Skip to main content
Top
Published in: BMC Medical Imaging 1/2014

Open Access 01-12-2014 | Research article

The accuracy of a designed software for automated localization of craniofacial landmarks on CBCT images

Authors: Shoaleh Shahidi, Ehsan Bahrampour, Elham Soltanimehr, Ali Zamani, Morteza Oshagh, Marzieh Moattari, Alireza Mehdizadeh

Published in: BMC Medical Imaging | Issue 1/2014

Login to get access

Abstract

Background

Two-dimensional projection radiographs have been traditionally considered the modality of choice for cephalometric analysis. To overcome the shortcomings of two-dimensional images, three-dimensional computed tomography (CT) has been used to evaluate craniofacial structures. However, manual landmark detection depends on medical expertise, and the process is time-consuming. The present study was designed to produce software capable of automated localization of craniofacial landmarks on cone beam (CB) CT images based on image registration and to evaluate its accuracy.

Methods

The software was designed using MATLAB programming language. The technique was a combination of feature-based (principal axes registration) and voxel similarity-based methods for image registration. A total of 8 CBCT images were selected as our reference images for creating a head atlas. Then, 20 CBCT images were randomly selected as the test images for evaluating the method. Three experts twice located 14 landmarks in all 28 CBCT images during two examinations set 6 weeks apart. The differences in the distances of coordinates of each landmark on each image between manual and automated detection methods were calculated and reported as mean errors.

Results

The combined intraclass correlation coefficient for intraobserver reliability was 0.89 and for interobserver reliability 0.87 (95% confidence interval, 0.82 to 0.93). The mean errors of all 14 landmarks were <4 mm. Additionally, 63.57% of landmarks had a mean error of <3 mm compared with manual detection (gold standard method).

