Skip to main content
Top
Published in: Strahlentherapie und Onkologie 9/2021

Open Access 01-09-2021 | Computed Tomography | Original Article

[F18] FDG-PET/CT for manual or semiautomated GTV delineation of the primary tumor for radiation therapy planning in patients with esophageal cancer: is it useful?

Authors: Franziska Walter, Constanze Jell, Barbara Zollner, Claudia Andrae, Sabine Gerum, Harun Ilhan, Claus Belka, Maximilian Niyazi, Falk Roeder

Published in: Strahlentherapie und Onkologie | Issue 9/2021

Login to get access

Abstract

Background

Target volume definition of the primary tumor in esophageal cancer is usually based on computed tomography (CT) supported by endoscopy and/or endoscopic ultrasound and can be difficult given the low soft-tissue contrast of CT resulting in large interobserver variability. We evaluated the value of a dedicated planning [F18] FDG-Positron emission tomography/computer tomography (PET/CT) for harmonization of gross tumor volume (GTV) delineation and the feasibility of semiautomated structures for planning purposes in a large cohort.

Methods

Patients receiving a dedicated planning [F18] FDG-PET/CT (06/2011–03/2016) were included. GTV was delineated on CT and on PET/CT (GTVCT and GTVPET/CT, respectively) by three independent radiation oncologists. Interobserver variability was evaluated by comparison of mean GTV and mean tumor lengths, and via Sørensen–Dice coefficients (DSC) for spatial overlap. Semiautomated volumes were constructed based on PET/CT using fixed standardized uptake values (SUV) thresholds (SUV30, 35, and 40) or background- and metabolically corrected PERCIST-TLG and Schaefer algorithms, and compared to manually delineated volumes.

Results

45 cases were evaluated. Mean GTVCT and GTVPET/CT were 59.2/58.0 ml, 65.4/64.1 ml, and 60.4/59.2 ml for observers A–C. No significant difference between CT- and PET/CT-based delineation was found comparing the mean volumes or lengths. Mean Dice coefficients on CT and PET/CT were 0.79/0.77, 0.81/0.78, and 0.8/0.78 for observer pairs AB, AC, and BC, respectively, with no significant differences. Mean GTV volumes delineated semiautomatically with SUV30/SUV35/SUV40/Schaefer’s and PERCIST-TLG threshold were 69.1/23.9/18.8/18.6 and 70.9 ml. The best concordance of a semiautomatically delineated structure with the manually delineated GTVCT/GTVPET/CT was observed for PERCIST-TLG.

