. Adv Mater Technol. 2021;7:2100545.PubMedPubMedCentralCrossRef Mirjalali S, Peng S, Fang Z, Wang C, Wu S. Wearable sensors for remote health monitoring: potential applications for early diagnosis of Covid-19. Adv Mater Technol. 2021;7:2100545.PubMedPubMedCentralCrossRef
7.
go back to reference Abdallah IA, Hammad SF, Bedair A, Elshafeey AH, Mansour FR. Determination of favipiravir in human plasma using homogeneous liquid–liquid microextraction followed by HPLC/UV. Bioanalysis. 2022;14:205–16.PubMedCrossRef Abdallah IA, Hammad SF, Bedair A, Elshafeey AH, Mansour FR. Determination of favipiravir in human plasma using homogeneous liquid–liquid microextraction followed by HPLC/UV. Bioanalysis. 2022;14:205–16.PubMedCrossRef
8.
go back to reference Abdallah IA, Hammad SF, Bedair A, Mansour FR. Menthol-assisted homogenous liquid-liquid microextraction for HPLC/UV determination of favipiravir as an antiviral for COVID-19 in human plasma. J Chromatogr B. 2022;1189:123087.CrossRef Abdallah IA, Hammad SF, Bedair A, Mansour FR. Menthol-assisted homogenous liquid-liquid microextraction for HPLC/UV determination of favipiravir as an antiviral for COVID-19 in human plasma. J Chromatogr B. 2022;1189:123087.CrossRef
9.
go back to reference Abdallah IA, Hammad SF, Bedair A, Abdelaziz MA, Danielson ND, Elshafeey AH, et al. A gadolinium-based magnetic ionic liquid for supramolecular dispersive liquid–liquid microextraction followed by HPLC/UV for the determination of favipiravir in human plasma. Biomed Chromatogr. 2022;36:1–10.CrossRef Abdallah IA, Hammad SF, Bedair A, Abdelaziz MA, Danielson ND, Elshafeey AH, et al. A gadolinium-based magnetic ionic liquid for supramolecular dispersive liquid–liquid microextraction followed by HPLC/UV for the determination of favipiravir in human plasma. Biomed Chromatogr. 2022;36:1–10.CrossRef
10.
go back to reference La Marca A, Capuzzo M, Paglia T, Roli L, Trenti T, Nelson SM. Testing for SARS-CoV-2 (COVID-19): a systematic review and clinical guide to molecular and serological in-vitro diagnostic assays. Reprod Biomed Online. 2020;41:483–99.PubMedPubMedCentralCrossRef La Marca A, Capuzzo M, Paglia T, Roli L, Trenti T, Nelson SM. Testing for SARS-CoV-2 (COVID-19): a systematic review and clinical guide to molecular and serological in-vitro diagnostic assays. Reprod Biomed Online. 2020;41:483–99.PubMedPubMedCentralCrossRef
11.
go back to reference Udugama B, Kadhiresan P, Kozlowski HN, Malekjahani A, Osborne M, Li VYC, et al. Diagnosing COVID-19: the disease and tools for detection. ACS Nano. 2020;14:3822–35.PubMedCrossRef Udugama B, Kadhiresan P, Kozlowski HN, Malekjahani A, Osborne M, Li VYC, et al. Diagnosing COVID-19: the disease and tools for detection. ACS Nano. 2020;14:3822–35.PubMedCrossRef
12.
go back to reference Crozier A, Rajan S, Buchan I, McKee M. Put to the test: use of rapid testing technologies for covid-19. BMJ. 2021;372:n208.PubMedCrossRef Crozier A, Rajan S, Buchan I, McKee M. Put to the test: use of rapid testing technologies for covid-19. BMJ. 2021;372:n208.PubMedCrossRef
13.
go back to reference Adigal SS, Rayaroth NV, John RV, Pai KM, Bhandari S, Mohapatra AK, et al. Expert review of molecular diagnostics a review on human body fluids for the diagnosis of viral infections: scope for rapid detection of. Expert Rev Mol Diagn. 2021;21:31–42.PubMedCrossRef Adigal SS, Rayaroth NV, John RV, Pai KM, Bhandari S, Mohapatra AK, et al. Expert review of molecular diagnostics a review on human body fluids for the diagnosis of viral infections: scope for rapid detection of. Expert Rev Mol Diagn. 2021;21:31–42.PubMedCrossRef
14.
go back to reference Jadhav SA, Biji P, Panthalingal MK, Murali Krishna C, Rajkumar S, Joshi DS, et al. Development of integrated microfluidic platform coupled with surface-enhanced Raman spectroscopy for diagnosis of COVID-19. Med Hypotheses. 2021;146:110356.PubMedCrossRef Jadhav SA, Biji P, Panthalingal MK, Murali Krishna C, Rajkumar S, Joshi DS, et al. Development of integrated microfluidic platform coupled with surface-enhanced Raman spectroscopy for diagnosis of COVID-19. Med Hypotheses. 2021;146:110356.PubMedCrossRef
15.
go back to reference Lukose J, Chidangil S, George SD. Biosensors and bioelectronics optical technologies for the detection of viruses like COVID-19: progress and prospects. Biosens Bioelectron. 2021;178:113004.PubMedPubMedCentralCrossRef Lukose J, Chidangil S, George SD. Biosensors and bioelectronics optical technologies for the detection of viruses like COVID-19: progress and prospects. Biosens Bioelectron. 2021;178:113004.PubMedPubMedCentralCrossRef
16.
go back to reference Carlomagno C, Bertazioli D, Gualerzi A, Picciolini S, Banfi PI, Lax A, et al. COVID-19 salivary Raman fingerprint: innovative approach for the detection of current and past SARS-CoV-2 infections. Sci Rep. 2021;11:4943.PubMedPubMedCentralCrossRef Carlomagno C, Bertazioli D, Gualerzi A, Picciolini S, Banfi PI, Lax A, et al. COVID-19 salivary Raman fingerprint: innovative approach for the detection of current and past SARS-CoV-2 infections. Sci Rep. 2021;11:4943.PubMedPubMedCentralCrossRef
17.
go back to reference Nogueira MS, Leal LB, Macarini W, Pimentel RL, Muller M, Vassallo PF, et al. Rapid diagnosis of COVID-19 using FT-IR ATR spectroscopy and machine learning. Sci Rep. 2021;11:1–13. Nogueira MS, Leal LB, Macarini W, Pimentel RL, Muller M, Vassallo PF, et al. Rapid diagnosis of COVID-19 using FT-IR ATR spectroscopy and machine learning. Sci Rep. 2021;11:1–13.
