Skip to main content
Top
Published in: Clinical Oral Investigations 3/2010

Open Access 01-06-2010 | Original Article

Influence of scanning and reconstruction parameters on quality of three-dimensional surface models of the dental arches from cone beam computed tomography

Authors: Bassam Hassan, Paulo Couto Souza, Reinhilde Jacobs, Soraya de Azambuja Berti, Paul van der Stelt

Published in: Clinical Oral Investigations | Issue 3/2010

Login to get access

Abstract

The study aim is to investigate the influence of scan field, mouth opening, voxel size, and segmentation threshold selections on the quality of the three-dimensional (3D) surface models of the dental arches from cone beam computed tomography (CBCT). 3D models of 25 patients scanned with one image intensifier CBCT system (NewTom 3G, QR SLR, Verona, Italy) using three field sizes in open- and closed-mouth positions were created at different voxel size resolutions. Two observers assessed the quality of the models independently on a five-point scale using specified criteria. The results indicate that large-field selection reduced the visibility of the teeth and the interproximal space. Also, large voxel size reduced the visibility of the occlusal surfaces and bone in the anterior region in both maxilla and mandible. Segmentation threshold was more variable in the maxilla than in the mandible. Closed-mouth scan complicated separating the jaws and reduced teeth surfaces visibility. The preliminary results from this image-intensifier system indicate that the use of medium or small scan fields in an open-mouth position with a small voxel is recommended to optimize quality of the 3D surface model reconstructions of the dental arches from CBCT. More research is needed to validate the results with other flat-panel detector-based CBCT systems.
Literature
1.
go back to reference Cevidanes LH, Bailey LJ, Tucker SF et al (2007) Three-dimensional cone-beam computed tomography for assessment of mandibular changes after orthognathic surgery. Am J Orthod Dentofacial Orthop 131:44–50CrossRefPubMed Cevidanes LH, Bailey LJ, Tucker SF et al (2007) Three-dimensional cone-beam computed tomography for assessment of mandibular changes after orthognathic surgery. Am J Orthod Dentofacial Orthop 131:44–50CrossRefPubMed
2.
go back to reference Caloss R, Atkins K, Stella JP (2007) Three-dimensional imaging for virtual assessment and treatment simulation in orthognathic surgery. Oral Maxillofac Surg Clin North Am 19:287–309CrossRefPubMed Caloss R, Atkins K, Stella JP (2007) Three-dimensional imaging for virtual assessment and treatment simulation in orthognathic surgery. Oral Maxillofac Surg Clin North Am 19:287–309CrossRefPubMed
3.
go back to reference Van Steenberghe D, Malevez C, Van Cleynenbreugel J et al (2003) Accuracy of drilling guides for transfer from three-dimensional CT-based planning to placement of zygoma implants in human cadavers. Clin Oral Implants Res 14:131–136CrossRefPubMed Van Steenberghe D, Malevez C, Van Cleynenbreugel J et al (2003) Accuracy of drilling guides for transfer from three-dimensional CT-based planning to placement of zygoma implants in human cadavers. Clin Oral Implants Res 14:131–136CrossRefPubMed
4.
go back to reference Van Assche N, van Steenberghe D, Guerrero ME et al (2007) Accuracy of implant placement based on pre-surgical planning of three-dimensional cone-beam images: a pilot study. J Clin Periodontol 34:816–821CrossRefPubMed Van Assche N, van Steenberghe D, Guerrero ME et al (2007) Accuracy of implant placement based on pre-surgical planning of three-dimensional cone-beam images: a pilot study. J Clin Periodontol 34:816–821CrossRefPubMed
5.
go back to reference Jacobs R, Adriansens A, Verstreken K (1999) Predictability of a three-dimensional planning system for oral implant surgery. Dento-maxillo-facial Radiol 28:105–111 Jacobs R, Adriansens A, Verstreken K (1999) Predictability of a three-dimensional planning system for oral implant surgery. Dento-maxillo-facial Radiol 28:105–111
6.
