Skip to main content
Top
Published in: Strahlentherapie und Onkologie 10/2020

01-10-2020 | Computed Tomography | Review Article

Radiomics and deep learning in lung cancer

Authors: Michele Avanzo, Joseph Stancanello, Giovanni Pirrone, Giovanna Sartor

Published in: Strahlentherapie und Onkologie | Issue 10/2020

Login to get access

Abstract

Lung malignancies have been extensively characterized through radiomics and deep learning. By providing a three-dimensional characterization of the lesion, models based on radiomic features from computed tomography (CT) and positron-emission tomography (PET) have been developed to detect nodules, distinguish malignant from benign lesions, characterize their histology, stage, and genotype. Deep learning models have been applied to automatically segment organs at risk in lung cancer radiotherapy, stratify patients according to the risk for local and distant recurrence, and identify patients candidate for molecular targeted therapy and immunotherapy. Moreover, radiomics has also been applied successfully to predict side effects such as radiation- and immunotherapy-induced pneumonitis and differentiate lung injury from recurrence. Radiomics could also untap the potential for further use of the cone beam CT acquired for treatment image guidance, four-dimensional CT, and dose-volume data from radiotherapy treatment plans. Radiomics is expected to increasingly affect the clinical practice of treatment of lung tumors, optimizing the end-to-end diagnosis–treatment–follow-up chain. The main goal of this article is to provide an update on the current status of lung cancer radiomics.
Literature
1.
go back to reference Siegel RL, Miller KD, Jemal A (2018) Cancer statistics, 2018. CA Cancer J Clin 68:7–30CrossRef Siegel RL, Miller KD, Jemal A (2018) Cancer statistics, 2018. CA Cancer J Clin 68:7–30CrossRef
2.
go back to reference Hawkins S, Wang H, Liu Y, Garcia A, Stringfield O, Krewer H et al (2016) Predicting malignant nodules from screening CT scans. J Thorac Oncol 11(12):2120–2128PubMedPubMedCentralCrossRef Hawkins S, Wang H, Liu Y, Garcia A, Stringfield O, Krewer H et al (2016) Predicting malignant nodules from screening CT scans. J Thorac Oncol 11(12):2120–2128PubMedPubMedCentralCrossRef
3.
go back to reference Avanzo M, Stancanello J, El Naqa I (2017) Beyond imaging: The promise of radiomics. Phys Med 38:122-139PubMedCrossRef Avanzo M, Stancanello J, El Naqa I (2017) Beyond imaging: The promise of radiomics. Phys Med 38:122-139PubMedCrossRef
5.
go back to reference Hassani C, Varghese BA, Nieva J, Duddalwar V (2019) Radiomics in pulmonary lesion imaging. AJR Am J Roentgenol 212:497–504PubMedCrossRef Hassani C, Varghese BA, Nieva J, Duddalwar V (2019) Radiomics in pulmonary lesion imaging. AJR Am J Roentgenol 212:497–504PubMedCrossRef
6.
go back to reference Nwogu I, Corso JJ (2008) Exploratory identification of image-based biomarkers for solid mass pulmonary tumors. Med Image Comput Comput Assist Interv 11:612–619PubMed Nwogu I, Corso JJ (2008) Exploratory identification of image-based biomarkers for solid mass pulmonary tumors. Med Image Comput Comput Assist Interv 11:612–619PubMed
7.
go back to reference Ganeshan B, Abaleke S, Young RC, Chatwin CR, Miles KA (2010) Texture analysis of non-small cell lung cancer on unenhanced computed tomography: initial evidence for a relationship with tumour glucose metabolism and stage. Cancer Imaging 10:137–143PubMedPubMedCentralCrossRef Ganeshan B, Abaleke S, Young RC, Chatwin CR, Miles KA (2010) Texture analysis of non-small cell lung cancer on unenhanced computed tomography: initial evidence for a relationship with tumour glucose metabolism and stage. Cancer Imaging 10:137–143PubMedPubMedCentralCrossRef
8.
go back to reference Ganeshan B, Goh V, Mandeville HC, Ng QS, Hoskin PJ, Miles KA (2013) Non-small cell lung cancer: histopathologic correlates for texture parameters at CT. Radiology 266:326–336PubMedCrossRef Ganeshan B, Goh V, Mandeville HC, Ng QS, Hoskin PJ, Miles KA (2013) Non-small cell lung cancer: histopathologic correlates for texture parameters at CT. Radiology 266:326–336PubMedCrossRef
9.
go back to reference Ciompi F, Chung K, van Riel SJ, Setio AAA, Gerke PK, Jacobs C et al (2017) Towards automatic pulmonary nodule management in lung cancer screening with deep learning. SciRep 7:46479PubMedPubMedCentralCrossRef Ciompi F, Chung K, van Riel SJ, Setio AAA, Gerke PK, Jacobs C et al (2017) Towards automatic pulmonary nodule management in lung cancer screening with deep learning. SciRep 7:46479PubMedPubMedCentralCrossRef
10.
go back to reference D’Arnese E, di Donato GW, del Sozzo E, Santambrogio MD (2019) Towards an automatic imaging biopsy of non-small cell lung cancer. 2019 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI), pp 1–4 D’Arnese E, di Donato GW, del Sozzo E, Santambrogio MD (2019) Towards an automatic imaging biopsy of non-small cell lung cancer. 2019 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI), pp 1–4
11.
