Skip to main content

Instrumentation for Fluorescence Spectroscopy

  • Chapter
Principles of Fluorescence Spectroscopy

Abstract

The success of fluorescence experiments requires attention to experimental details and an understanding of the instrumentation. There are also many potential artifacts that can distort the data. Light can be detected with high sensitivity. As a result, the gain or amplification of instruments can usually be increased to obtain observable signals, even if the sample is nearly nonfluorescent. These signals seen at high amplification may not originate with the fluorophore of interest. Instead, the interference can be due to background fluorescence from the solvents, light leaks in the instrumentation, emission from the optical components, stray light passing through the optics, light scattered by turbid solutions, and Rayleigh and/or Raman scatter, to name a few interference sources.

An additional complication is that there is no ideal spectrofluorometer. The available instruments do not yield true excitation or emission spectra. This is because of the nonuniform spectral output of the light sources and the wavelength-dependent efficiency of the monochromators and detector tubes. The polarization or anisotropy of the emitted light can also affect the measured fluorescence intensities because the efficiency of gratings depends on polarization. It is important to understand and control these numerous factors. In this chapter we will discuss the properties of the individual components in a spectrofluorometer, and how these properties affect the observed spectral data. These instrumental factors can affect the excitation and emission spectra, as well as the measurement of fluorescence lifetimes and anisotropies. Additionally, the optical properties of the samples—such as optical density and turbidity—can also affect the spectral data. Specific examples are given to clarify these effects and the means to avoid them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Revised from commercial literature provided by SLM Instruments.

    Google Scholar 

  2. Revised from commercial literature provided by Molecular Devices, http://www.moleculardevices.com/pages/instruments/gemini.html.

  3. Revised from commercial literature from Spectra Physics, www.spectra-physics.com.

  4. Laczko G, Lakowicz JR, unpublished observations.

    Google Scholar 

  5. Oriel Corporation, 250 Long Beach Blvd., PO Box 872, Stratford, CT 06497: Light Sources, Monochromators and Spectrographs, Detectors and Detection Systems, Fiber Optics.

    Google Scholar 

  6. ILC Technology Inc. 399 West Joan Drive, Sunnyvale, CA 94089: Cermax Product Specifications for collimated and focused xenon lamps.

    Google Scholar 

  7. Ocean Optics product literature, http://www.oceanoptics.com/prod-ucts/

  8. Hart SJ, JiJi RD. 2002. Light emitting diode excitation emission matrix fluorescence spectroscopy. Analyst 127:1643–1699.

    Article  CAS  Google Scholar 

  9. Landgraf S. 2004. Use of ultrabright LEDs for the determination of static and time-resolved fluorescence information of liquid and solid crude oil samples. J Biochem Biophys Methods 61:125–134.

    Article  CAS  Google Scholar 

  10. Gryczynski I, Lakowicz JR, unpublished observations.

    Google Scholar 

  11. Optometrics USA Inc., Nemco Way, Stony Brook Industrial Park, Ayer, MA 01432: 1996 Catalog Optical Components and Instruments.

    Google Scholar 

  12. Castellano P, Lakowicz JR, unpublished observations.

    Google Scholar 

  13. Melles Griot product literature, http://shop.mellesgriot.com/prod-ucts/optics/

  14. Macleod HA. 2001. Thin-film optical filters, 3rd ed. Institute of Physics, Philadelphia.

    Google Scholar 

  15. Semrock Inc., Rochester, NY, www.semrock.com.

  16. Gryczynski I, Malak H, Lakowicz JR, Cheung HC, Robinson J, Umeda PK. 1996. Fluorescence spectral properties of troponin C mutant F22W with one-, two- and three-photon excitation. Biophys J 71:3448–3453.

    Article  CAS  Google Scholar 

  17. Szmacinski H, Gryczynski I, Lakowicz JR. 1993. Calcium-dependent fluorescence lifetimes of Indo-1 for one- and two-photon excitation of fluorescence. Photochem Photobiol 58:341–345.

    Article  CAS  Google Scholar 

  18. Hamamatsu Photonics K.K., Electron Tube Center, (1994), 314-5, Shimokanzo, Toyooka-village, Iwata-gun, Shizuoka-ken, 438-01 Japan: Photomultiplier Tubes.

    Google Scholar 

  19. Provided by Dr. R. B. Thompson

    Google Scholar 

  20. Leaback DH. 1997. Extended theory, and improved practice for the quantitative measurement of fluorescence. J Fluoresc 7(1):55S–57S.