18.
go back to reference Saviñon-Flores F, Méndez E, López-Castaños M, Carabarin-Lima A, López-Castaños KA, González-Fuentes MA, et al. A review on SERS-based detection of human virus infections: influenza and coronavirus. Biosensors. 2021;11:66.PubMedPubMedCentralCrossRef Saviñon-Flores F, Méndez E, López-Castaños M, Carabarin-Lima A, López-Castaños KA, González-Fuentes MA, et al. A review on SERS-based detection of human virus infections: influenza and coronavirus. Biosensors. 2021;11:66.PubMedPubMedCentralCrossRef
19.
go back to reference Gowri A, Ashwin Kumar N, Suresh Anand BS. Recent advances in nanomaterials based biosensors for point of care (PoC) diagnosis of Covid-19 – a minireview. TrAC Trends Anal Chem. 2021;137:116205.CrossRef Gowri A, Ashwin Kumar N, Suresh Anand BS. Recent advances in nanomaterials based biosensors for point of care (PoC) diagnosis of Covid-19 – a minireview. TrAC Trends Anal Chem. 2021;137:116205.CrossRef
20.
go back to reference Arevalo-Rodriguez I, Buitrago-Garcia D, Simancas-Racines D, Zambrano-Achig P, Del Campo R, Ciapponi A, et al. False-negative results of initial RT-PCR assays for COVID-19: a systematic review. PLoS ONE. 2020;15:e0242958.PubMedPubMedCentralCrossRef Arevalo-Rodriguez I, Buitrago-Garcia D, Simancas-Racines D, Zambrano-Achig P, Del Campo R, Ciapponi A, et al. False-negative results of initial RT-PCR assays for COVID-19: a systematic review. PLoS ONE. 2020;15:e0242958.PubMedPubMedCentralCrossRef
21.
go back to reference Mertens P, De Vos N, Martiny D, Jassoy C, Mirazimi A, Cuypers L, et al. Development and potential usefulness of the COVID-19 Ag respi-strip diagnostic assay in a pandemic context. Front Med. 2020;7:225.CrossRef Mertens P, De Vos N, Martiny D, Jassoy C, Mirazimi A, Cuypers L, et al. Development and potential usefulness of the COVID-19 Ag respi-strip diagnostic assay in a pandemic context. Front Med. 2020;7:225.CrossRef
22.
go back to reference Afroj S, Britnell L, Hasan T, Andreeva DV, Novoselov KS, Karim N. graphene-based technologies for tackling COVID-19 and future pandemics. Adv Funct Mater. 2021;31:2107407.PubMedPubMedCentralCrossRef Afroj S, Britnell L, Hasan T, Andreeva DV, Novoselov KS, Karim N. graphene-based technologies for tackling COVID-19 and future pandemics. Adv Funct Mater. 2021;31:2107407.PubMedPubMedCentralCrossRef
23.
go back to reference Johnson JB, Naiker M. Seeing red: a review of the use of near-infrared spectroscopy (NIRS) in entomology spectroscopy (NIRS) in entomology. Appl Spectrosc Rev. 2020;55:810–39.CrossRef Johnson JB, Naiker M. Seeing red: a review of the use of near-infrared spectroscopy (NIRS) in entomology spectroscopy (NIRS) in entomology. Appl Spectrosc Rev. 2020;55:810–39.CrossRef
24.
go back to reference Lyu W, Teng H, Wu C, Zhang X, Guo X, Yang X, et al. Anisotropic acoustic phonon polariton-enhanced infrared spectroscopy for single molecule detection. Nanoscale. 2021;13:12720–6.PubMedCrossRef Lyu W, Teng H, Wu C, Zhang X, Guo X, Yang X, et al. Anisotropic acoustic phonon polariton-enhanced infrared spectroscopy for single molecule detection. Nanoscale. 2021;13:12720–6.PubMedCrossRef
25.
go back to reference Fernandes JN, dos Santos LMB, Chouin-Carneiro T, Pavan MG, Garcia GA, David MR, et al. Rapid, noninvasive detection of Zika virus in Aedes aegypti mosquitoes by near-infrared spectroscopy. Sci Adv. 2018;4:4–10.CrossRef Fernandes JN, dos Santos LMB, Chouin-Carneiro T, Pavan MG, Garcia GA, David MR, et al. Rapid, noninvasive detection of Zika virus in Aedes aegypti mosquitoes by near-infrared spectroscopy. Sci Adv. 2018;4:4–10.CrossRef
26.
go back to reference Zhang Y, Yurdakul C, Devaux AJ, Wang L, Xu XG, Connor JH, et al. Vibrational spectroscopic detection of a single virus by mid-infrared photothermal microscopy. Anal Chem. 2021;93:4100–7.PubMedPubMedCentralCrossRef Zhang Y, Yurdakul C, Devaux AJ, Wang L, Xu XG, Connor JH, et al. Vibrational spectroscopic detection of a single virus by mid-infrared photothermal microscopy. Anal Chem. 2021;93:4100–7.PubMedPubMedCentralCrossRef
27.
