Skip to main content
Top
Published in: International Journal of Computer Assisted Radiology and Surgery 1/2017

01-01-2017 | Original Article

Computer-aided cephalometric landmark annotation for CBCT data

Authors: Marina Codari, Matteo Caffini, Gianluca M. Tartaglia, Chiarella Sforza, Giuseppe Baselli

Published in: International Journal of Computer Assisted Radiology and Surgery | Issue 1/2017

Login to get access

Abstract

Purpose

Nowadays, with the increased diffusion of Cone Beam Computerized Tomography (CBCT) scanners in dental and maxillo-facial practice, 3D cephalometric analysis is emerging. Maxillofacial surgeons and dentists make wide use of cephalometric analysis in diagnosis, surgery and treatment planning. Accuracy and repeatability of the manual approach, the most common approach in clinical practice, are limited by intra- and inter-subject variability in landmark identification. So, we propose a computer-aided landmark annotation approach that estimates the three-dimensional (3D) positions of 21 selected landmarks.

Methods

The procedure involves an adaptive cluster-based segmentation of bone tissues followed by an intensity-based registration of an annotated reference volume onto a patient Cone Beam CT (CBCT) head volume. The outcomes of the annotation process are presented to the clinician as a 3D surface of the patient skull with the estimate landmark displayed on it. Moreover, each landmark is centered into a spherical confidence region that can help the clinician in a subsequent manual refinement of the annotation. The algorithm was validated onto 18 CBCT images.

Results

Automatic segmentation shows a high accuracy level with no significant difference between automatically and manually determined threshold values. The overall median value of the localization error was equal to 1.99 mm with an interquartile range (IQR) of 1.22–2.89 mm.