    Article  CAS  Google Scholar 

  21. Epperson PM, Denton MB. 1989. Binding spectral images in a charge-coupled device. Anal Chem 61:1513–1519.

    Article  CAS  Google Scholar 

  22. Bilhorn RB, Sweedler JV, Epperson PM, Denton MB. 1987. Chargetransfer device detectors for analytical optical spectroscopy—opera-tion and characteristics. Appl Spectrosc 41:1114–1124.

    Article  CAS  Google Scholar 

  23. Hiraoka Y, Sedat JW, Agard DA. 1987. The use of a charge-coupled device for quantitative optical microscopy of biological structures. Science 238:36–41.

    Article  CAS  Google Scholar 

  24. Aikens RS, Agard DA, Sedat JW. 1989. Solid-state imagers for microscopy. Methods Cell Biol 29:291–313.

    Article  CAS  Google Scholar 

  25. Ocean Optics Inc., http://www.oceanoptics.com/products/usb2000_flg.asp.

  26. Melhuish WH. 1962. Calibration of spectrofluorometers for measuring corrected emission spectra. J Opt Soc Am 52:1256–1258.

    Article  CAS  Google Scholar 

  27. Yguerabide J. 1968. Fast and accurate method for measuring photon flux in the range 2500–6000 Å. Rev Sci Instrum 39(7):1048–1052.

    Article  CAS  Google Scholar 

  28. Mandal K, Pearson TDL, Demas JN. 1980. Luminescent quantum counters based on organic dyes in polymer matrices. Anal Chem 52:2184–2189.

    Article  CAS  Google Scholar 

  29. Mandal K, Pearson TDL, Demas NJ. 1981. New luminescent quantum counter systems based on a transition-metal complex. Inorg Chem 20:786–789.

    Article  CAS  Google Scholar 

  30. Nothnagel EA. 1987. Quantum counter for correcting fluorescence excitation spectra at 320- and 800-nm wavelengths. Anal Biochem 163:224–237.

    Article  CAS  Google Scholar 

  31. Lippert E, Nagelle W, Siebold-Blakenstein I, Staiger U, Voss W. 1959. Messung von fluorescenzspektren mit hilfe von spektralphotometern und vergleichsstandards. Zeitschr Anal Chem 17:1–18.

    Article  Google Scholar 

  32. Schmillen A, Legler R. 1967. Landolt-Borstein. Vol 3: Lumineszenz Organischer Substanzen. Springer-Verlag, New York.

    Google Scholar 

  33. Argauer RJ, White CE. 1964. Fluorescent compounds for calibration of excitation and emission units of spectrofluorometer. Anal Chem 36:368–371.

    Article  CAS  Google Scholar 

  34. Melhuish WH. 1960. A standard fluorescence spectrum for calibrating spectrofluorometers. J Phys Chem 64:762–764.

    Article  CAS  Google Scholar 

  35. Parker CA. 1962. Spectrofluorometer calibration in the ultraviolet region. Anal Chem 34:502–505.

    Article  CAS  Google Scholar 

  36. Velapoldi RA. 1973. Considerations on organic compounds in solution and inorganic ions in glasses as fluorescent standard reference materials. Proc Natl Bur Stand 378:231–244.

    Google Scholar 

  37. Pardo A, Reyman D, Poyato JML, Medina F. 1992. Some β-carbo-line derivatives as fluorescence standards. J Lumines 51:269–274.

    Article  CAS  Google Scholar 

  38. Chen RF. 1967. Some characteristics of the fluorescence of quinine. Anal Biochem 19:374–387.

    Article  CAS  Google Scholar 

  39. Verity B, Bigger SW. 1996. The dependence of quinine fluorescence quenching on ionic strength. Int J Chem Kinet 28(12):919–923.

    Article  CAS  Google Scholar 

  40. Ghiggino KP, Skilton PF, Thistlethwaite PJ. 1985. β-Carboline as a fluorescence standard. J Photochem 31:113–121.

    Article  CAS  Google Scholar 

  41. Middleton WEK, Sanders CL. 1951. The absolute spectral diffuse reflectance of magnesium oxide. J Opt Soc Am 41(6):419–424.

    Article  CAS  Google Scholar 

  42. Demas JN, Crosby GA. 1971. The measurement of photoluminescence quantum yields: a review. J Phys Chem 75(8):991–1025.