go back to reference Khan RS, Rehman IU. Spectroscopy as a tool for detection and monitoring of Coronavirus (COVID-19). Expert Rev Mol Diagn. 2020;20:647–9.PubMedCrossRef Khan RS, Rehman IU. Spectroscopy as a tool for detection and monitoring of Coronavirus (COVID-19). Expert Rev Mol Diagn. 2020;20:647–9.PubMedCrossRef
28.
go back to reference Stump MJ, Fleming RC, Gong W, Jaber AJ, Jones JJ, Surber CW, et al. Matrix-assisted laser desorption mass spectrometry. Appl Spectrosc Rev. 2002;37:275–303.CrossRef Stump MJ, Fleming RC, Gong W, Jaber AJ, Jones JJ, Surber CW, et al. Matrix-assisted laser desorption mass spectrometry. Appl Spectrosc Rev. 2002;37:275–303.CrossRef
29.
go back to reference Zachertowska A, Brewer D, Evans DH. MALDI-TOF mass spectroscopy detects the capsid structural instabilities created by deleting the myxoma virus cupro-zinc SOD1 homolog M131R. J Virol Methods. 2004;122:63–72.PubMedCrossRef Zachertowska A, Brewer D, Evans DH. MALDI-TOF mass spectroscopy detects the capsid structural instabilities created by deleting the myxoma virus cupro-zinc SOD1 homolog M131R. J Virol Methods. 2004;122:63–72.PubMedCrossRef
30.
go back to reference Chen H, Gill A, Dove BK, Emmett SR, Kemp CF, Ritchie MA, et al. Mass spectroscopic characterization of the coronavirus infectious bronchitis virus nucleoprotein and elucidation of the role of phosphorylation in RNA binding by using surface plasmon resonance. J Virol. 2005;79:1164–79.PubMedPubMedCentralCrossRef Chen H, Gill A, Dove BK, Emmett SR, Kemp CF, Ritchie MA, et al. Mass spectroscopic characterization of the coronavirus infectious bronchitis virus nucleoprotein and elucidation of the role of phosphorylation in RNA binding by using surface plasmon resonance. J Virol. 2005;79:1164–79.PubMedPubMedCentralCrossRef
31.
go back to reference Alizadeh M, Yousefi L, Pakdel F, Ghotaslou R, Rezaee MA, Khodadadi E, et al. MALDI-TOF mass spectroscopy applications in clinical microbiology. Adv Pharmacol Pharm Sci. 2021;2021:1–8.CrossRef Alizadeh M, Yousefi L, Pakdel F, Ghotaslou R, Rezaee MA, Khodadadi E, et al. MALDI-TOF mass spectroscopy applications in clinical microbiology. Adv Pharmacol Pharm Sci. 2021;2021:1–8.CrossRef
32.
go back to reference Shahzad A, Edetsberger M, Koehler G. Fluorescence spectroscopy : an emerging excellent diagnostic tool in medical sciences. Appl Spectrosc Rev. 2010;45(1):1–11.CrossRef Shahzad A, Edetsberger M, Koehler G. Fluorescence spectroscopy : an emerging excellent diagnostic tool in medical sciences. Appl Spectrosc Rev. 2010;45(1):1–11.CrossRef
33.
go back to reference Madurani KA, Suprapto S, Syahputra MY, Puspita I, Masudi A, Rizqi HD, et al. Review—recent development of detection methods for controlling COVID-19 outbreak. J Electrochem Soc. 2021;168:037511.CrossRef Madurani KA, Suprapto S, Syahputra MY, Puspita I, Masudi A, Rizqi HD, et al. Review—recent development of detection methods for controlling COVID-19 outbreak. J Electrochem Soc. 2021;168:037511.CrossRef
34.
go back to reference El-Malla SF, Elattar RH, Kamal AH, Mansour FR. A highly sensitive switch-on spectrofluorometric method for determination of ascorbic acid using a selective eco-friendly approach. Spectrochim Acta Part A Mol Biomol Spectrosc. 2022;270:120802.CrossRef El-Malla SF, Elattar RH, Kamal AH, Mansour FR. A highly sensitive switch-on spectrofluorometric method for determination of ascorbic acid using a selective eco-friendly approach. Spectrochim Acta Part A Mol Biomol Spectrosc. 2022;270:120802.CrossRef
35.
36.
go back to reference Schlagenhauf-Lawlor P, Gautret P, Hagmann S, Cohen A, Leder K, Patel D. Travel medicine and infectious disease editor-in-chief. 2019;9:18–9. Schlagenhauf-Lawlor P, Gautret P, Hagmann S, Cohen A, Leder K, Patel D. Travel medicine and infectious disease editor-in-chief. 2019;9:18–9.
37.
go back to reference Movasaghi Z, Rehman S, Rehman IU. Raman spectroscopy of biological tissues. Appl Spectrosc Rev. 2007;42:493–541.CrossRef Movasaghi Z, Rehman S, Rehman IU. Raman spectroscopy of biological tissues. Appl Spectrosc Rev. 2007;42:493–541.CrossRef
39.
go back to reference Ember K, Daoust F, Mahfoud M, Dallaire F. Saliva-based detection of COVID-19 infection in a real-world setting using reagent-free Raman spectroscopy and machine learning. J Biomed Opt. 2021;27(2):025002. Ember K, Daoust F, Mahfoud M, Dallaire F. Saliva-based detection of COVID-19 infection in a real-world setting using reagent-free Raman spectroscopy and machine learning. J Biomed Opt. 2021;27(2):025002.