Conclusion

The accuracy of our approach for automated localization of craniofacial landmarks, which was based on combining feature-based and voxel similarity-based methods for image registration, was acceptable. Nevertheless we recommend repetition of this study using other techniques, such as intensity-based methods.
Appendix
Available only for authorised users
Literature
1.
go back to reference Zamora N, Llamas JM, Cibrian R, Gandia JL, Paredes V: Cephalometric measurements from 3D reconstructed images compared with conventional 2D images. Angle Orthod. 2011, 81: 856-864. 10.2319/121210-717.1.CrossRefPubMed Zamora N, Llamas JM, Cibrian R, Gandia JL, Paredes V: Cephalometric measurements from 3D reconstructed images compared with conventional 2D images. Angle Orthod. 2011, 81: 856-864. 10.2319/121210-717.1.CrossRefPubMed
2.
go back to reference Miller SBDM: Computer-aided head film analysis: the University of California San Francisco method. Am J Orthod. 1980, 78: 41-65. 10.1016/0002-9416(80)90039-1.CrossRefPubMed Miller SBDM: Computer-aided head film analysis: the University of California San Francisco method. Am J Orthod. 1980, 78: 41-65. 10.1016/0002-9416(80)90039-1.CrossRefPubMed
3.
go back to reference Forsyth DB, Shaw WC, Richmond S, Roberts CT: Digital imaging of cephalometric radiographs, Part 2: Image quality. Angle Orthod. 1996, 66: 43-50.PubMed Forsyth DB, Shaw WC, Richmond S, Roberts CT: Digital imaging of cephalometric radiographs, Part 2: Image quality. Angle Orthod. 1996, 66: 43-50.PubMed
4.
go back to reference Ludlow JB, Gubler M, Cevidanes L, Mol A: Precision of cephalometric landmark identification: cone-beam computed tomography vs conventional cephalometric views. Am J Orthod Dentofacial Orthop. 2009, 136: 312-10.1016/j.ajodo.2009.04.009. e311-310; discussion 312-313CrossRefPubMedPubMedCentral Ludlow JB, Gubler M, Cevidanes L, Mol A: Precision of cephalometric landmark identification: cone-beam computed tomography vs conventional cephalometric views. Am J Orthod Dentofacial Orthop. 2009, 136: 312-10.1016/j.ajodo.2009.04.009. e311-310; discussion 312-313CrossRefPubMedPubMedCentral
5.
go back to reference Makram M, Kamel H: Reeb Graph for Automatic 3D Cephalometry. IJIP. 2014, 8: 17-29. Makram M, Kamel H: Reeb Graph for Automatic 3D Cephalometry. IJIP. 2014, 8: 17-29.
6.
go back to reference Hassan B, van der Stelt P, Sanderink G: Accuracy of three-dimensional measurements obtained from cone beam computed tomography surface-rendered images for cephalometric analysis: influence of patient scanning position. Eur J Orthod. 2009, 31: 129-134. 10.1093/ejo/cjn088.CrossRefPubMed Hassan B, van der Stelt P, Sanderink G: Accuracy of three-dimensional measurements obtained from cone beam computed tomography surface-rendered images for cephalometric analysis: influence of patient scanning position. Eur J Orthod. 2009, 31: 129-134. 10.1093/ejo/cjn088.CrossRefPubMed
7.
go back to reference Chen YJ, Chen SK, Yao JC, Chang HF: The effects of differences in landmark identification on the cephalometric meaurements in traditional versus digitized cephalometry. Angle Orthod. 2004, 74: 155-161.PubMed Chen YJ, Chen SK, Yao JC, Chang HF: The effects of differences in landmark identification on the cephalometric meaurements in traditional versus digitized cephalometry. Angle Orthod. 2004, 74: 155-161.PubMed
9.
go back to reference Bassam H, Peter N, Hans V, Jamshed T, Christian V, van der Stelt P, Beek H: Percision of identifying cephalometric landmarks with cone beam computed tomography in vivo. Euro J Orthodontics. 2011, doi:10.1093/ejo/cjr050 Bassam H, Peter N, Hans V, Jamshed T, Christian V, van der Stelt P, Beek H: Percision of identifying cephalometric landmarks with cone beam computed tomography in vivo. Euro J Orthodontics. 2011, doi:10.1093/ejo/cjr050
10.
go back to reference Gribel BF, Gribel MN, Manzi FR, Brooks SL, McNamara JA: From 2D to 3D: an algorithm to derive normal values for 3-dimensional computerized assessment. Angle Orthod. 2011, 81: 3-10. 10.2319/032910-173.1.CrossRefPubMed Gribel BF, Gribel MN, Manzi FR, Brooks SL, McNamara JA: From 2D to 3D: an algorithm to derive normal values for 3-dimensional computerized assessment. Angle Orthod. 2011, 81: 3-10. 10.2319/032910-173.1.CrossRefPubMed
11.
go back to reference Couceiro CP, Vilella OV: 2D/3D Cone-Beam CT images or convensional radiography: Which is more reliable?. Dental Press J Orthod. 2010, 15: 40-41. 10.1590/S2176-94512010000500007.CrossRef Couceiro CP, Vilella OV: 2D/3D Cone-Beam CT images or convensional radiography: Which is more reliable?. Dental Press J Orthod. 2010, 15: 40-41. 10.1590/S2176-94512010000500007.CrossRef
12.