Conclusion

We were not able to show that the integration of PET/CT for GTV delineation of the primary tumor resulted in reduced interobserver variability. The PERCIST-TLG algorithm seemed most promising compared to other thresholds for further evaluation of semiautomated delineation of esophageal cancer.
Literature
1.
go back to reference Roeder F et al (2014) Intensity modulated radiotherapy (IMRT) with concurrent chemotherapy as definitive treatment of locally advanced esophageal cancer. Radiat Oncol 9:191CrossRef Roeder F et al (2014) Intensity modulated radiotherapy (IMRT) with concurrent chemotherapy as definitive treatment of locally advanced esophageal cancer. Radiat Oncol 9:191CrossRef
2.
go back to reference Haefner MF et al (2018) Neoadjuvant versus definitive chemoradiotherapy for locally advanced esophageal cancer: outcomes and patterns of failure. Strahlenther Onkol 194(2):116–124CrossRef Haefner MF et al (2018) Neoadjuvant versus definitive chemoradiotherapy for locally advanced esophageal cancer: outcomes and patterns of failure. Strahlenther Onkol 194(2):116–124CrossRef
3.
go back to reference Herskovic A et al (1992) Combined chemotherapy and radiotherapy compared with radiotherapy alone in patients with cancer of the esophagus. N Engl J Med 326(24):1593–1598CrossRef Herskovic A et al (1992) Combined chemotherapy and radiotherapy compared with radiotherapy alone in patients with cancer of the esophagus. N Engl J Med 326(24):1593–1598CrossRef
4.
go back to reference van Hagen P et al (2012) Preoperative chemoradiotherapy for esophageal or junctional cancer. N Engl J Med 366(22):2074–2084CrossRef van Hagen P et al (2012) Preoperative chemoradiotherapy for esophageal or junctional cancer. N Engl J Med 366(22):2074–2084CrossRef
5.
go back to reference Wu AJ et al (2015) Expert consensus contouring guidelines for intensity modulated radiation therapy in esophageal and gastroesophageal junction cancer. Int J Radiat Oncol Biol Phys 92(4):911–920CrossRef Wu AJ et al (2015) Expert consensus contouring guidelines for intensity modulated radiation therapy in esophageal and gastroesophageal junction cancer. Int J Radiat Oncol Biol Phys 92(4):911–920CrossRef
6.
go back to reference Nowee ME et al (2019) Gross tumour delineation on computed tomography and positron emission tomography-computed tomography in oesophageal cancer: a nationwide study. Clin Transl Radiat Oncol 14:33–39CrossRef Nowee ME et al (2019) Gross tumour delineation on computed tomography and positron emission tomography-computed tomography in oesophageal cancer: a nationwide study. Clin Transl Radiat Oncol 14:33–39CrossRef
7.
go back to reference Walter F et al (2018) Clinical outcome of elderly patients (≥ 70 years) with esophageal cancer undergoing definitive or neoadjuvant radio(chemo)therapy: a retrospective single center analysis. Radiat Oncol 13(1):93CrossRef Walter F et al (2018) Clinical outcome of elderly patients (≥ 70 years) with esophageal cancer undergoing definitive or neoadjuvant radio(chemo)therapy: a retrospective single center analysis. Radiat Oncol 13(1):93CrossRef
8.
go back to reference Hegemann NS et al (2018) Neoadjuvant chemoradiation for esophageal cancer: surgery improves locoregional control while response based on FDG-PET/CT predicts survival. Strahlenther Onkol 194(5):435–443CrossRef Hegemann NS et al (2018) Neoadjuvant chemoradiation for esophageal cancer: surgery improves locoregional control while response based on FDG-PET/CT predicts survival. Strahlenther Onkol 194(5):435–443CrossRef
9.
go back to reference Grosu AL et al (2005) Positron emission tomography for radiation treatment planning. Strahlenther Onkol 181(8):483–499CrossRef Grosu AL et al (2005) Positron emission tomography for radiation treatment planning. Strahlenther Onkol 181(8):483–499CrossRef
10.
go back to reference Niyazi M et al (2013) Automated biological target volume delineation for radiotherapy treatment planning using FDG-PET/CT. Radiat Oncol 8:180CrossRef Niyazi M et al (2013) Automated biological target volume delineation for radiotherapy treatment planning using FDG-PET/CT. Radiat Oncol 8:180CrossRef
11.
go back to reference Eze C et al (2019) Initial report on feasibility of PET/CT-based image-guided moderate hypofractionated thoracic irradiation in node-positive non-small cell lung cancer patients with poor prognostic factors and strongly diminished lung function: a retrospective analysis. Radiat Oncol 14(1):163CrossRef Eze C et al (2019) Initial report on feasibility of PET/CT-based image-guided moderate hypofractionated thoracic irradiation in node-positive non-small cell lung cancer patients with poor prognostic factors and strongly diminished lung function: a retrospective analysis. Radiat Oncol 14(1):163CrossRef
12.
go back to reference Schmidt-Hegemann NS et al (2018) Outcome after PSMA PET/CT based radiotherapy in patients with biochemical persistence or recurrence after radical prostatectomy. Radiat Oncol 13(1):37CrossRef Schmidt-Hegemann NS et al (2018) Outcome after PSMA PET/CT based radiotherapy in patients with biochemical persistence or recurrence after radical prostatectomy. Radiat Oncol 13(1):37CrossRef
13.