40.
go back to reference Raman CV, Krishnan KS. A new type of secondary radiation. Nature. 1928;121:501–2.CrossRef Raman CV, Krishnan KS. A new type of secondary radiation. Nature. 1928;121:501–2.CrossRef
41.
go back to reference Ryzhikova E, Kazakov O, Halamkova L, Celmins D, Malone P, Molho E, et al. Raman spectroscopy of blood serum for Alzheimer’s disease diagnostics: specificity relative to other types of dementia. J Biophotonics. 2015;8:584–96.PubMedCrossRef Ryzhikova E, Kazakov O, Halamkova L, Celmins D, Malone P, Molho E, et al. Raman spectroscopy of blood serum for Alzheimer’s disease diagnostics: specificity relative to other types of dementia. J Biophotonics. 2015;8:584–96.PubMedCrossRef
42.
go back to reference Sahu A, Dalal K, Naglot S, Aggarwal P, Murali KC. Serum based diagnosis of asthma using raman spectroscopy: an early phase pilot study. PLoS ONE. 2013;8:e78921.PubMedPubMedCentralCrossRef Sahu A, Dalal K, Naglot S, Aggarwal P, Murali KC. Serum based diagnosis of asthma using raman spectroscopy: an early phase pilot study. PLoS ONE. 2013;8:e78921.PubMedPubMedCentralCrossRef
43.
go back to reference Rehman A, Anwar S, Firdous S, Ahmed M, Rasheed R, Nawaz M. Dengue blood analysis by Raman spectroscopy. Laser Phys. 2012;22:1085–9.CrossRef Rehman A, Anwar S, Firdous S, Ahmed M, Rasheed R, Nawaz M. Dengue blood analysis by Raman spectroscopy. Laser Phys. 2012;22:1085–9.CrossRef
44.
go back to reference Sanchez JE, Jaramillo SA, Settles E, Velazquez Salazar JJ, Lehr A, Gonzalez J, et al. Detection of SARS-CoV-2 and its S and N proteins using surface enhanced Raman spectroscopy. RSC Adv. 2021;11:25788–94.PubMedPubMedCentralCrossRef Sanchez JE, Jaramillo SA, Settles E, Velazquez Salazar JJ, Lehr A, Gonzalez J, et al. Detection of SARS-CoV-2 and its S and N proteins using surface enhanced Raman spectroscopy. RSC Adv. 2021;11:25788–94.PubMedPubMedCentralCrossRef
45.
go back to reference Huck CW. Advances of infrared spectroscopy in natural product research. Phytochem Lett. 2015;11:384–93.CrossRef Huck CW. Advances of infrared spectroscopy in natural product research. Phytochem Lett. 2015;11:384–93.CrossRef
46.
go back to reference Baker MJ, Trevisan J, Bassan P, Bhargava R, Butler HJ, Dorling KM, et al. Using Fourier transform IR spectroscopy to analyze biological materials. Nat Protoc. 2014;9:1771–91.PubMedPubMedCentralCrossRef Baker MJ, Trevisan J, Bassan P, Bhargava R, Butler HJ, Dorling KM, et al. Using Fourier transform IR spectroscopy to analyze biological materials. Nat Protoc. 2014;9:1771–91.PubMedPubMedCentralCrossRef
47.
go back to reference Heraud P, Chatchawal P, Wongwattanakul M, Tippayawat P, Doerig C, Jearanaikoon P, et al. Infrared spectroscopy coupled to cloud-based data management as a tool to diagnose malaria: a pilot study in a malaria-endemic country. Malar J. 2019;18:1–11.CrossRef Heraud P, Chatchawal P, Wongwattanakul M, Tippayawat P, Doerig C, Jearanaikoon P, et al. Infrared spectroscopy coupled to cloud-based data management as a tool to diagnose malaria: a pilot study in a malaria-endemic country. Malar J. 2019;18:1–11.CrossRef
48.
go back to reference Roy S, Perez-Guaita D, Bowden S, Heraud P, Wood BR. Spectroscopy goes viral: diagnosis of hepatitis B and C virus infection from human sera using ATR-FTIR spectroscopy. Clin Spectrosc. 2019;1:100001.CrossRef Roy S, Perez-Guaita D, Bowden S, Heraud P, Wood BR. Spectroscopy goes viral: diagnosis of hepatitis B and C virus infection from human sera using ATR-FTIR spectroscopy. Clin Spectrosc. 2019;1:100001.CrossRef
49.
go back to reference Barauna VG, Singh MN, Barbosa LL, Marcarini WD, Vassallo PF, Mill JG, et al. Ultrarapid on-site detection of SARS-CoV-2 infection using simple ATR-FTIR spectroscopy and an analysis algorithm: high sensitivity and specificity. Anal Chem. 2021;93:2950–8.PubMedPubMedCentralCrossRef Barauna VG, Singh MN, Barbosa LL, Marcarini WD, Vassallo PF, Mill JG, et al. Ultrarapid on-site detection of SARS-CoV-2 infection using simple ATR-FTIR spectroscopy and an analysis algorithm: high sensitivity and specificity. Anal Chem. 2021;93:2950–8.PubMedPubMedCentralCrossRef
50.
go back to reference Wood BR, Kochan K, Bedolla DE, Salazar-Quiroz N, Grimley SL, Perez-Guaita D, et al. Infrared based saliva screening test for COVID-19. Angew Chemie. 2021;133:17239–44.CrossRef Wood BR, Kochan K, Bedolla DE, Salazar-Quiroz N, Grimley SL, Perez-Guaita D, et al. Infrared based saliva screening test for COVID-19. Angew Chemie. 2021;133:17239–44.CrossRef
51.
go back to reference Nachtigall FM, Pereira A, Trofymchuk OS, Santos LS. Detection of SARS-CoV-2 in nasal swabs using MALDI-MS. Nat Biotechnol. 2020;38:1168–73.PubMedCrossRef Nachtigall FM, Pereira A, Trofymchuk OS, Santos LS. Detection of SARS-CoV-2 in nasal swabs using MALDI-MS. Nat Biotechnol. 2020;38:1168–73.PubMedCrossRef
52.
go back to reference Mir JM, Khan MW, Shalla AH, Maurya RC. A Nonclinical spectroscopic approach for diagnosing covid-19: a concise perspective. J Appl Spectrosc. 2021;88:765–71.PubMedPubMedCentralCrossRef Mir JM, Khan MW, Shalla AH, Maurya RC. A Nonclinical spectroscopic approach for diagnosing covid-19: a concise perspective. J Appl Spectrosc. 2021;88:765–71.PubMedPubMedCentralCrossRef
53.