go back to reference Hawkins SH, Korecki JN, Balagurunathan Y, Gu Y, Kumar V, Basu S et al (2014) Predicting outcomes of nonsmall cell lung cancer using CT image features. IEEE Access 2:1418–1426CrossRef Hawkins SH, Korecki JN, Balagurunathan Y, Gu Y, Kumar V, Basu S et al (2014) Predicting outcomes of nonsmall cell lung cancer using CT image features. IEEE Access 2:1418–1426CrossRef
13.
go back to reference Lian C, Ruan S, Denoeux T, Jardin F, Vera P (2016) Selecting radiomic features from FDG-PET images for cancer treatment outcome prediction. Med Image Anal 32:257–268PubMedCrossRef Lian C, Ruan S, Denoeux T, Jardin F, Vera P (2016) Selecting radiomic features from FDG-PET images for cancer treatment outcome prediction. Med Image Anal 32:257–268PubMedCrossRef
14.
go back to reference Parmar C, Grossmann P, Bussink J, Lambin P, Aerts HJ (2015) Machine learning methods for quantitative radiomic biomarkers. Sci Rep 5:13087PubMedPubMedCentralCrossRef Parmar C, Grossmann P, Bussink J, Lambin P, Aerts HJ (2015) Machine learning methods for quantitative radiomic biomarkers. Sci Rep 5:13087PubMedPubMedCentralCrossRef
15.
go back to reference van Timmeren JE, Leijenaar RT, van Elmpt W, Lambin P (2016) Interchangeability of a radiomic signature between conventional and weekly cone beam computed tomography allowing response prediction in non-small cell lung cancer. Int J Radiat Oncol Biol Phys 96:S193CrossRef van Timmeren JE, Leijenaar RT, van Elmpt W, Lambin P (2016) Interchangeability of a radiomic signature between conventional and weekly cone beam computed tomography allowing response prediction in non-small cell lung cancer. Int J Radiat Oncol Biol Phys 96:S193CrossRef
16.
go back to reference Fave X, Mackin D, Yang J, Zhang J, Fried D, Balter P et al (2015) Can radiomics features be reproducibly measured from CBCT images for patients with non-small cell lung cancer? Med Phys 42:6784–6797PubMedPubMedCentralCrossRef Fave X, Mackin D, Yang J, Zhang J, Fried D, Balter P et al (2015) Can radiomics features be reproducibly measured from CBCT images for patients with non-small cell lung cancer? Med Phys 42:6784–6797PubMedPubMedCentralCrossRef
17.
go back to reference Zhang T, Yuan M, Zhong Y, Zhang YD, Li H, Wu JF et al (2019) Differentiation of focal organising pneumonia and peripheral adenocarcinoma in solid lung lesions using thin-section CT-based radiomics. Clin Radiol 74:78.e23–78.e30CrossRef Zhang T, Yuan M, Zhong Y, Zhang YD, Li H, Wu JF et al (2019) Differentiation of focal organising pneumonia and peripheral adenocarcinoma in solid lung lesions using thin-section CT-based radiomics. Clin Radiol 74:78.e23–78.e30CrossRef
19.
go back to reference Petkovska I, Shah SK, McNitt-Gray MF, Goldin JG, Brown MS, Kim HJ et al (2006) Pulmonary nodule characterization: a comparison of conventional with quantitative and visual semi-quantitative analyses using contrast enhancement maps. Eur J Radiol 59:244–252PubMedPubMedCentralCrossRef Petkovska I, Shah SK, McNitt-Gray MF, Goldin JG, Brown MS, Kim HJ et al (2006) Pulmonary nodule characterization: a comparison of conventional with quantitative and visual semi-quantitative analyses using contrast enhancement maps. Eur J Radiol 59:244–252PubMedPubMedCentralCrossRef
20.
go back to reference Chen CH, Chang CK, Tu CY, Liao WC, Wu BR, Chou KT et al (2018) Radiomic features analysis in computed tomography images of lung nodule classification. PLoS ONE 13:e192002PubMedPubMedCentralCrossRef Chen CH, Chang CK, Tu CY, Liao WC, Wu BR, Chou KT et al (2018) Radiomic features analysis in computed tomography images of lung nodule classification. PLoS ONE 13:e192002PubMedPubMedCentralCrossRef
21.
go back to reference Aerts HJ, Velazquez ER, Leijenaar RT, Parmar C, Grossmann P, Carvalho S et al (2014) Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 5:4006PubMedPubMedCentralCrossRef Aerts HJ, Velazquez ER, Leijenaar RT, Parmar C, Grossmann P, Carvalho S et al (2014) Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 5:4006PubMedPubMedCentralCrossRef
22.
go back to reference da Silva GLF, Valente TLA, Silva AC, de Paiva AC, Gattass M (2018) Convolutional neural network-based PSO for lung nodule false positive reduction on CT images. Comput Methods Programs Biomed 162:109–118PubMedCrossRef da Silva GLF, Valente TLA, Silva AC, de Paiva AC, Gattass M (2018) Convolutional neural network-based PSO for lung nodule false positive reduction on CT images. Comput Methods Programs Biomed 162:109–118PubMedCrossRef
23.