go back to reference Cevidanes LHS, Bailey LJ, Tucker GR et al (2005) Superimposition of 3D cone-beam CT models of orthognathic surgery patients. Dento-maxillo-facial Radiol 34:369–375 Cevidanes LHS, Bailey LJ, Tucker GR et al (2005) Superimposition of 3D cone-beam CT models of orthognathic surgery patients. Dento-maxillo-facial Radiol 34:369–375
7.
go back to reference Wang Y, Zhao Y, Lv P et al (2006) A scanning method for the dental casts of intercuspal position. Beijing Da Xue Xue Bao 18(38):298–300 Wang Y, Zhao Y, Lv P et al (2006) A scanning method for the dental casts of intercuspal position. Beijing Da Xue Xue Bao 18(38):298–300
8.
go back to reference Lu P, Li Z, Wang Y (1999) A study of dental cast by using 3D laser non-contact measurement and analysis. Zhonghua Kou Qiang Yi Xue Za Zhi 34:351–353PubMed Lu P, Li Z, Wang Y (1999) A study of dental cast by using 3D laser non-contact measurement and analysis. Zhonghua Kou Qiang Yi Xue Za Zhi 34:351–353PubMed
9.
go back to reference Da Silveira AC, Daw JL, Kusnoto B et al (2003) Craniofacial applications of three-dimensional laser surface scanning. J Craniofac Surg 14:449–456CrossRefPubMed Da Silveira AC, Daw JL, Kusnoto B et al (2003) Craniofacial applications of three-dimensional laser surface scanning. J Craniofac Surg 14:449–456CrossRefPubMed
10.
go back to reference Lu P, Li Z, Wang Y et al (2000) The research and development of noncontact 3-D laser dental model measuring and analyzing system. Chin J Dent Res 3:7–14PubMed Lu P, Li Z, Wang Y et al (2000) The research and development of noncontact 3-D laser dental model measuring and analyzing system. Chin J Dent Res 3:7–14PubMed
11.
go back to reference DeLong R, Heinzen M, Hodges JS et al (2003) Accuracy of a system for creating 3D computer models of dental arches. J Dent Res 82:438–442CrossRefPubMed DeLong R, Heinzen M, Hodges JS et al (2003) Accuracy of a system for creating 3D computer models of dental arches. J Dent Res 82:438–442CrossRefPubMed
12.
go back to reference Petrie CS, Walker MP, O'mahony AM et al (2003) Dimensional accuracy and surface detail reproduction of two hydrophilic vinyl polysiloxane impression materials tested under dry, moist, and wet conditions. J Prosthet Dent 90:365–372CrossRefPubMed Petrie CS, Walker MP, O'mahony AM et al (2003) Dimensional accuracy and surface detail reproduction of two hydrophilic vinyl polysiloxane impression materials tested under dry, moist, and wet conditions. J Prosthet Dent 90:365–372CrossRefPubMed
13.
go back to reference DeLong R, Pintado MR, Ko CC et al (2001) Factors influencing optical 3D scanning of vinyl polysiloxane impression materials. J Prosthodont 10:78–85CrossRefPubMed DeLong R, Pintado MR, Ko CC et al (2001) Factors influencing optical 3D scanning of vinyl polysiloxane impression materials. J Prosthodont 10:78–85CrossRefPubMed
14.
go back to reference Gateno J, Xia J, Teichgraeber JF et al (2003) A new technique for the creation of a computerized composite skull model. J Oral Maxillofac Surg 61:222–227CrossRefPubMed Gateno J, Xia J, Teichgraeber JF et al (2003) A new technique for the creation of a computerized composite skull model. J Oral Maxillofac Surg 61:222–227CrossRefPubMed
15.
go back to reference Uechi J, Okayama M, Shibata T et al (2006) A novel method for the 3-dimensional simulation of orthognathic surgery by using a multimodal image-fusion technique. Am J Orthod Dentofacial Orthop 130:786–798CrossRefPubMed Uechi J, Okayama M, Shibata T et al (2006) A novel method for the 3-dimensional simulation of orthognathic surgery by using a multimodal image-fusion technique. Am J Orthod Dentofacial Orthop 130:786–798CrossRefPubMed
16.
go back to reference Swennen GRJ, Barth E, Eulzer C et al (2007) The use of a new 3D splint and double CT scan procedure to obtain an accurate anatomic virtual augmented model of the skull. Int J Oral Maxillofac Surg 36:146–152CrossRefPubMed Swennen GRJ, Barth E, Eulzer C et al (2007) The use of a new 3D splint and double CT scan procedure to obtain an accurate anatomic virtual augmented model of the skull. Int J Oral Maxillofac Surg 36:146–152CrossRefPubMed
17.