go back to reference Kitane DL, Loukman S, Marchoudi N, Fernandez-Galiana A, El Ansari FZ, Jouali F, et al. A simple and fast spectroscopy-based technique for Covid-19 diagnosis. Sci Rep. 2021;11:1–11.CrossRef Kitane DL, Loukman S, Marchoudi N, Fernandez-Galiana A, El Ansari FZ, Jouali F, et al. A simple and fast spectroscopy-based technique for Covid-19 diagnosis. Sci Rep. 2021;11:1–11.CrossRef
54.
go back to reference Martinez-Cuazitl A, Vazquez-Zapien GJ, Sanchez-Brito M, Limon-Pacheco JH, Guerrero-Ruiz M, Garibay-Gonzalez F, et al. ATR-FTIR spectrum analysis of saliva samples from COVID-19 positive patients. Sci Rep. 2021;11:19980.PubMedPubMedCentralCrossRef Martinez-Cuazitl A, Vazquez-Zapien GJ, Sanchez-Brito M, Limon-Pacheco JH, Guerrero-Ruiz M, Garibay-Gonzalez F, et al. ATR-FTIR spectrum analysis of saliva samples from COVID-19 positive patients. Sci Rep. 2021;11:19980.PubMedPubMedCentralCrossRef
55.
go back to reference Guleken Z, Jakubczyk P, Wiesław P, Krzysztof P, Bulut H, Öten E, et al. Characterization of Covid-19 infected pregnant women sera using laboratory indexes, vibrational spectroscopy, and machine learning classifications. Talanta. 2021;237:122916.PubMedPubMedCentralCrossRef Guleken Z, Jakubczyk P, Wiesław P, Krzysztof P, Bulut H, Öten E, et al. Characterization of Covid-19 infected pregnant women sera using laboratory indexes, vibrational spectroscopy, and machine learning classifications. Talanta. 2021;237:122916.PubMedPubMedCentralCrossRef
56.
go back to reference Banerjee A, Gokhale A, Bankar R, Palanivel V, Salkar A, Robinson H, et al. Rapid classification of COVID-19 severity by ATR-FTIR spectroscopy of plasma samples. Anal Chem. 2021;93:10391–6.PubMedPubMedCentralCrossRef Banerjee A, Gokhale A, Bankar R, Palanivel V, Salkar A, Robinson H, et al. Rapid classification of COVID-19 severity by ATR-FTIR spectroscopy of plasma samples. Anal Chem. 2021;93:10391–6.PubMedPubMedCentralCrossRef
58.
go back to reference Fardiyah Q, Ersam T, Suyanta SA, Suprapto KF. New potential and characterization of Andrographis paniculata L. Ness plant extracts as photoprotective agent. Arab J Chem. 2020;13:8888–97.CrossRef Fardiyah Q, Ersam T, Suyanta SA, Suprapto KF. New potential and characterization of Andrographis paniculata L. Ness plant extracts as photoprotective agent. Arab J Chem. 2020;13:8888–97.CrossRef
59.
go back to reference Rong Z, Wang Q, Sun N, Jia X, Wang K, Xiao R, et al. Smartphone-based fluorescent lateral flow immunoassay platform for highly sensitive point-of-care detection of Zika virus nonstructural protein 1. Anal Chim Acta. 2019;1055:140–7.PubMedCrossRef Rong Z, Wang Q, Sun N, Jia X, Wang K, Xiao R, et al. Smartphone-based fluorescent lateral flow immunoassay platform for highly sensitive point-of-care detection of Zika virus nonstructural protein 1. Anal Chim Acta. 2019;1055:140–7.PubMedCrossRef
60.
go back to reference Chen S, Chen L, Luo H, Sun T, Chen J, Ye F, et al. Enzymatic activity characterization of SARS coronavirus 3C-like protease by fluorescence resonance energy transfer technique1. Acta Pharmacol Sin. 2005;26:99–106.PubMedCrossRef Chen S, Chen L, Luo H, Sun T, Chen J, Ye F, et al. Enzymatic activity characterization of SARS coronavirus 3C-like protease by fluorescence resonance energy transfer technique1. Acta Pharmacol Sin. 2005;26:99–106.PubMedCrossRef
61.
go back to reference Huang JC, Chang Y-F, Chen K-H, Su L-C, Lee C-W, Chen C-C, et al. Detection of severe acute respiratory syndrome (SARS) coronavirus nucleocapsid protein in human serum using a localized surface plasmon coupled fluorescence fiber-optic biosensor. Biosens Bioelectron. 2009;25:320–5.PubMedPubMedCentralCrossRef Huang JC, Chang Y-F, Chen K-H, Su L-C, Lee C-W, Chen C-C, et al. Detection of severe acute respiratory syndrome (SARS) coronavirus nucleocapsid protein in human serum using a localized surface plasmon coupled fluorescence fiber-optic biosensor. Biosens Bioelectron. 2009;25:320–5.PubMedPubMedCentralCrossRef
62.
go back to reference Diao B, Wen K, Chen J, Liu Y, Yuan Z, Han C, et al. Diagnosis of acute respiratory syndrome coronavirus 2 infection by detection of nucleocapsid protein. medRxiv. 2020. Diao B, Wen K, Chen J, Liu Y, Yuan Z, Han C, et al. Diagnosis of acute respiratory syndrome coronavirus 2 infection by detection of nucleocapsid protein. medRxiv. 2020.
63.
go back to reference Rajawat J, Jhingan G. Mass spectroscopy. Data process. Handb. Complex Biol. Data Sources. 2019. Rajawat J, Jhingan G. Mass spectroscopy. Data process. Handb. Complex Biol. Data Sources. 2019.