go back to reference Feng B, Chen X, Chen Y, Li Z, Hao Y, Zhang C, Li R, Liao Y, Zhang X, Huang Y, Long W (2019) Differentiating minimally invasive and invasive adenocarcinomas in patients with solitary sub-solid pulmonary nodules with a radiomics nomogram. Clin Radiol 74:570.e1–570.e11. https://doi.org/10.1016/j.crad.2019.03.018CrossRef Feng B, Chen X, Chen Y, Li Z, Hao Y, Zhang C, Li R, Liao Y, Zhang X, Huang Y, Long W (2019) Differentiating minimally invasive and invasive adenocarcinomas in patients with solitary sub-solid pulmonary nodules with a radiomics nomogram. Clin Radiol 74:570.e1–570.e11. https://​doi.​org/​10.​1016/​j.​crad.​2019.​03.​018CrossRef
24.
go back to reference Choi W, Oh JH, Riyahi S, Liu CJ, Jiang F, Chen W et al (2018) Radiomics analysis of pulmonary nodules in low-dose CT for early detection of lung cancer. Med Phys 45:1537–1549PubMedPubMedCentralCrossRef Choi W, Oh JH, Riyahi S, Liu CJ, Jiang F, Chen W et al (2018) Radiomics analysis of pulmonary nodules in low-dose CT for early detection of lung cancer. Med Phys 45:1537–1549PubMedPubMedCentralCrossRef
25.
go back to reference Weng Q, Zhou L, Wang H, Hui J, Chen M, Pang P et al (2019) A radiomics model for determining the invasiveness of solitary pulmonary nodules that manifest as part-solid nodules. Clin Radiol 74:933–943PubMedCrossRef Weng Q, Zhou L, Wang H, Hui J, Chen M, Pang P et al (2019) A radiomics model for determining the invasiveness of solitary pulmonary nodules that manifest as part-solid nodules. Clin Radiol 74:933–943PubMedCrossRef
26.
go back to reference Wu W, Parmar C, Grossmann P, Quackenbush J, Lambin P, Bussink J et al (2016) Exploratory study to identify radiomics classifiers for lung cancer histology. Front Oncol 6:71PubMedPubMedCentral Wu W, Parmar C, Grossmann P, Quackenbush J, Lambin P, Bussink J et al (2016) Exploratory study to identify radiomics classifiers for lung cancer histology. Front Oncol 6:71PubMedPubMedCentral
27.
go back to reference Coroller TP, Agrawal V, Narayan V, Hou Y, Grossmann P, Lee SW et al (2016) Radiomic phenotype features predict pathological response in non-small cell lung cancer. Radiother Oncol 119(3):480–486PubMedPubMedCentralCrossRef Coroller TP, Agrawal V, Narayan V, Hou Y, Grossmann P, Lee SW et al (2016) Radiomic phenotype features predict pathological response in non-small cell lung cancer. Radiother Oncol 119(3):480–486PubMedPubMedCentralCrossRef
28.
go back to reference Huynh E, Coroller TP, Narayan V, Agrawal V, Hou Y, Romano J et al (2016) CT-based radiomic analysis of stereotactic body radiation therapy patients with lung cancer. Radiother Oncol 120(2):258–266PubMedCrossRef Huynh E, Coroller TP, Narayan V, Agrawal V, Hou Y, Romano J et al (2016) CT-based radiomic analysis of stereotactic body radiation therapy patients with lung cancer. Radiother Oncol 120(2):258–266PubMedCrossRef
29.
go back to reference Rios Velazquez E, Aerts HJWL, Gu Y, Goldgof DB, De Ruysscher D, Dekker A et al (2012) A semiautomatic CT-based ensemble segmentation of lung tumors: comparison with oncologists’ delineations and with the surgical specimen. Radiother Oncol 105:167–173PubMedCrossRef Rios Velazquez E, Aerts HJWL, Gu Y, Goldgof DB, De Ruysscher D, Dekker A et al (2012) A semiautomatic CT-based ensemble segmentation of lung tumors: comparison with oncologists’ delineations and with the surgical specimen. Radiother Oncol 105:167–173PubMedCrossRef
30.
go back to reference Parmar C, Rios Velazquez E, Leijenaar R, Jermoumi M, Carvalho S, Mak RH et al (2014) Robust radiomics feature quantification using semiautomatic volumetric segmentation. PLoS One 9:e102107PubMedPubMedCentralCrossRef Parmar C, Rios Velazquez E, Leijenaar R, Jermoumi M, Carvalho S, Mak RH et al (2014) Robust radiomics feature quantification using semiautomatic volumetric segmentation. PLoS One 9:e102107PubMedPubMedCentralCrossRef
31.
go back to reference Elter M, Horsch A (2009) CADx of mammographic masses and clustered microcalcifications: a review. Med Phys 36:2052–2068PubMedCrossRef Elter M, Horsch A (2009) CADx of mammographic masses and clustered microcalcifications: a review. Med Phys 36:2052–2068PubMedCrossRef
32.