go back to reference Yuan S et al (2006) Additional value of PET/CT over PET in assessment of locoregional lymph nodes in thoracic esophageal squamous cell cancer. J Nucl Med 47(8):1255–1259PubMed Yuan S et al (2006) Additional value of PET/CT over PET in assessment of locoregional lymph nodes in thoracic esophageal squamous cell cancer. J Nucl Med 47(8):1255–1259PubMed
14.
go back to reference Machiels M et al (2016) Distribution of lymph node metastases on FDG-PET/CT in inoperable or unresectable oesophageal cancer patients and the impact on target volume definition in radiation therapy. J Med Imaging Radiat Oncol 60(4):520–527CrossRef Machiels M et al (2016) Distribution of lymph node metastases on FDG-PET/CT in inoperable or unresectable oesophageal cancer patients and the impact on target volume definition in radiation therapy. J Med Imaging Radiat Oncol 60(4):520–527CrossRef
15.
go back to reference Schreurs LM et al (2010) Impact of 18-fluorodeoxyglucose positron emission tomography on computed tomography defined target volumes in radiation treatment planning of esophageal cancer: reduction in geographic misses with equal inter-observer variability: PET/CT improves esophageal target definition. Dis Esophagus 23(6):493–501CrossRef Schreurs LM et al (2010) Impact of 18-fluorodeoxyglucose positron emission tomography on computed tomography defined target volumes in radiation treatment planning of esophageal cancer: reduction in geographic misses with equal inter-observer variability: PET/CT improves esophageal target definition. Dis Esophagus 23(6):493–501CrossRef
16.
go back to reference Vali FS et al (2010) Comparison of standardized uptake value-based positron emission tomography and computed tomography target volumes in esophageal cancer patients undergoing radiotherapy. Int J Radiat Oncol Biol Phys 78(4):1057–1063CrossRef Vali FS et al (2010) Comparison of standardized uptake value-based positron emission tomography and computed tomography target volumes in esophageal cancer patients undergoing radiotherapy. Int J Radiat Oncol Biol Phys 78(4):1057–1063CrossRef
17.
go back to reference Dong X et al (2015) Intra-tumour 18F-FDG uptake heterogeneity decreases the reliability on target volume definition with positron emission tomography/computed tomography imaging. J Med Imaging Radiat Oncol 59(3):338–345CrossRef Dong X et al (2015) Intra-tumour 18F-FDG uptake heterogeneity decreases the reliability on target volume definition with positron emission tomography/computed tomography imaging. J Med Imaging Radiat Oncol 59(3):338–345CrossRef
18.
go back to reference Thomas L et al (2015) Tumour delineation in oesophageal cancer—a prospective study of delineation in PET and CT with and without endoscopically placed clip markers. Radiother Oncol 116(2):269–275CrossRef Thomas L et al (2015) Tumour delineation in oesophageal cancer—a prospective study of delineation in PET and CT with and without endoscopically placed clip markers. Radiother Oncol 116(2):269–275CrossRef
19.
go back to reference Jimenez-Jimenez E et al (2018) Radiotherapy volume delineation using 18F-FDG-PET/CT modifies gross node volume in patients with oesophageal cancer. Clin Transl Oncol 20(11):1460–1466CrossRef Jimenez-Jimenez E et al (2018) Radiotherapy volume delineation using 18F-FDG-PET/CT modifies gross node volume in patients with oesophageal cancer. Clin Transl Oncol 20(11):1460–1466CrossRef
20.
go back to reference Toya R et al (2019) Impact of hybrid FDG-PET/CT on gross tumor volume definition of cervical esophageal cancer: reducing interobserver variation. J Radiat Res 60(3):348–352CrossRef Toya R et al (2019) Impact of hybrid FDG-PET/CT on gross tumor volume definition of cervical esophageal cancer: reducing interobserver variation. J Radiat Res 60(3):348–352CrossRef
21.
go back to reference Muijs CT et al (2010) A systematic review on the role of FDG-PET/CT in tumour delineation and radiotherapy planning in patients with esophageal cancer. Radiother Oncol 97(2):165–171CrossRef Muijs CT et al (2010) A systematic review on the role of FDG-PET/CT in tumour delineation and radiotherapy planning in patients with esophageal cancer. Radiother Oncol 97(2):165–171CrossRef
22.
go back to reference Schaefer A et al (2012) Multi-centre calibration of an adaptive thresholding method for PET-based delineation of tumour volumes in radiotherapy planning of lung cancer. Nuklearmedizin 51(3):101–110CrossRef Schaefer A et al (2012) Multi-centre calibration of an adaptive thresholding method for PET-based delineation of tumour volumes in radiotherapy planning of lung cancer. Nuklearmedizin 51(3):101–110CrossRef
23.
go back to reference Nowee ME et al (2019) Gross tumour delineation on computed tomography and positron emission tomography-computed tomography in oesophageal cancer: A nationwide study. Clin Transl Radiat Oncol 14:33–39 Nowee ME et al (2019) Gross tumour delineation on computed tomography and positron emission tomography-computed tomography in oesophageal cancer: A nationwide study. Clin Transl Radiat Oncol 14:33–39
24.