Conclusion

The obtained results are promising, segmentation was proved to be very robust and the achieved accuracy level in landmark annotation was acceptable for most of landmarks and comparable with other available methods.
Literature
2.
go back to reference Bettega G, Payan Y, Mollard B, Boyer A, Raphael B, Lavallèe S (2000) A simulator for maxillofacial surgery integrating 3D cephalometry and orthodontia. Comput Aided Surg 5:156–165CrossRefPubMed Bettega G, Payan Y, Mollard B, Boyer A, Raphael B, Lavallèe S (2000) A simulator for maxillofacial surgery integrating 3D cephalometry and orthodontia. Comput Aided Surg 5:156–165CrossRefPubMed
4.
8.
go back to reference Sun Y, Luebbers H-T, Agbaje JO, Schepers S, Vrielinck L, Lambrichts I, Politis C (2013) Validation of anatomical landmarks-based registration for image-guided surgery: an in-vitro study. J Cranio-Maxillo-Facial Surg 41:522–526CrossRef Sun Y, Luebbers H-T, Agbaje JO, Schepers S, Vrielinck L, Lambrichts I, Politis C (2013) Validation of anatomical landmarks-based registration for image-guided surgery: an in-vitro study. J Cranio-Maxillo-Facial Surg 41:522–526CrossRef
9.
go back to reference Swennen GRJ, Schutyser F, Barth E-L, De Groeve P, De Mey A (2006) A new method of 3-D cephalometry part I: the anatomic cartesian 3-D reference system. J Craniofac Surg 17:314–325CrossRefPubMed Swennen GRJ, Schutyser F, Barth E-L, De Groeve P, De Mey A (2006) A new method of 3-D cephalometry part I: the anatomic cartesian 3-D reference system. J Craniofac Surg 17:314–325CrossRefPubMed
10.
go back to reference Titiz I, Laubinger M, Keller T, Hertrich K, Hirschfelder U (2011) Repeatability and reproducibility of landmarks—a three-dimensional computed tomography study. Eur J Orthod 34:1–11. doi:10.1093/ejo/cjq190 Titiz I, Laubinger M, Keller T, Hertrich K, Hirschfelder U (2011) Repeatability and reproducibility of landmarks—a three-dimensional computed tomography study. Eur J Orthod 34:1–11. doi:10.​1093/​ejo/​cjq190
11.
go back to reference Katkar RA, Kummet C, Dawson D, Moreno Uribe L, Allareddy V, Finkelstein M, Ruprecht A (2013) Comparison of observer reliability of three-dimensional cephalometric landmark identification on subject images from Galileos and i-CAT cone beam CT. Dentomaxillofacial Radiol 42:1–11. doi:10.1259/dmfr.20130059 CrossRef Katkar RA, Kummet C, Dawson D, Moreno Uribe L, Allareddy V, Finkelstein M, Ruprecht A (2013) Comparison of observer reliability of three-dimensional cephalometric landmark identification on subject images from Galileos and i-CAT cone beam CT. Dentomaxillofacial Radiol 42:1–11. doi:10.​1259/​dmfr.​20130059 CrossRef
13.
go back to reference Keustermans J, Mollemans W, Vandermeulen D, Suetens P (2010) Automated cephalometric landmark identification using shape and local appearance models. In: IEEE 20th International conference on pattern recognition, pp 2464–2467 Keustermans J, Mollemans W, Vandermeulen D, Suetens P (2010) Automated cephalometric landmark identification using shape and local appearance models. In: IEEE 20th International conference on pattern recognition, pp 2464–2467
14.
go back to reference Keustermans J, Smeets D, Vandermeulen D, Suetens P (2011) Automated cephalometric landmark localization using sparse shape and appearance models. In: International workshop on machine learning medical imaging. Springer, Berlin Heidelberg, pp 249–256 Keustermans J, Smeets D, Vandermeulen D, Suetens P (2011) Automated cephalometric landmark localization using sparse shape and appearance models. In: International workshop on machine learning medical imaging. Springer, Berlin Heidelberg, pp 249–256
15.
go back to reference Wang L, Chen KC, Gao Y, Shi F, Liao S, Li G, Shen SGF, Yan J, Lee PKM, Chow B, Liu NX, Xia JJ, Shen D (2014) Automated bone segmentation from dental CBCT images using patch-based sparse representation and convex optimization. Med Phys 41:043503. doi:10.1118/1.4868455 CrossRefPubMedPubMedCentral Wang L, Chen KC, Gao Y, Shi F, Liao S, Li G, Shen SGF, Yan J, Lee PKM, Chow B, Liu NX, Xia JJ, Shen D (2014) Automated bone segmentation from dental CBCT images using patch-based sparse representation and convex optimization. Med Phys 41:043503. doi:10.​1118/​1.​4868455 CrossRefPubMedPubMedCentral
17.
go back to reference Makram M, Kamel H (2014) Reeb graph for automatic 3D cephalometry. Int J Image Process 8:17–29 Makram M, Kamel H (2014) Reeb graph for automatic 3D cephalometry. Int J Image Process 8:17–29
18.
go back to reference Gupta A, Kharbanda OP, Sardana V, Balachandran R, Sardana HK (2015) A knowledge-based algorithm for automatic detection of cephalometric landmarks on CBCT images. Int J Comput Assist Radiol Surg 10:1737–1752. doi:10.1007/s11548-015-1173-6 CrossRefPubMed Gupta A, Kharbanda OP, Sardana V, Balachandran R, Sardana HK (2015) A knowledge-based algorithm for automatic detection of cephalometric landmarks on CBCT images. Int J Comput Assist Radiol Surg 10:1737–1752. doi:10.​1007/​s11548-015-1173-6 CrossRefPubMed
19.
go back to reference de Oliveira AEF, Cevidanes LHS, Phillips C, Motta A, Burke B, Tyndall D (2009) Observer reliability of three-dimensional cephalometric landmark identification on cone-beam computerized tomography. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 107:256–265. doi:10.1016/j.tripleo.2008.05.039 CrossRefPubMed de Oliveira AEF, Cevidanes LHS, Phillips C, Motta A, Burke B, Tyndall D (2009) Observer reliability of three-dimensional cephalometric landmark identification on cone-beam computerized tomography. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 107:256–265. doi:10.​1016/​j.​tripleo.​2008.​05.​039 CrossRefPubMed
20.