go back to reference Liu Y, Kim J, Balagurunathan Y, Li Q, Garcia AL, Stringfield O et al (2016) Radiomic features are associated with EGFR mutation status in lung adenocarcinomas. Clin Lung Cancer 17(5):441–448.e6PubMedPubMedCentralCrossRef Liu Y, Kim J, Balagurunathan Y, Li Q, Garcia AL, Stringfield O et al (2016) Radiomic features are associated with EGFR mutation status in lung adenocarcinomas. Clin Lung Cancer 17(5):441–448.e6PubMedPubMedCentralCrossRef
33.
go back to reference Tan Y, Schwartz LH, Zhao B (2013) Segmentation of lung lesions on CT scans using watershed, active contours, and Markov random field. Med Phys 40:43502PubMedPubMedCentralCrossRef Tan Y, Schwartz LH, Zhao B (2013) Segmentation of lung lesions on CT scans using watershed, active contours, and Markov random field. Med Phys 40:43502PubMedPubMedCentralCrossRef
34.
go back to reference Oliver JA, Budzevich M, Zhang GG, Dilling TJ, Latifi K, Moros EG (2015) Variability of image features computed from conventional and respiratory-gated PET/CT images of lung cancer. Transl Oncol 8:524:534 Oliver JA, Budzevich M, Zhang GG, Dilling TJ, Latifi K, Moros EG (2015) Variability of image features computed from conventional and respiratory-gated PET/CT images of lung cancer. Transl Oncol 8:524:534
35.
go back to reference Zaidi H, El Naqa I (2010) PET-guided delineation of radiation therapy treatment volumes: a survey of image segmentation techniques. Eur J Nucl Med Mol Imaging 37:2165–2187PubMedCrossRef Zaidi H, El Naqa I (2010) PET-guided delineation of radiation therapy treatment volumes: a survey of image segmentation techniques. Eur J Nucl Med Mol Imaging 37:2165–2187PubMedCrossRef
36.
go back to reference Soufi M, Kamali-Asl A, Geramifar P, Rahmim A (2017) A novel framework for automated segmentation and labeling of homogeneous versus heterogeneous lung tumors in [(18)F]FDG-PET imaging. Mol Imaging Biol 19:456–468PubMedCrossRef Soufi M, Kamali-Asl A, Geramifar P, Rahmim A (2017) A novel framework for automated segmentation and labeling of homogeneous versus heterogeneous lung tumors in [(18)F]FDG-PET imaging. Mol Imaging Biol 19:456–468PubMedCrossRef
37.
go back to reference Bug D, Feuerhake F, Oswald E, Schuler J, Merhof D (2019) Semi-automated analysis of digital whole slides from humanized lung-cancer xenograft models for checkpoint inhibitor response prediction. Oncotarget 10:4587–4597PubMedPubMedCentralCrossRef Bug D, Feuerhake F, Oswald E, Schuler J, Merhof D (2019) Semi-automated analysis of digital whole slides from humanized lung-cancer xenograft models for checkpoint inhibitor response prediction. Oncotarget 10:4587–4597PubMedPubMedCentralCrossRef
38.
go back to reference Lustberg T, van Soest J, Gooding M, Peressutti D, Aljabar P, van der Stoep J et al (2018) Clinical evaluation of atlas and deep learning based automatic contouring for lung cancer. Radiother Oncol 126:312–317PubMedCrossRef Lustberg T, van Soest J, Gooding M, Peressutti D, Aljabar P, van der Stoep J et al (2018) Clinical evaluation of atlas and deep learning based automatic contouring for lung cancer. Radiother Oncol 126:312–317PubMedCrossRef
39.
go back to reference Ait Skourt B, El Hassani A, Majda A (2018) Lung CT image segmentation using deep neural networks. Procedia Comput Sci 127:109–113CrossRef Ait Skourt B, El Hassani A, Majda A (2018) Lung CT image segmentation using deep neural networks. Procedia Comput Sci 127:109–113CrossRef
40.
go back to reference Zhong Z, Kim Y, Zhou L, Plichta K, Allen B, Buatti J et al (2018) 3D fully convolutional networks for co-segmentation of tumors on PET-CT images. 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp 228–231 Zhong Z, Kim Y, Zhou L, Plichta K, Allen B, Buatti J et al (2018) 3D fully convolutional networks for co-segmentation of tumors on PET-CT images. 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp 228–231
41.
go back to reference Ferreira Junior JR, Koenigkam-Santos M, Cipriano FEG, Fabro AT, Azevedo-Marques PM (2018) Radiomics-based features for pattern recognition of lung cancer histopathology and metastases. Comput Programs Biomed 159:23–30CrossRef Ferreira Junior JR, Koenigkam-Santos M, Cipriano FEG, Fabro AT, Azevedo-Marques PM (2018) Radiomics-based features for pattern recognition of lung cancer histopathology and metastases. Comput Programs Biomed 159:23–30CrossRef
42.
go back to reference Song SH, Park H, Lee G, Lee HY, Sohn I, Kim HS et al (2017) Imaging phenotyping using radiomics to predict micropapillary pattern within lung adenocarcinoma. J Thorac Oncol 12:624–632PubMedCrossRef Song SH, Park H, Lee G, Lee HY, Sohn I, Kim HS et al (2017) Imaging phenotyping using radiomics to predict micropapillary pattern within lung adenocarcinoma. J Thorac Oncol 12:624–632PubMedCrossRef
43.