go back to reference Swennen GRJ, Mommaerts MY, Abeloos J et al (2007) The use of a wax bite wafer and a double computed tomography scan procedure to obtain a three-dimensional augmented virtual skull model. J Craniofac Surg 18:533–539CrossRefPubMed Swennen GRJ, Mommaerts MY, Abeloos J et al (2007) The use of a wax bite wafer and a double computed tomography scan procedure to obtain a three-dimensional augmented virtual skull model. J Craniofac Surg 18:533–539CrossRefPubMed
18.
go back to reference Nkenke E, Zachow S, Benz M et al (2004) Fusion of computed tomography data and optical 3D images of the dentition for streak artefact correction in the simulation of orthognathic surgery. Dento-maxillo-facial Radiol 33:226–232 Nkenke E, Zachow S, Benz M et al (2004) Fusion of computed tomography data and optical 3D images of the dentition for streak artefact correction in the simulation of orthognathic surgery. Dento-maxillo-facial Radiol 33:226–232
19.
go back to reference Metzger MC, Hohlweg-Majert B, Schwarz U et al (2008) Manufacturing splints for orthognathic surgery using a three-dimensional printer. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 105:e1–e7CrossRefPubMed Metzger MC, Hohlweg-Majert B, Schwarz U et al (2008) Manufacturing splints for orthognathic surgery using a three-dimensional printer. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 105:e1–e7CrossRefPubMed
20.
go back to reference Nkenke E, Vairaktaris E, Neukam FW et al (2007) State of the art of fusion of computed tomography data and optical 3D images. Int J Comput Dent 10:11–24PubMed Nkenke E, Vairaktaris E, Neukam FW et al (2007) State of the art of fusion of computed tomography data and optical 3D images. Int J Comput Dent 10:11–24PubMed
21.
go back to reference Quereshy FA, Savell TA, Palomo JM (2008) Applications of cone beam computed tomography in the practice of oral and maxillofacial surgery. J Oral Maxillofac Surg 66:791–796CrossRefPubMed Quereshy FA, Savell TA, Palomo JM (2008) Applications of cone beam computed tomography in the practice of oral and maxillofacial surgery. J Oral Maxillofac Surg 66:791–796CrossRefPubMed
22.
go back to reference Loubele M, Bogaerts R, Van Dijck E, et al (2008) Comparison between effective radiation dose of CBCT and MSCT scanners for dentomaxillofacial applications. Eur J Radiol (July 2008; in press) Loubele M, Bogaerts R, Van Dijck E, et al (2008) Comparison between effective radiation dose of CBCT and MSCT scanners for dentomaxillofacial applications. Eur J Radiol (July 2008; in press)
23.
go back to reference Silva MAG, Wolf U, Heinicke F et al (2008) Cone-beam computed tomography for routine orthodontic treatment planning: a radiation dose evaluation. Am J Orthod Dentofacial Orthop 133(640):e1–e5PubMed Silva MAG, Wolf U, Heinicke F et al (2008) Cone-beam computed tomography for routine orthodontic treatment planning: a radiation dose evaluation. Am J Orthod Dentofacial Orthop 133(640):e1–e5PubMed
24.
go back to reference Araki K, Maki K, Seki K et al (2004) Characteristics of a newly developed dentomaxillofacial X-ray cone beam CT scanner (CB MercuRay): system configuration and physical properties. Dento-maxillo-facial Radiol 33:51–59 Araki K, Maki K, Seki K et al (2004) Characteristics of a newly developed dentomaxillofacial X-ray cone beam CT scanner (CB MercuRay): system configuration and physical properties. Dento-maxillo-facial Radiol 33:51–59
25.
go back to reference Sukovic P (2003) Cone beam computed tomography in craniofacial imaging. Orthod Craniofac Res 6(Suppl):131–136 discussion 179–82 Sukovic P (2003) Cone beam computed tomography in craniofacial imaging. Orthod Craniofac Res 6(Suppl):131–136 discussion 179–82
26.
go back to reference Yajima A, Otonari-Yamamoto M, Sano T et al (2006) Cone-beam CT (CB Throne) applied to dentomaxillofacial region. Bull Tokyo Dent Coll 47:133–141CrossRefPubMed Yajima A, Otonari-Yamamoto M, Sano T et al (2006) Cone-beam CT (CB Throne) applied to dentomaxillofacial region. Bull Tokyo Dent Coll 47:133–141CrossRefPubMed
27.