65.
go back to reference Griffiths WJ, Wang Y. Mass spectrometry: from proteomics to metabolomics and lipidomics. Chem Soc Rev. 2009;38:1882.PubMedCrossRef Griffiths WJ, Wang Y. Mass spectrometry: from proteomics to metabolomics and lipidomics. Chem Soc Rev. 2009;38:1882.PubMedCrossRef
66.
go back to reference Mahmud I, Garrett TJ. Mass Spectrometry techniques in emerging pathogens studies: COVID-19 perspectives. J Am Soc Mass Spectrom. 2020;31:2013–24.PubMedCrossRef Mahmud I, Garrett TJ. Mass Spectrometry techniques in emerging pathogens studies: COVID-19 perspectives. J Am Soc Mass Spectrom. 2020;31:2013–24.PubMedCrossRef
67.
go back to reference Ihling C, Tänzler D, Hagemann S, Kehlen A, Hüttelmaier S, Arlt C, et al. Mass spectrometric identification of SARS-CoV-2 proteins from gargle solution samples of COVID-19 patients. J Proteome Res. 2020;19:4389–92.PubMedCrossRef Ihling C, Tänzler D, Hagemann S, Kehlen A, Hüttelmaier S, Arlt C, et al. Mass spectrometric identification of SARS-CoV-2 proteins from gargle solution samples of COVID-19 patients. J Proteome Res. 2020;19:4389–92.PubMedCrossRef
68.
go back to reference Sen R. High-throughput approaches of diagnosis and therapies for COVID-19: antibody panels, proteomics and metabolomics. Futur Drug Discov. 2021;3:FDD55.CrossRef Sen R. High-throughput approaches of diagnosis and therapies for COVID-19: antibody panels, proteomics and metabolomics. Futur Drug Discov. 2021;3:FDD55.CrossRef
69.
go back to reference Wu D, Shu T, Yang X, Song J-X, Zhang M, Yao C, et al. Plasma metabolomic and lipidomic alterations associated with COVID-19. Natl Sci Rev. 2020;7:1157–68.PubMedPubMedCentralCrossRef Wu D, Shu T, Yang X, Song J-X, Zhang M, Yao C, et al. Plasma metabolomic and lipidomic alterations associated with COVID-19. Natl Sci Rev. 2020;7:1157–68.PubMedPubMedCentralCrossRef
70.
go back to reference Migaud M, Gandotra S, Chand HS, Gillespie MN, Thannickal VJ, Langley RJ. Metabolomics to predict antiviral drug efficacy in COVID-19. Am J Respir Cell Mol Biol. 2020;63:396–8.PubMedPubMedCentralCrossRef Migaud M, Gandotra S, Chand HS, Gillespie MN, Thannickal VJ, Langley RJ. Metabolomics to predict antiviral drug efficacy in COVID-19. Am J Respir Cell Mol Biol. 2020;63:396–8.PubMedPubMedCentralCrossRef
71.
go back to reference Bojkova D, Klann K, Koch B, Widera M, Krause D, Ciesek S, et al. Proteomics of SARS-CoV-2-infected host cells reveals therapy targets. Nature. 2020;583:469–72.PubMedCrossRef Bojkova D, Klann K, Koch B, Widera M, Krause D, Ciesek S, et al. Proteomics of SARS-CoV-2-infected host cells reveals therapy targets. Nature. 2020;583:469–72.PubMedCrossRef
72.
73.
go back to reference Zhao Y, Shang Y, Ren Y, Bie Y, Qiu Y, Yuan Y, et al. Omics study reveals abnormal alterations of breastmilk proteins and metabolites in puerperant women with COVID-19. Signal Transduct Target Ther. 2020;5:247.PubMedPubMedCentralCrossRef Zhao Y, Shang Y, Ren Y, Bie Y, Qiu Y, Yuan Y, et al. Omics study reveals abnormal alterations of breastmilk proteins and metabolites in puerperant women with COVID-19. Signal Transduct Target Ther. 2020;5:247.PubMedPubMedCentralCrossRef
75.
go back to reference Stavrakaki SM, Mckenzie J, Mcgill D, Koguna H, Kinross J, Takats Z. Rapid detection of SARS-CoV2 by Ambient Mass Spectrometry Techniques Authors. MedRxiv. 2020 Stavrakaki SM, Mckenzie J, Mcgill D, Koguna H, Kinross J, Takats Z. Rapid detection of SARS-CoV2 by Ambient Mass Spectrometry Techniques Authors. MedRxiv. 2020
76.
go back to reference De Silva IW, Nayek S, Singh V, Reddy J, Granger JK, Verbeck GF. Paper spray mass spectrometry utilizing Teslin® substrate for rapid detection of lipid metabolite changes during COVID-19 infection. Analyst. 2020;145:5725–32.PubMedCrossRef De Silva IW, Nayek S, Singh V, Reddy J, Granger JK, Verbeck GF. Paper spray mass spectrometry utilizing Teslin® substrate for rapid detection of lipid metabolite changes during COVID-19 infection. Analyst. 2020;145:5725–32.PubMedCrossRef
77.
go back to reference Grassin-Delyle S, Roquencourt C, Moine P, Saffroy G, Carn S, Heming N, et al. Metabolomics of exhaled breath in critically ill COVID-19 patients: a pilot study. EBioMedicine. 2021;63:103154.PubMedCrossRef Grassin-Delyle S, Roquencourt C, Moine P, Saffroy G, Carn S, Heming N, et al. Metabolomics of exhaled breath in critically ill COVID-19 patients: a pilot study. EBioMedicine. 2021;63:103154.PubMedCrossRef
78.
go back to reference Fernández-Peralbo MA, Calderón Santiago M, Priego-Capote F, Luque de Castro MD. Study of exhaled breath condensate sample preparation for metabolomics analysis by LC–MS/MS in high resolution mode. Talanta. 2015;144:1360–9.PubMedCrossRef Fernández-Peralbo MA, Calderón Santiago M, Priego-Capote F, Luque de Castro MD. Study of exhaled breath condensate sample preparation for metabolomics analysis by LC–MS/MS in high resolution mode. Talanta. 2015;144:1360–9.PubMedCrossRef
80.
go back to reference Ma J, Qi X, Chen H, Li X, Zhang Z, Wang H, et al. Exhaled breath is a significant source of SARS-CoV-2 emission. medRxiv. 2020;1–8. Ma J, Qi X, Chen H, Li X, Zhang Z, Wang H, et al. Exhaled breath is a significant source of SARS-CoV-2 emission. medRxiv. 2020;1–8.