go back to reference Zhang L, Chen B, Liu X, Song J, Fang M, Hu C et al (2018) Quantitative biomarkers for prediction of epidermal growth factor receptor mutation in non-small cell lung cancer. Transl Oncol 11:94–101PubMedCrossRef Zhang L, Chen B, Liu X, Song J, Fang M, Hu C et al (2018) Quantitative biomarkers for prediction of epidermal growth factor receptor mutation in non-small cell lung cancer. Transl Oncol 11:94–101PubMedCrossRef
44.
go back to reference Li S, Ding C, Zhang H, Song J, Wu L (2019) Radiomics for the prediction of EGFR mutation subtypes in non-small cell lung cancer. Med Phys 46(10):4545–4552PubMedCrossRef Li S, Ding C, Zhang H, Song J, Wu L (2019) Radiomics for the prediction of EGFR mutation subtypes in non-small cell lung cancer. Med Phys 46(10):4545–4552PubMedCrossRef
45.
go back to reference Tu W, Sun G, Fan L, Wang Y, Xia Y, Guan Y et al (2019) Radiomics signature: A potential and incremental predictor for EGFR mutation status in NSCLC patients, comparison with CT morphology. Lung Cancer 132:28–35PubMedCrossRef Tu W, Sun G, Fan L, Wang Y, Xia Y, Guan Y et al (2019) Radiomics signature: A potential and incremental predictor for EGFR mutation status in NSCLC patients, comparison with CT morphology. Lung Cancer 132:28–35PubMedCrossRef
46.
go back to reference Yip SSF, Kim J, Coroller TP, Parmar C, Velazquez ER, Huynh E et al (2017) Associations between somatic mutations and metabolic imaging phenotypes in non-small cell lung cancer. J Nucl Med 58:569–576PubMedPubMedCentralCrossRef Yip SSF, Kim J, Coroller TP, Parmar C, Velazquez ER, Huynh E et al (2017) Associations between somatic mutations and metabolic imaging phenotypes in non-small cell lung cancer. J Nucl Med 58:569–576PubMedPubMedCentralCrossRef
47.
go back to reference Bodalal Z, Trebeschi S, Nguyen-Kim TDL, Schats W, Beets-Tan R (2019) Radiogenomics: bridging imaging and genomics. Abdom Radiol (NY) 44:1960–1984CrossRef Bodalal Z, Trebeschi S, Nguyen-Kim TDL, Schats W, Beets-Tan R (2019) Radiogenomics: bridging imaging and genomics. Abdom Radiol (NY) 44:1960–1984CrossRef
48.
go back to reference Yoon HJ, Sohn I, Cho JH, Lee HY, Kim JH, Choi YL et al (2015) Decoding tumor phenotypes for ALK, ROS1, and RET fusions in lung adenocarcinoma using a radiomics approach. Medicine (Baltimore) 94:e1753CrossRef Yoon HJ, Sohn I, Cho JH, Lee HY, Kim JH, Choi YL et al (2015) Decoding tumor phenotypes for ALK, ROS1, and RET fusions in lung adenocarcinoma using a radiomics approach. Medicine (Baltimore) 94:e1753CrossRef
50.
go back to reference Hosny A, Parmar C, Coroller TP, Grossmann P, Zeleznik R, Kumar A et al (2018) Deep learning for lung cancer prognostication: a retrospective multi-cohort radiomics study. PLoS Med 15:e1002711PubMedPubMedCentralCrossRef Hosny A, Parmar C, Coroller TP, Grossmann P, Zeleznik R, Kumar A et al (2018) Deep learning for lung cancer prognostication: a retrospective multi-cohort radiomics study. PLoS Med 15:e1002711PubMedPubMedCentralCrossRef
52.
go back to reference Zhang Y, Oikonomou A, Wong A, Haider MA, Khalvati F (2017) Radiomics-based prognosis analysis for non-small cell lung cancer. Sci Rep 7:46349PubMedPubMedCentralCrossRef Zhang Y, Oikonomou A, Wong A, Haider MA, Khalvati F (2017) Radiomics-based prognosis analysis for non-small cell lung cancer. Sci Rep 7:46349PubMedPubMedCentralCrossRef
54.
55.
go back to reference Coroller TP, Grossmann P, Hou Y, Rios Velazquez E, Leijenaar RT, Hermann G et al (2015) CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma. Radiother Oncol 114:345–350PubMedPubMedCentralCrossRef Coroller TP, Grossmann P, Hou Y, Rios Velazquez E, Leijenaar RT, Hermann G et al (2015) CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma. Radiother Oncol 114:345–350PubMedPubMedCentralCrossRef
56.
go back to reference Dou TH, Coroller TP, van Griethuysen JJM, Mak RH, Aerts HJWL (2018) Peritumoral radiomics features predict distant metastasis in locally advanced NSCLC. PLoS ONE 13:e206108PubMedPubMedCentralCrossRef Dou TH, Coroller TP, van Griethuysen JJM, Mak RH, Aerts HJWL (2018) Peritumoral radiomics features predict distant metastasis in locally advanced NSCLC. PLoS ONE 13:e206108PubMedPubMedCentralCrossRef
58.