go back to reference Bartling SH, Majdani O, Gupta R et al (2007) Large scan field, high spatial resolution flat-panel detector based volumetric CT of the whole human skull base and for maxillofacial imaging. Dento-maxillo-facial Radiol 36:317–327 Bartling SH, Majdani O, Gupta R et al (2007) Large scan field, high spatial resolution flat-panel detector based volumetric CT of the whole human skull base and for maxillofacial imaging. Dento-maxillo-facial Radiol 36:317–327
28.
go back to reference Loubele M, Guerrero ME, Jacobs R et al (2007) A comparison of jaw dimensional and quality assessments of bone characteristics with cone-beam CT, spiral tomography, and multi-slice spiral CT. Int J Oral Maxillofac Implants 22:446–454PubMed Loubele M, Guerrero ME, Jacobs R et al (2007) A comparison of jaw dimensional and quality assessments of bone characteristics with cone-beam CT, spiral tomography, and multi-slice spiral CT. Int J Oral Maxillofac Implants 22:446–454PubMed
29.
go back to reference Loubele M, Maes F, Schutyser F et al (2006) Assessment of bone segmentation quality of cone-beam CT versus multislice spiral CT: a pilot study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 102:225–234CrossRefPubMed Loubele M, Maes F, Schutyser F et al (2006) Assessment of bone segmentation quality of cone-beam CT versus multislice spiral CT: a pilot study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 102:225–234CrossRefPubMed
30.
go back to reference Loubele M, Maes F, Jacobs R et al (2008) Comparative study of image quality for MSCT and CBCT scanners for dentomaxillofacial radiology applications. Radiat Prot Dosimetry 129:222–6CrossRefPubMed Loubele M, Maes F, Jacobs R et al (2008) Comparative study of image quality for MSCT and CBCT scanners for dentomaxillofacial radiology applications. Radiat Prot Dosimetry 129:222–6CrossRefPubMed
31.
go back to reference Loubele M, Jacobs R, Maes F et al (2008) Image quality vs radiation dose of four cone beam computed tomography scanners. Dento-maxillo-facial Radiol 37:309–319 Loubele M, Jacobs R, Maes F et al (2008) Image quality vs radiation dose of four cone beam computed tomography scanners. Dento-maxillo-facial Radiol 37:309–319
32.
go back to reference Feldkamp LA, Davis LC, Kress JW (1984) Practical cone-beam algorithm. J Opt Soc Am A 1:612–619CrossRef Feldkamp LA, Davis LC, Kress JW (1984) Practical cone-beam algorithm. J Opt Soc Am A 1:612–619CrossRef
33.
go back to reference Zhang Y, Zhang L, Zhu XR et al (2007) Reducing metal artifacts in cone-beam CT images by preprocessing projection data. Int J Radiat Oncol Biol Phys 1(67):924–932 Zhang Y, Zhang L, Zhu XR et al (2007) Reducing metal artifacts in cone-beam CT images by preprocessing projection data. Int J Radiat Oncol Biol Phys 1(67):924–932
34.
go back to reference Scarfe WC, Farman AG (2008) What is cone-beam CT and how does it work? Dent Clin North Am 52(4):707–730CrossRefPubMed Scarfe WC, Farman AG (2008) What is cone-beam CT and how does it work? Dent Clin North Am 52(4):707–730CrossRefPubMed
35.
go back to reference Katsumata A, Hirukawa A, Okumura S, Naitoh M, Fujishita M, Ariji E, Langlais RP (2007) Effects of image artifacts on gray-value density in limited-volume cone-beam computerized tomography. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 104(6):829–836CrossRefPubMed Katsumata A, Hirukawa A, Okumura S, Naitoh M, Fujishita M, Ariji E, Langlais RP (2007) Effects of image artifacts on gray-value density in limited-volume cone-beam computerized tomography. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 104(6):829–836CrossRefPubMed
36.
go back to reference Kwong JC, Palomo JM, Landers MA et al (2008) Image quality produced by different cone-beam computed tomography settings. Am J Orthod Dentofacial Orthop 133:317–327CrossRefPubMed Kwong JC, Palomo JM, Landers MA et al (2008) Image quality produced by different cone-beam computed tomography settings. Am J Orthod Dentofacial Orthop 133:317–327CrossRefPubMed
37.