go back to reference Zhong X et al (2009) Using 18F-fluorodeoxyglucose positron emission tomography to estimate the length of gross tumor in patients with squamous cell carcinoma of the esophagus. Int J Radiat Oncol Biol Phys 73(1):136–141CrossRef Zhong X et al (2009) Using 18F-fluorodeoxyglucose positron emission tomography to estimate the length of gross tumor in patients with squamous cell carcinoma of the esophagus. Int J Radiat Oncol Biol Phys 73(1):136–141CrossRef
25.
go back to reference Han D et al (2010) Comparison of (18)F-fluorothymidine and (18)F-fluorodeoxyglucose PET/CT in delineating gross tumor volume by optimal threshold in patients with squamous cell carcinoma of thoracic esophagus. Int J Radiat Oncol Biol Phys 76(4):1235–1241CrossRef Han D et al (2010) Comparison of (18)F-fluorothymidine and (18)F-fluorodeoxyglucose PET/CT in delineating gross tumor volume by optimal threshold in patients with squamous cell carcinoma of thoracic esophagus. Int J Radiat Oncol Biol Phys 76(4):1235–1241CrossRef
26.
go back to reference Yu W et al (2009) GTV spatial conformity between different delineation methods by 18FDG PET/CT and pathology in esophageal cancer. Radiother Oncol 93(3):441–446CrossRef Yu W et al (2009) GTV spatial conformity between different delineation methods by 18FDG PET/CT and pathology in esophageal cancer. Radiother Oncol 93(3):441–446CrossRef
27.
go back to reference Vesprini D, Ung Y, Dinniwell R et al (2008) Improving observer variability in target delineation for gastro-oesophageal cancer—the role of 18F-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography. Clin Oncol 20:631–638CrossRef Vesprini D, Ung Y, Dinniwell R et al (2008) Improving observer variability in target delineation for gastro-oesophageal cancer—the role of 18F-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography. Clin Oncol 20:631–638CrossRef
28.
go back to reference Sihvo EI, Rasanen JV, Knuuti MJ et al (2004) Adenocarcinoma of the esophagus and the esophagogastric junction: positron emissio tomography improves staging and prediction of survival in distant but not in locoregional disease. J Gastrointest Surg 8:988–996CrossRef Sihvo EI, Rasanen JV, Knuuti MJ et al (2004) Adenocarcinoma of the esophagus and the esophagogastric junction: positron emissio tomography improves staging and prediction of survival in distant but not in locoregional disease. J Gastrointest Surg 8:988–996CrossRef
29.
go back to reference Scheurs LM, Pultrum BB, Koopmans KP et al (2008) Better assessment of nodal metastases by PET/CT fusion compared to side-by-side PET/CT in oesophageal cancer. Anticancer Res 28:1867–1873 Scheurs LM, Pultrum BB, Koopmans KP et al (2008) Better assessment of nodal metastases by PET/CT fusion compared to side-by-side PET/CT in oesophageal cancer. Anticancer Res 28:1867–1873
30.
go back to reference Kato H, Kimura H, Nakajima M et al (2008) The additional value of integrated PET/CT over PET in initial lymph node staging of esophageal cancer. Oncol Rep 20:857–861PubMed Kato H, Kimura H, Nakajima M et al (2008) The additional value of integrated PET/CT over PET in initial lymph node staging of esophageal cancer. Oncol Rep 20:857–861PubMed
31.
go back to reference Metzger JG, Wollschläger D, Miederer M, Vaupel P, Moehler M, Schmidberger H, Mayer A (2017) Inclusion of PET-CT into planning of primary or neoadjuvant chemoradiotherapy of esophageal cancer improves prognosis. Strahlenther Onkol 193:791–799CrossRef Metzger JG, Wollschläger D, Miederer M, Vaupel P, Moehler M, Schmidberger H, Mayer A (2017) Inclusion of PET-CT into planning of primary or neoadjuvant chemoradiotherapy of esophageal cancer improves prognosis. Strahlenther Onkol 193:791–799CrossRef
32.
go back to reference van Westreenen HL, Westerterp M, Bossyut PM et al (2004) Systematic review of the staging performance of 18-F-fluorodeoxyglucose positron emission tomographys in esophageal cancer. J Clin Oncol 22:3805–3812CrossRef van Westreenen HL, Westerterp M, Bossyut PM et al (2004) Systematic review of the staging performance of 18-F-fluorodeoxyglucose positron emission tomographys in esophageal cancer. J Clin Oncol 22:3805–3812CrossRef
33.
go back to reference Chatterton BE, Shon IH, Baldey A et al (2009) Positron emission tomography changes management and prognostic stratification in patients with oesophageal cancer: results of a multicenter prospective study. Eur J Nucl Med Mol Imaging 36:354–361CrossRef Chatterton BE, Shon IH, Baldey A et al (2009) Positron emission tomography changes management and prognostic stratification in patients with oesophageal cancer: results of a multicenter prospective study. Eur J Nucl Med Mol Imaging 36:354–361CrossRef
Metadata
Title
[F18] FDG-PET/CT for manual or semiautomated GTV delineation of the primary tumor for radiation therapy planning in patients with esophageal cancer: is it useful?
Authors
Franziska Walter
Constanze Jell
Barbara Zollner
Claudia Andrae
Sabine Gerum
Harun Ilhan
Claus Belka
Maximilian Niyazi
Falk Roeder
Publication date
01-09-2021
Publisher
Springer Berlin Heidelberg
Published in
Strahlentherapie und Onkologie / Issue 9/2021
Print ISSN: 0179-7158
Electronic ISSN: 1439-099X
DOI
https://doi.org/10.1007/s00066-020-01701-0

Other articles of this Issue 9/2021

Strahlentherapie und Onkologie 9/2021 Go to the issue