go back to reference Ohri N, Duan F, Snyder BS, Wei B, Machtay M, Alavi A et al (2016) Pretreatment 18F-FDG PET textural features in locally advanced non-small cell lung cancer: secondary analysis of ACRIN 6668/RTOG 0235. J Nucl Med 57:842–848PubMedPubMedCentralCrossRef Ohri N, Duan F, Snyder BS, Wei B, Machtay M, Alavi A et al (2016) Pretreatment 18F-FDG PET textural features in locally advanced non-small cell lung cancer: secondary analysis of ACRIN 6668/RTOG 0235. J Nucl Med 57:842–848PubMedPubMedCentralCrossRef
59.
go back to reference Xu Y, Hosny A, Zeleznik R, Parmar C, Coroller T, Franco I et al (2019) Deep learning predicts lung cancer treatment response from serial medical imaging. Clin Cancer Res 25:3266–3275PubMedPubMedCentralCrossRef Xu Y, Hosny A, Zeleznik R, Parmar C, Coroller T, Franco I et al (2019) Deep learning predicts lung cancer treatment response from serial medical imaging. Clin Cancer Res 25:3266–3275PubMedPubMedCentralCrossRef
60.
go back to reference Paul R, Hawkins SH, Balagurunathan Y, Schabath MB, Gillies RJ, Hall LO et al (2016) Deep feature transfer learning in combination with traditional features predicts survival among patients with lung adenocarcinoma. Tomography 2:388–395PubMedPubMedCentralCrossRef Paul R, Hawkins SH, Balagurunathan Y, Schabath MB, Gillies RJ, Hall LO et al (2016) Deep feature transfer learning in combination with traditional features predicts survival among patients with lung adenocarcinoma. Tomography 2:388–395PubMedPubMedCentralCrossRef
61.
go back to reference Astaraki M, Wang C, Buizza G, Toma-Dasu I, Lazzeroni M, Smedby O (2019) Early survival prediction in non-small cell lung cancer from PET/CT images using an intra-tumor partitioning method. Phys Med 60:58–65PubMedCrossRef Astaraki M, Wang C, Buizza G, Toma-Dasu I, Lazzeroni M, Smedby O (2019) Early survival prediction in non-small cell lung cancer from PET/CT images using an intra-tumor partitioning method. Phys Med 60:58–65PubMedCrossRef
62.
go back to reference Khorrami M, Khunger M, Zagouras A, Patil P, Thawani R, Bera K et al (2019) Combination of peri- and intratumoral radiomic features on baseline CT scans predicts response to chemotherapy in lung adenocarcinoma. Radiol Artif Intell 1:e180012PubMedPubMedCentralCrossRef Khorrami M, Khunger M, Zagouras A, Patil P, Thawani R, Bera K et al (2019) Combination of peri- and intratumoral radiomic features on baseline CT scans predicts response to chemotherapy in lung adenocarcinoma. Radiol Artif Intell 1:e180012PubMedPubMedCentralCrossRef
63.
go back to reference Aerts HJ (2016) The potential of radiomic-based phenotyping in precision medicine: a review. JAMA Oncol 2(12):1636PubMedCrossRef Aerts HJ (2016) The potential of radiomic-based phenotyping in precision medicine: a review. JAMA Oncol 2(12):1636PubMedCrossRef
64.
go back to reference Jiang M, Sun D, Guo Y, Guo Y, Xiao J, Wang L et al (2019) Assessing PD-L1 expression level by radiomic features from PET/CT in nonsmall cell lung cancer patients: an initial result. Acad Radiol 27(2):171–179PubMedCrossRef Jiang M, Sun D, Guo Y, Guo Y, Xiao J, Wang L et al (2019) Assessing PD-L1 expression level by radiomic features from PET/CT in nonsmall cell lung cancer patients: an initial result. Acad Radiol 27(2):171–179PubMedCrossRef
65.
go back to reference Mattonen SA, Palma DA, Haasbeek CJ, Senan S, Ward AD (2014) Early prediction of tumor recurrence based on CT texture changes after stereotactic ablative radiotherapy (SABR) for lung cancer. Med Phys 41:33502PubMedCrossRef Mattonen SA, Palma DA, Haasbeek CJ, Senan S, Ward AD (2014) Early prediction of tumor recurrence based on CT texture changes after stereotactic ablative radiotherapy (SABR) for lung cancer. Med Phys 41:33502PubMedCrossRef
66.
go back to reference Yu W, Tang C, Hobbs BP, Li X, Koay EJ, Wistuba II et al (2018) Development and validation of a predictive radiomics model for clinical outcomes in stage I non-small cell lung cancer. Int J Radiat Oncol Biol Phys 102:1090–1097PubMedCrossRef Yu W, Tang C, Hobbs BP, Li X, Koay EJ, Wistuba II et al (2018) Development and validation of a predictive radiomics model for clinical outcomes in stage I non-small cell lung cancer. Int J Radiat Oncol Biol Phys 102:1090–1097PubMedCrossRef
67.
go back to reference Moran A, Daly ME, Yip SSF, Yamamoto T (2017) Radiomics-based assessment of radiation-induced lung injury after stereotactic body radiotherapy. Clin Lung Cancer 18:e425–e431PubMedCrossRef Moran A, Daly ME, Yip SSF, Yamamoto T (2017) Radiomics-based assessment of radiation-induced lung injury after stereotactic body radiotherapy. Clin Lung Cancer 18:e425–e431PubMedCrossRef
68.