go back to reference Periago DR, Scarfe WC, Moshiri M, Scheetz JP, Silveira AM, Farman AG (2008) Linear accuracy and reliability of cone beam CT derived 3-dimensional images constructed using an orthodontic volumetric rendering program. Angle Orthod 78(3):387–395CrossRefPubMed Periago DR, Scarfe WC, Moshiri M, Scheetz JP, Silveira AM, Farman AG (2008) Linear accuracy and reliability of cone beam CT derived 3-dimensional images constructed using an orthodontic volumetric rendering program. Angle Orthod 78(3):387–395CrossRefPubMed
38.
go back to reference Hassan B, van der Stelt P, Sanderink G (2009) Accuracy of three-dimensional measurements obtained from cone beam computed tomography surface-rendered images for cephalometric analysis: influence of patient scanning position. Eur J Orthod 31(2):129–134CrossRefPubMed Hassan B, van der Stelt P, Sanderink G (2009) Accuracy of three-dimensional measurements obtained from cone beam computed tomography surface-rendered images for cephalometric analysis: influence of patient scanning position. Eur J Orthod 31(2):129–134CrossRefPubMed
39.
go back to reference Lorensen WE, Cline HE (1987) Marching cubes: a high resolution 3D surface construction algorithm. SIGGRAPH Comput. Graph 21:163–169CrossRef Lorensen WE, Cline HE (1987) Marching cubes: a high resolution 3D surface construction algorithm. SIGGRAPH Comput. Graph 21:163–169CrossRef
40.
go back to reference Baillard C, Barillot C, Bouthemy P (2000) Robust adaptive segmentation of 3-D medical images with level sets. INRIA 4071:1–26 Baillard C, Barillot C, Bouthemy P (2000) Robust adaptive segmentation of 3-D medical images with level sets. INRIA 4071:1–26
41.
go back to reference Siltanen S, Kolehmainen V, Järvenpää S, Kaipio JP, Koistinen P, Lassas M, Pirttilä J, Somersalo E (2003) Statistical inversion for medical x-ray tomography with few radiographs: I. General theory. Phys Med Biol 48(10):1437–1463CrossRefPubMed Siltanen S, Kolehmainen V, Järvenpää S, Kaipio JP, Koistinen P, Lassas M, Pirttilä J, Somersalo E (2003) Statistical inversion for medical x-ray tomography with few radiographs: I. General theory. Phys Med Biol 48(10):1437–1463CrossRefPubMed
42.
go back to reference Kuchment P, Lancaster K, Mogilevskaya L (1995) On local tomography. Inverse Probl 11(3):571–589CrossRef Kuchment P, Lancaster K, Mogilevskaya L (1995) On local tomography. Inverse Probl 11(3):571–589CrossRef
43.
go back to reference Katsevich AI (1997) Local tomography for the limited-angle problem. J Math Anal Appl 213:160–182CrossRef Katsevich AI (1997) Local tomography for the limited-angle problem. J Math Anal Appl 213:160–182CrossRef
44.
go back to reference Katsumata A, Hirukawa A, Okumura S, Naitoh M, Fujishita M, Ariji E, Langlais RP (2009) Relationship between density variability and imaging volume size in cone-beam computerized tomographic scanning of the maxillofacial region: an in vitro study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 107(3):420–425CrossRefPubMed Katsumata A, Hirukawa A, Okumura S, Naitoh M, Fujishita M, Ariji E, Langlais RP (2009) Relationship between density variability and imaging volume size in cone-beam computerized tomographic scanning of the maxillofacial region: an in vitro study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 107(3):420–425CrossRefPubMed
45.
go back to reference Salvado O, Hillenbrand CM, Wilson DL (2006) Partial volume reduction by interpolation with reverse diffusion. Int J Biomed Imaging Volume 2006:920–922 Salvado O, Hillenbrand CM, Wilson DL (2006) Partial volume reduction by interpolation with reverse diffusion. Int J Biomed Imaging Volume 2006:920–922
Metadata
Title
Influence of scanning and reconstruction parameters on quality of three-dimensional surface models of the dental arches from cone beam computed tomography
Authors
Bassam Hassan
Paulo Couto Souza
Reinhilde Jacobs
Soraya de Azambuja Berti
Paul van der Stelt
Publication date
01-06-2010
Publisher
Springer-Verlag
Published in
Clinical Oral Investigations / Issue 3/2010
Print ISSN: 1432-6981
Electronic ISSN: 1436-3771
DOI
https://doi.org/10.1007/s00784-009-0291-3

Other articles of this Issue 3/2010

Clinical Oral Investigations 3/2010 Go to the issue