go back to reference de Oliveira AE, Cevidanes LH, Phillips C, Motta A, Burke B, Tyndall D: Observer reliability of three-dimensional cephalometric landmark identification on cone-beam computerized tomography. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009, 107: 256-265. 10.1016/j.tripleo.2008.05.039.CrossRefPubMed de Oliveira AE, Cevidanes LH, Phillips C, Motta A, Burke B, Tyndall D: Observer reliability of three-dimensional cephalometric landmark identification on cone-beam computerized tomography. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009, 107: 256-265. 10.1016/j.tripleo.2008.05.039.CrossRefPubMed
13.
go back to reference Shahidi S, Oshagh M, Gozin F, Salehi P, Danaei S: Accuracy of computerized automatic identification of cephalometric landmarks by a designed software. Dentomaxillofac Radiol. 2013, 42: 20110187-10.1259/dmfr.20110187.CrossRefPubMedPubMedCentral Shahidi S, Oshagh M, Gozin F, Salehi P, Danaei S: Accuracy of computerized automatic identification of cephalometric landmarks by a designed software. Dentomaxillofac Radiol. 2013, 42: 20110187-10.1259/dmfr.20110187.CrossRefPubMedPubMedCentral
14.
go back to reference Pan Z, Bahari B, Rozniza Z, Arash I, Rajion ZA: Computerized 3D Craniofacial Landmark Identification and Analysis. eJCSIT. 2009, 1: Pan Z, Bahari B, Rozniza Z, Arash I, Rajion ZA: Computerized 3D Craniofacial Landmark Identification and Analysis. eJCSIT. 2009, 1:
15.
go back to reference Rosalia L, Daniela G, Francesco M, Spampinato C: Automatic Cephalometric Analysis A Systematic Review. Angle Orthod. 2008, 78: 145-10.2319/120506-491.1.CrossRef Rosalia L, Daniela G, Francesco M, Spampinato C: Automatic Cephalometric Analysis A Systematic Review. Angle Orthod. 2008, 78: 145-10.2319/120506-491.1.CrossRef
16.
go back to reference Naw Chit TJ, Xuenan C, Shengzhe L, Hakil K: Fast and Accurate Rigid Registration of 3D CT Images by Combining Feature and Intensity. J Comp Sci Eng. 2012, 6: 1-11. 10.5626/JCSE.2012.6.1.1.CrossRef Naw Chit TJ, Xuenan C, Shengzhe L, Hakil K: Fast and Accurate Rigid Registration of 3D CT Images by Combining Feature and Intensity. J Comp Sci Eng. 2012, 6: 1-11. 10.5626/JCSE.2012.6.1.1.CrossRef
17.
go back to reference Yue W, Yin D, Li C, Wang G, Xu T: Automated 2-D cephalometric analysis on X-ray images by a model-based approach. IEEE Trans Biomed Eng. 2006, 53: 1615-1623.CrossRefPubMed Yue W, Yin D, Li C, Wang G, Xu T: Automated 2-D cephalometric analysis on X-ray images by a model-based approach. IEEE Trans Biomed Eng. 2006, 53: 1615-1623.CrossRefPubMed
18.
go back to reference El-Feghi IS-AM, Ahmadi M: Automatic localization of craniofacial landmarks for assisted cephalometry. Pattern Recognit. 2004, 37: 609-621. 10.1016/j.patcog.2003.09.002.CrossRef El-Feghi IS-AM, Ahmadi M: Automatic localization of craniofacial landmarks for assisted cephalometry. Pattern Recognit. 2004, 37: 609-621. 10.1016/j.patcog.2003.09.002.CrossRef
19.
go back to reference Alpert NM, Bradshaw JF, Kennedy D, Correia JA: The principal axes transformation–a method for image registration. J Nuc Med. 1990, 31: 1717-1722. Alpert NM, Bradshaw JF, Kennedy D, Correia JA: The principal axes transformation–a method for image registration. J Nuc Med. 1990, 31: 1717-1722.
20.
go back to reference Kapila S, Conley RS, Harrell WE: The current status of cone beam computed tomography imaging in orthodontics. Dentomaxillofac Radiol. 2011, 40: 24-34. 10.1259/dmfr/12615645.CrossRefPubMedPubMedCentral Kapila S, Conley RS, Harrell WE: The current status of cone beam computed tomography imaging in orthodontics. Dentomaxillofac Radiol. 2011, 40: 24-34. 10.1259/dmfr/12615645.CrossRefPubMedPubMedCentral
21.
go back to reference Smith BRPJ, Cederberg RA: An evaluation of cone-beam computed tomography use in postgraduate orthodontic programs in the United States and Canada. J Dent Educ. 2011, 75: 98-106.PubMed Smith BRPJ, Cederberg RA: An evaluation of cone-beam computed tomography use in postgraduate orthodontic programs in the United States and Canada. J Dent Educ. 2011, 75: 98-106.PubMed
23.
go back to reference Hill DL, Studholme C, Hawkes DJ: "Voxel similarity measures for automated image registration," Visualization in Biomedical Computing. 1994, Bellingham, WA: SPIE, 205- Hill DL, Studholme C, Hawkes DJ: "Voxel similarity measures for automated image registration," Visualization in Biomedical Computing. 1994, Bellingham, WA: SPIE, 205-
Metadata
Title
The accuracy of a designed software for automated localization of craniofacial landmarks on CBCT images
Authors
Shoaleh Shahidi
Ehsan Bahrampour
Elham Soltanimehr
Ali Zamani
Morteza Oshagh
Marzieh Moattari
Alireza Mehdizadeh
Publication date
01-12-2014
Publisher
BioMed Central
Published in
BMC Medical Imaging / Issue 1/2014
Electronic ISSN: 1471-2342
DOI
https://doi.org/10.1186/1471-2342-14-32

Other articles of this Issue 1/2014

BMC Medical Imaging 1/2014 Go to the issue