    Article  Google Scholar 

  43. Birks JB. 1970. Photophysics of aromatic molecules. Wiley-Interscience, New York.

    Google Scholar 

  44. Hermans JJ, Levinson S. 1951. Some geometrical factors in light-scattering apparatus. J Opt Soc Am 41(7):460–465.

    Article  Google Scholar 

  45. Eastman JW. 1967. Quantitative spectrofluorimetry—the fluorescence quantum yield of quinine sulfate. Photochem Photobiol 6:55–72.

    Article  CAS  Google Scholar 

  46. Adams MJ, Highfield JG, Kirkbright GF. 1977. Determination of absolute fluorescence quantum efficiency of quinine bisulfate in aqueous medium by optoacoustic spectrometry. Anal Chem 49:1850–1852.

    Article  CAS  Google Scholar 

  47. Brannon JH, Magde D. 1978. Absolute quantum yield determination by thermal blooming: fluorescein. J Phys Chem 82(6):705–709.

    Article  CAS  Google Scholar 

  48. Mardelli M, Olmsted J. 1977. Calorimetric determination of the 9,10-diphenyl-anthracene fluorescence quantum yield. J Photochem 7:277–285.

    Article  CAS  Google Scholar 

  49. Ware WR, Rothman W. 1976. Relative fluorescence quantum yields using an integrating sphere: the quantum yield of 9,10-diphenylan-thracene in cyclohexane. Chem Phys Lett 39(3):449–453.

    Article  CAS  Google Scholar 

  50. Testa AC. 1969. Fluorescence quantum yields and standards. Fluoresc News 4(4):1–3.

    CAS  Google Scholar 

  51. Rusakowicz R, Testa AC. 1968. 2-aminopyridine as a standard for low-wavelength spectrofluorometry. J Phys Chem 72:2680–2681.

    Article  CAS  Google Scholar 

  52. Chen RF. 1967. Fluorescence quantum yields of tryptophan and tyro-sine. Anal Lett 1:35–42.

    CAS  Google Scholar 

  53. Fischer M, Georges J. 1996. Fluorescence quantum yield of rho-damine 6G in ethanol as a function of concentration using thermal lens spectrometry. Chem Phys Lett 260:115–118.

    Article  CAS  Google Scholar 

  54. Karstens T, Kobe K. 1980. Rhodamine B and Rhodamine 101 as reference substances for fluorescence quantum yield measurements. J Phys Chem 84:1871–1872.

    Article  CAS  Google Scholar 

  55. Magde D, Brannon JH, Cremers TL, Olmsted J. 1979. Absolute luminescence yield of cresyl violet: a standard for the red. J Phys Chem 83(6):696–699.

    Article  CAS  Google Scholar 

  56. Kubista M, Sjöback R, Eriksson S, Albinsson B. 1994. Experimental correction for the inner-filter effect in fluorescence spectra. Analyst 119:417–419.

    Article  CAS  Google Scholar 

  57. Yappert MC, Ingle JD. 1989. Correction of polychromatic luminescence signals for inner-filter effects. Appl Spectros 43(5):759–767.

    Article  CAS  Google Scholar 

  58. Wiechelman KJ. 1986. Empirical correction equation for the fluorescence inner filter effect. Am Lab 18:49–53.

    CAS  Google Scholar 

  59. Puchalski MM, Morra MJ, von Wandruszka R. 1991. Assessment of inner filter effect corrections in fluorimetry. Fresenius J Anal Chem 340:341–344.

    Article  CAS  Google Scholar 

  60. Guilbault GG, ed. 1990. Practical fluorescence. Marcel Dekker, New York.

    Google Scholar 

  61. Kao S, Asanov AN, Oldham PB. 1998. A comparison of fluorescence inner-filter effects for different cell configurations. Instrum Sci Tech 26(4):375–387.

    Article  CAS  Google Scholar 

  62. Eisinger J. 1969. A variable temperature, UV luminescence spectro-graph for small samples. Photochem Photobiol 9:247–258.

    Article  CAS  Google Scholar 

  63. Eisinger J, Flores J. 1979. Front-face fluorometry of liquid samples. Anal Biochem 94:15–21.

    Article  CAS  Google Scholar 

  64. Courtesy of Drs. Joanna Lukomska and Ignacy Gryczynski.

    Google Scholar 

  65. Kasha M. 1960. Paths of molecular excitation. Radiat Res 2:243–275.

    Article  CAS  Google Scholar 

  66. Gryczynski I, unpublished observations.

    Google Scholar 

Download references

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

(2006). Instrumentation for Fluorescence Spectroscopy. In: Lakowicz, J.R. (eds) Principles of Fluorescence Spectroscopy. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-46312-4_2

Download citation

Publish with us

Policies and ethics