go back to reference Cunliffe A, Armato SG 3rd, Castillo R, Pham N, Guerrero T, Al-Hallaq HA (2015) Lung texture in serial thoracic computed tomography scans: correlation of radiomics-based features with radiation therapy dose and radiation pneumonitis development. Int J Radiat Oncol Biol Phys 91:1048–1056PubMedPubMedCentralCrossRef Cunliffe A, Armato SG 3rd, Castillo R, Pham N, Guerrero T, Al-Hallaq HA (2015) Lung texture in serial thoracic computed tomography scans: correlation of radiomics-based features with radiation therapy dose and radiation pneumonitis development. Int J Radiat Oncol Biol Phys 91:1048–1056PubMedPubMedCentralCrossRef
69.
go back to reference Krafft SP, Rao A, Stingo F, Briere TM, Court LE, Liao Z et al (2018) The utility of quantitative CT radiomics features for improved prediction of radiation pneumonitis. Med Phys 45:5317–5324PubMedCrossRef Krafft SP, Rao A, Stingo F, Briere TM, Court LE, Liao Z et al (2018) The utility of quantitative CT radiomics features for improved prediction of radiation pneumonitis. Med Phys 45:5317–5324PubMedCrossRef
70.
go back to reference Colen RR, Fujii T, Bilen MA, Kotrotsou A, Abrol S, Hess KR et al (2018) Radiomics to predict immunotherapy-induced pneumonitis: proof of concept. Invest New Drugs 36:601–607PubMedCrossRef Colen RR, Fujii T, Bilen MA, Kotrotsou A, Abrol S, Hess KR et al (2018) Radiomics to predict immunotherapy-induced pneumonitis: proof of concept. Invest New Drugs 36:601–607PubMedCrossRef
71.
go back to reference Liang B, Yan H, Tian Y, Chen X, Yan L, Zhang T et al (2019) Dosiomics: extracting 3D spatial features from dose distribution to predict incidence of radiation pneumonitis. Front Oncol 9:269PubMedPubMedCentralCrossRef Liang B, Yan H, Tian Y, Chen X, Yan L, Zhang T et al (2019) Dosiomics: extracting 3D spatial features from dose distribution to predict incidence of radiation pneumonitis. Front Oncol 9:269PubMedPubMedCentralCrossRef
72.
go back to reference Avanzo M, Trovo M, Furlan C, Barresi L, Linda A, Stancanello J, Andreon L, Minatel E, Bazzocchi M, Trovo MG, Capra E (2015) Normal tissue complication probability models for severe acute radiological lung injury after radiotherapy for lung cancer. Phys Med 31(1):1–8PubMedCrossRef Avanzo M, Trovo M, Furlan C, Barresi L, Linda A, Stancanello J, Andreon L, Minatel E, Bazzocchi M, Trovo MG, Capra E (2015) Normal tissue complication probability models for severe acute radiological lung injury after radiotherapy for lung cancer. Phys Med 31(1):1–8PubMedCrossRef
73.
go back to reference Mattonen SA, Palma DA, Johnson C, Louie AV, Landis M, Rodrigues G et al (2016) Detection of local cancer recurrence after stereotactic ablative radiation therapy for lung cancer: physician performance versus radiomic assessment. Int J Radiat Oncol Biol Phys 94:1121–1128PubMedCrossRef Mattonen SA, Palma DA, Johnson C, Louie AV, Landis M, Rodrigues G et al (2016) Detection of local cancer recurrence after stereotactic ablative radiation therapy for lung cancer: physician performance versus radiomic assessment. Int J Radiat Oncol Biol Phys 94:1121–1128PubMedCrossRef
74.
go back to reference Fried DV, Mawlawi O, Zhang L, Fave X, Zhou S, Ibbott G et al (2016) Stage III non-small cell lung cancer: prognostic value of FDG PET quantitative imaging features combined with clinical prognostic factors. Radiology 278:214–222PubMedCrossRef Fried DV, Mawlawi O, Zhang L, Fave X, Zhou S, Ibbott G et al (2016) Stage III non-small cell lung cancer: prognostic value of FDG PET quantitative imaging features combined with clinical prognostic factors. Radiology 278:214–222PubMedCrossRef
75.
go back to reference Aerts HJ, Grossmann P, Tan Y, Oxnard GG, Rizvi N, Schwartz LH et al (2016) Defining a radiomic response phenotype: a pilot study using targeted therapy in NSCLC. Sci Rep 6:33860PubMedPubMedCentralCrossRef Aerts HJ, Grossmann P, Tan Y, Oxnard GG, Rizvi N, Schwartz LH et al (2016) Defining a radiomic response phenotype: a pilot study using targeted therapy in NSCLC. Sci Rep 6:33860PubMedPubMedCentralCrossRef
78.
go back to reference van Timmeren JE, Leijenaar RTH, van Elmpt W, Reymen B, Lambin P (2017) Feature selection methodology for longitudinal cone-beam CT radiomics. Acta Oncol 56:1537–1543PubMedCrossRef van Timmeren JE, Leijenaar RTH, van Elmpt W, Reymen B, Lambin P (2017) Feature selection methodology for longitudinal cone-beam CT radiomics. Acta Oncol 56:1537–1543PubMedCrossRef
79.