81.
go back to reference Mougang YK, Di Zazzo L, Minieri M, Capuano R, Catini A, Legramante JM, et al. Sensor array and gas chromatographic detection of the blood serum volatolomic signature of COVID-19. iScience. 2021;24:102851.PubMedPubMedCentralCrossRef Mougang YK, Di Zazzo L, Minieri M, Capuano R, Catini A, Legramante JM, et al. Sensor array and gas chromatographic detection of the blood serum volatolomic signature of COVID-19. iScience. 2021;24:102851.PubMedPubMedCentralCrossRef
82.
go back to reference Zheng H, Jin S, Li T, Ying W, Ying B, Chen D, et al. Metabolomics reveals sex-specific metabolic shifts and predicts the duration from positive to negative in non-severe COVID-19 patients during recovery process. Comput Struct Biotechnol J. 2021;19:1863–73.PubMedPubMedCentralCrossRef Zheng H, Jin S, Li T, Ying W, Ying B, Chen D, et al. Metabolomics reveals sex-specific metabolic shifts and predicts the duration from positive to negative in non-severe COVID-19 patients during recovery process. Comput Struct Biotechnol J. 2021;19:1863–73.PubMedPubMedCentralCrossRef
83.
go back to reference Ryan DJ, Toomey S, Madden SF, Casey M, Breathnach OS, Morris PG, et al. Use of exhaled breath condensate (EBC) in the diagnosis of SARS-COV-2 (COVID-19). Thorax. 2021;76:86–8.PubMedCrossRef Ryan DJ, Toomey S, Madden SF, Casey M, Breathnach OS, Morris PG, et al. Use of exhaled breath condensate (EBC) in the diagnosis of SARS-COV-2 (COVID-19). Thorax. 2021;76:86–8.PubMedCrossRef
84.
go back to reference Maier T, Klepel S, Renner U, Kostrzewa M. Fast and reliable MALDI-TOF MS–based microorganism identification. Nat Methods. 2006;3:i–ii.CrossRef Maier T, Klepel S, Renner U, Kostrzewa M. Fast and reliable MALDI-TOF MS–based microorganism identification. Nat Methods. 2006;3:i–ii.CrossRef
85.
go back to reference Calderaro A, Arcangeletti M-C, Rodighiero I, Buttrini M, Gorrini C, Motta F, et al. Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry applied to virus identification. Sci Rep. 2015;4:6803.CrossRef Calderaro A, Arcangeletti M-C, Rodighiero I, Buttrini M, Gorrini C, Motta F, et al. Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry applied to virus identification. Sci Rep. 2015;4:6803.CrossRef
86.
go back to reference Singhal N, Kumar M, Kanaujia PK, Virdi JS. MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis. Front Microbiol. 2015;6:1–16.CrossRef Singhal N, Kumar M, Kanaujia PK, Virdi JS. MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis. Front Microbiol. 2015;6:1–16.CrossRef
87.
go back to reference Kriegsmann J, Casadonte R, Kriegsmann K, Longuespée R, Kriegsmann M. Mass spectrometry in pathology – Vision for a future workflow. Pathol - Res Pract. 2018;214:1057–63.PubMedCrossRef Kriegsmann J, Casadonte R, Kriegsmann K, Longuespée R, Kriegsmann M. Mass spectrometry in pathology – Vision for a future workflow. Pathol - Res Pract. 2018;214:1057–63.PubMedCrossRef
88.
go back to reference Yan L, Yi J, Huang C, Zhang J, Fu S, Li Z, et al. Rapid detection of COVID-19 using MALDI-TOF-based serum peptidome profiling. Anal Chem. 2021;93:4782–7.PubMedCrossRef Yan L, Yi J, Huang C, Zhang J, Fu S, Li Z, et al. Rapid detection of COVID-19 using MALDI-TOF-based serum peptidome profiling. Anal Chem. 2021;93:4782–7.PubMedCrossRef
89.
go back to reference Alsaeed B, Mansour FR. Distance-based paper microfluidics; principle, technical aspects and applications. Microchem J. 2020;155:104664.CrossRef Alsaeed B, Mansour FR. Distance-based paper microfluidics; principle, technical aspects and applications. Microchem J. 2020;155:104664.CrossRef
90.
go back to reference Azizipour N, Avazpour R, Rosenzweig DH, Sawan M, Ajji A. Evolution of biochip technology: a review from lab-on-a-chip to organ-on-a-chip. Micromachines. 2020;11:599.PubMedCentralCrossRef Azizipour N, Avazpour R, Rosenzweig DH, Sawan M, Ajji A. Evolution of biochip technology: a review from lab-on-a-chip to organ-on-a-chip. Micromachines. 2020;11:599.PubMedCentralCrossRef
92.
go back to reference Yue R, Li Z, Wang G, Li J, Ma N. Logic sensing of MicroRNA in living cells using DNA-programmed nanoparticle network with high signal gain. ACS Sensors. 2019;4:250–6.PubMedCrossRef Yue R, Li Z, Wang G, Li J, Ma N. Logic sensing of MicroRNA in living cells using DNA-programmed nanoparticle network with high signal gain. ACS Sensors. 2019;4:250–6.PubMedCrossRef
93.