go back to reference Swennen GRJ, Schutyser F, Hausamen JE (2005) Three-dimensional cephalometry: a color atlas and manual. Springer Science & Business Media, Berlin Swennen GRJ, Schutyser F, Hausamen JE (2005) Three-dimensional cephalometry: a color atlas and manual. Springer Science & Business Media, Berlin
21.
go back to reference Sagawa M, Miyoseta Y, Hayakawa Y, Honda A (2009) Comparison of two- and three-dimensional filtering methods to improve image quality in multiplanar reconstruction of cone-beam computed tomography. Oral Radiol 25:154–158. doi:10.1007/s11282-009-0026-9 CrossRef Sagawa M, Miyoseta Y, Hayakawa Y, Honda A (2009) Comparison of two- and three-dimensional filtering methods to improve image quality in multiplanar reconstruction of cone-beam computed tomography. Oral Radiol 25:154–158. doi:10.​1007/​s11282-009-0026-9 CrossRef
22.
go back to reference Hassan B, Souza PC, Jacobs R, de Azambuja Berti S, van der Stelt P (2010) Influence of scanning and reconstruction parameters on quality of three-dimensional surface models of the dental arches from cone beam computed tomography. Clin Oral Investig 14:303–310. doi:10.1007/s00784-009-0291-3 CrossRefPubMed Hassan B, Souza PC, Jacobs R, de Azambuja Berti S, van der Stelt P (2010) Influence of scanning and reconstruction parameters on quality of three-dimensional surface models of the dental arches from cone beam computed tomography. Clin Oral Investig 14:303–310. doi:10.​1007/​s00784-009-0291-3 CrossRefPubMed
23.
go back to reference Pham DL, Xu C, Prince JL (2000) Current methods in medical image segmentation 1. Annu Rev Biomed Eng 2:315–337CrossRefPubMed Pham DL, Xu C, Prince JL (2000) Current methods in medical image segmentation 1. Annu Rev Biomed Eng 2:315–337CrossRefPubMed
24.
go back to reference Ng HP, Ong SH, Foong KWC, Goh PS, Nowinski WL (2006) Medical image segmentation using K-means clustering and improved watershed algorithm. In: 2006 IEEE southwest symposium on image analysis and interpretation pp 61–65 Ng HP, Ong SH, Foong KWC, Goh PS, Nowinski WL (2006) Medical image segmentation using K-means clustering and improved watershed algorithm. In: 2006 IEEE southwest symposium on image analysis and interpretation pp 61–65
25.
go back to reference MacKay DJ (2003) Information theory, inference and learning algorithms. Cambridge University Press, Cambridge MacKay DJ (2003) Information theory, inference and learning algorithms. Cambridge University Press, Cambridge
28.
go back to reference Frantz S, Rohr K, Stiehl HS (2000) Localization of 3D anatomical point landmarks in 3D tomographic images using deformable models. In: International conference on medical image computing and computer-assisted intervention 2000. Springer Berlin Heidelberg, pp 492–501 Frantz S, Rohr K, Stiehl HS (2000) Localization of 3D anatomical point landmarks in 3D tomographic images using deformable models. In: International conference on medical image computing and computer-assisted intervention 2000. Springer Berlin Heidelberg, pp 492–501
29.
go back to reference Hill DL, Batchelor PG, Holden M, Hawkes DJ (2001) Medical image registration. Phys Med Biol 46:R1–R45CrossRefPubMed Hill DL, Batchelor PG, Holden M, Hawkes DJ (2001) Medical image registration. Phys Med Biol 46:R1–R45CrossRefPubMed
30.
go back to reference Myronenko A, Song X (2010) Intensity-based image registration by minimizing residual complexity. IEEE Trans Med Imaging 29:1882–1891CrossRefPubMed Myronenko A, Song X (2010) Intensity-based image registration by minimizing residual complexity. IEEE Trans Med Imaging 29:1882–1891CrossRefPubMed
31.
go back to reference Rueckert D, Sonoda LI, Hayes C, Hill DL, Leach MO, Hawkes DJ (1999) Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans Med Imaging 18:712–721. doi:10.1109/42.796284 CrossRefPubMed Rueckert D, Sonoda LI, Hayes C, Hill DL, Leach MO, Hawkes DJ (1999) Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans Med Imaging 18:712–721. doi:10.​1109/​42.​796284 CrossRefPubMed
32.
go back to reference Baan F, Liebregts J, Xi T, Schreurs R, de Koning M, Bergé S, Maal T (2016) A new 3D tool for assessing the accuracy of bimaxillary surgery: the orthognathic analyser. PLoS One 11:e0149625. doi:10.1371/journal.pone.0149625 Baan F, Liebregts J, Xi T, Schreurs R, de Koning M, Bergé S, Maal T (2016) A new 3D tool for assessing the accuracy of bimaxillary surgery: the orthognathic analyser. PLoS One 11:e0149625. doi:10.​1371/​journal.​pone.​0149625
33.
go back to reference Puisoru M, Forna N, Fatu A, Fuatu R, Fuatu C (2006) Analysis of mandibular variability in humans of different geographic areas. Ann Anatomy-Anatomischer Anzeiger 188:547–554CrossRef Puisoru M, Forna N, Fatu A, Fuatu R, Fuatu C (2006) Analysis of mandibular variability in humans of different geographic areas. Ann Anatomy-Anatomischer Anzeiger 188:547–554CrossRef
34.
go back to reference Schlicher W, Nielsen I, Huang JC, Maki K, Hatcher DC, Miller AJ (2012) Consistency and precision of landmark identification in three-dimensional cone beam computed tomography scans. Eur J Orthod 34:263–275. doi:10.1093/ejo/cjq144 CrossRefPubMed Schlicher W, Nielsen I, Huang JC, Maki K, Hatcher DC, Miller AJ (2012) Consistency and precision of landmark identification in three-dimensional cone beam computed tomography scans. Eur J Orthod 34:263–275. doi:10.​1093/​ejo/​cjq144 CrossRefPubMed
Metadata
Title
Computer-aided cephalometric landmark annotation for CBCT data
Authors
Marina Codari
Matteo Caffini
Gianluca M. Tartaglia
Chiarella Sforza
Giuseppe Baselli
Publication date
01-01-2017
Publisher
Springer International Publishing
Published in
International Journal of Computer Assisted Radiology and Surgery / Issue 1/2017
Print ISSN: 1861-6410
Electronic ISSN: 1861-6429
DOI
https://doi.org/10.1007/s11548-016-1453-9

Other articles of this Issue 1/2017

International Journal of Computer Assisted Radiology and Surgery 1/2017 Go to the issue