go back to reference van Timmeren JE, van Elmpt W, Leijenaar RTH, Reymen B, Monshouwer R, Bussink J et al (2019) Longitudinal radiomics of cone-beam CT images from non-small cell lung cancer patients: evaluation of the added prognostic value for overall survival and locoregional recurrence. Radiother Oncol 136:78–85PubMedPubMedCentralCrossRef van Timmeren JE, van Elmpt W, Leijenaar RTH, Reymen B, Monshouwer R, Bussink J et al (2019) Longitudinal radiomics of cone-beam CT images from non-small cell lung cancer patients: evaluation of the added prognostic value for overall survival and locoregional recurrence. Radiother Oncol 136:78–85PubMedPubMedCentralCrossRef
80.
go back to reference Du Q, Baine M, Bavitz K, McAllister J, Liang X, Yu H et al (2019) Radiomic feature stability across 4D respiratory phases and its impact on lung tumor prognosis prediction. PLoS ONE 14:e216480PubMedPubMedCentralCrossRef Du Q, Baine M, Bavitz K, McAllister J, Liang X, Yu H et al (2019) Radiomic feature stability across 4D respiratory phases and its impact on lung tumor prognosis prediction. PLoS ONE 14:e216480PubMedPubMedCentralCrossRef
81.
go back to reference Avanzo M, Barbiero S, Trovo M, Bissonnette JP, Jena R, Stancanello J et al (2017) Voxel-by-voxel correlation between radiologically radiation induced lung injury and dose after image-guided, intensity modulated radiotherapy for lung tumors. Phys Med 42:150–156PubMedCrossRef Avanzo M, Barbiero S, Trovo M, Bissonnette JP, Jena R, Stancanello J et al (2017) Voxel-by-voxel correlation between radiologically radiation induced lung injury and dose after image-guided, intensity modulated radiotherapy for lung tumors. Phys Med 42:150–156PubMedCrossRef
82.
go back to reference Deist TM, Dankers FJWM, Ojha P, Scott Marshall M, Janssen T, Faivre-Finn C et al (2020) Distributed learning on 20 000+ lung cancer patients—the Personal Health Train. Radiother Oncol 144:189–200PubMedCrossRef Deist TM, Dankers FJWM, Ojha P, Scott Marshall M, Janssen T, Faivre-Finn C et al (2020) Distributed learning on 20 000+ lung cancer patients—the Personal Health Train. Radiother Oncol 144:189–200PubMedCrossRef
83.
go back to reference Khorrami M, Bera K, Leo P, Vaidya P, Patil P, Thawani R et al (2020) Stable and discriminating radiomic predictor of recurrence in early stage non-small cell lung cancer: multi-site study. Lung Cancer 142:90–97PubMedCrossRef Khorrami M, Bera K, Leo P, Vaidya P, Patil P, Thawani R et al (2020) Stable and discriminating radiomic predictor of recurrence in early stage non-small cell lung cancer: multi-site study. Lung Cancer 142:90–97PubMedCrossRef
84.
go back to reference Leijenaar RT, Carvalho S, Velazquez ER, van Elmpt WJ, Parmar C, Hoekstra OS et al (2013) Stability of FDG-PET radiomics features: an integrated analysis of test-retest and inter-observer variability. Acta Oncol 52:1391–1397PubMedCrossRef Leijenaar RT, Carvalho S, Velazquez ER, van Elmpt WJ, Parmar C, Hoekstra OS et al (2013) Stability of FDG-PET radiomics features: an integrated analysis of test-retest and inter-observer variability. Acta Oncol 52:1391–1397PubMedCrossRef
85.
go back to reference van Timmeren JE, Carvalho S, Leijenaar RTH, Troost EGC, van Elmpt W, de Ruysscher D et al (2019) Challenges and caveats of a multi-center retrospective radiomics study: an example of early treatment response assessment for NSCLC patients using FDG-PET/CT radiomics. PLoS ONE 14:e217536PubMedPubMedCentralCrossRef van Timmeren JE, Carvalho S, Leijenaar RTH, Troost EGC, van Elmpt W, de Ruysscher D et al (2019) Challenges and caveats of a multi-center retrospective radiomics study: an example of early treatment response assessment for NSCLC patients using FDG-PET/CT radiomics. PLoS ONE 14:e217536PubMedPubMedCentralCrossRef
86.
go back to reference Jia X, Ren L, Cai J (2020) Clinical implementation of AI technologies will require interpretable AI models. Med Phys 47:1–4PubMedCrossRef Jia X, Ren L, Cai J (2020) Clinical implementation of AI technologies will require interpretable AI models. Med Phys 47:1–4PubMedCrossRef
Metadata
Title
Radiomics and deep learning in lung cancer
Authors
Michele Avanzo
Joseph Stancanello
Giovanni Pirrone
Giovanna Sartor
Publication date
01-10-2020
Publisher
Springer Berlin Heidelberg
Published in
Strahlentherapie und Onkologie / Issue 10/2020
Print ISSN: 0179-7158
Electronic ISSN: 1439-099X
DOI
https://doi.org/10.1007/s00066-020-01625-9

Other articles of this Issue 10/2020

Strahlentherapie und Onkologie 10/2020 Go to the issue