94.
go back to reference El-Malla SF, Elshenawy EA, Hammad SF, Mansour FR. N-Doped carbon dots as a fluorescent nanosensor for determination of colchicine based on inner filter effect. J Fluoresc. 2021;31:675–84.PubMedCrossRef El-Malla SF, Elshenawy EA, Hammad SF, Mansour FR. N-Doped carbon dots as a fluorescent nanosensor for determination of colchicine based on inner filter effect. J Fluoresc. 2021;31:675–84.PubMedCrossRef
95.
go back to reference El-Malla SF, Elshenawy EA, Hammad SF, Mansour FR. Rapid microwave synthesis of N, S-doped carbon quantum dots as a novel turn off-on sensor for label-free determination of copper and etidronate disodium. Anal Chim Acta. 2022;1197:339491.PubMedCrossRef El-Malla SF, Elshenawy EA, Hammad SF, Mansour FR. Rapid microwave synthesis of N, S-doped carbon quantum dots as a novel turn off-on sensor for label-free determination of copper and etidronate disodium. Anal Chim Acta. 2022;1197:339491.PubMedCrossRef
96.
go back to reference Yao Z, Zhang Q, Zhu W, Galluzzi M, Zhou W, Li J, et al. Rapid detection of SARS-CoV-2 viral nucleic acids based on surface enhanced infrared absorption spectroscopy. Nanoscale. 2021;13:10133–42.PubMedCrossRef Yao Z, Zhang Q, Zhu W, Galluzzi M, Zhou W, Li J, et al. Rapid detection of SARS-CoV-2 viral nucleic acids based on surface enhanced infrared absorption spectroscopy. Nanoscale. 2021;13:10133–42.PubMedCrossRef
97.
go back to reference Zhang L, Xiao M, Wang Y, Peng S, Chen Y, Zhang D, et al. Fast screening and primary diagnosis of COVID-19 by ATR–FT-IR. Anal Chem. 2021;93:2191–9.PubMedCrossRef Zhang L, Xiao M, Wang Y, Peng S, Chen Y, Zhang D, et al. Fast screening and primary diagnosis of COVID-19 by ATR–FT-IR. Anal Chem. 2021;93:2191–9.PubMedCrossRef
98.
go back to reference Huang J, Wen J, Zhou M, Ni S, Le W, Chen G, et al. On-Site detection of SARS-CoV-2 antigen by deep learning-based surface-enhanced Raman spectroscopy and its biochemical foundations. Anal Chem. 2021;93:9174–82.PubMedPubMedCentralCrossRef Huang J, Wen J, Zhou M, Ni S, Le W, Chen G, et al. On-Site detection of SARS-CoV-2 antigen by deep learning-based surface-enhanced Raman spectroscopy and its biochemical foundations. Anal Chem. 2021;93:9174–82.PubMedPubMedCentralCrossRef
99.
go back to reference Goulart ACC, Silveira L, Carvalho HC, Dorta CB, Pacheco MTT, Zangaro RA. Diagnosing COVID-19 in human serum using Raman spectroscopy: a preliminary study. medRxiv. 2021;2021.08.09.21261798. Goulart ACC, Silveira L, Carvalho HC, Dorta CB, Pacheco MTT, Zangaro RA. Diagnosing COVID-19 in human serum using Raman spectroscopy: a preliminary study. medRxiv. 2021;2021.08.09.21261798.
100.
go back to reference Ibrahim W, Cordell RL, Wilde MJ, Richardson M, Carr L, Sundari Devi Dasi A, et al. Diagnosis of COVID-19 by exhaled breath analysis using gas chromatography–mass spectrometry. ERJ Open Res. 2021;7:00139–2021.PubMedPubMedCentralCrossRef Ibrahim W, Cordell RL, Wilde MJ, Richardson M, Carr L, Sundari Devi Dasi A, et al. Diagnosis of COVID-19 by exhaled breath analysis using gas chromatography–mass spectrometry. ERJ Open Res. 2021;7:00139–2021.PubMedPubMedCentralCrossRef
101.
go back to reference Lazari LC, Ghilardi FDR, Rosa-Fernandes L, Assis DM, Nicolau JC, Santiago VF, et al. Prognostic accuracy of MALDI-TOF mass spectrometric analysis of plasma in COVID-19. Life Sci Alliance. 2021;4:e202000946.PubMedPubMedCentralCrossRef Lazari LC, Ghilardi FDR, Rosa-Fernandes L, Assis DM, Nicolau JC, Santiago VF, et al. Prognostic accuracy of MALDI-TOF mass spectrometric analysis of plasma in COVID-19. Life Sci Alliance. 2021;4:e202000946.PubMedPubMedCentralCrossRef
102.
go back to reference Tran NK, Howard T, Walsh R, Pepper J, Loegering J, Phinney B, et al. Novel application of automated machine learning with MALDI-TOF-MS for rapid high-throughput screening of COVID-19: a proof of concept. Sci Rep. 2021;11:8219.PubMedPubMedCentralCrossRef Tran NK, Howard T, Walsh R, Pepper J, Loegering J, Phinney B, et al. Novel application of automated machine learning with MALDI-TOF-MS for rapid high-throughput screening of COVID-19: a proof of concept. Sci Rep. 2021;11:8219.PubMedPubMedCentralCrossRef
103.
go back to reference Lv L, Jiang H, Chen Y, Gu S, Xia J, Zhang H, et al. The faecal metabolome in COVID-19 patients is altered and associated with clinical features and gut microbes. Anal Chim Acta. 2021;1152:338267.PubMedPubMedCentralCrossRef Lv L, Jiang H, Chen Y, Gu S, Xia J, Zhang H, et al. The faecal metabolome in COVID-19 patients is altered and associated with clinical features and gut microbes. Anal Chim Acta. 2021;1152:338267.PubMedPubMedCentralCrossRef
Metadata
Title
Spectroscopic methods for COVID-19 detection and early diagnosis
Authors
Alaa Bedair
Kamal Okasha
Fotouh R. Mansour
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2022
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-022-01867-2

Other articles of this Issue 1/2022

Virology Journal 1/2022 Go to the issue