Skip to main content
Top
Published in: Knee Surgery, Sports Traumatology, Arthroscopy 5/2019

01-05-2019 | Computed Tomography | KNEE

Phenotyping the knee in young non-osteoarthritic knees shows a wide distribution of femoral and tibial coronal alignment

Authors: Michael T. Hirschmann, Lukas B. Moser, Felix Amsler, Henrik Behrend, Vincent Leclercq, Silvan Hess

Published in: Knee Surgery, Sports Traumatology, Arthroscopy | Issue 5/2019

Login to get access

Abstract

Purpose

There is a lack of knowledge about the joint line orientation of the femur and tibia in non-osteoarthritic knees. The primary purpose of the present study was to evaluate the orientation of the joint lines in native non-osteoarthritic knees using 3D-reconstructed CT scans. The secondary purpose was to identify knee phenotypes to combine the information of the femoral and tibial alignment.

Methods

A total of 308 non-osteoarthritic knees of 160 patients (male to female ratio = 102:58, mean age ± standard deviation 30 ± 7 years (16–44 years) were retrospectively included from our registry. All patients received CT of the knee according to the Imperial Knee Protocol. The orientation of the femoral and tibial joint line was measured in relation to their mechanical axis (femoral mechanical angle, FMA, and tibial mechanical angle, TMA) using a commercially planning software (KneePLAN 3D, Symbios, Yverdon les Bains, Switzerland). The values of FMA and TMA were compared between males and females. Descriptive statistics, such as means, ranges, and measures of variance (e.g. standard deviations), were presented. Based on these results, phenotypes were introduced for the femur and tibia. These phenotypes, based on FMA and TMA values, consist of a mean value and cover a range of ± 1.5° from this mean (3° increments). The distribution of femoral and tibial phenotypes, and their combinations (knee phenotypes) were calculated for the total group and for both genders.

Results

The overall mean FMA ± standard deviation (SD) was 93.4° ± 2.0° and values ranged from 87.9° varus to 100° valgus. The overall mean TMA ± SD was 87.2° ± 2.4° with a range of 81.3° varus to 94.6° valgus. FMA and TMA showed significant gender differences (p < 0.01). Females showed more valgus alignment than males. The most common femoral phenotype was neutral in both genders. The most common tibial phenotype was neutral in the male knees (62.8%) and valgus (41.6%) in the female knees. In males, the most frequent combination (knee phenotype) was a neutral phenotype in the femur and a neutral phenotype in the tibia (25.6%). In females, it was a neutral femoral phenotype and a valgus tibial phenotype (28.3%).

Conclusion

3D-reconstructed CT scans confirmed the great variability of the joint line orientation in non-osteoarthritic knees. The introduced femoral and tibial phenotypes enable the evaluation of the femoral and tibial alignment together (knee phenotypes). The variability of knee phenotypes found in this young non-osteoarthritic population clearly shows the need for a more individualized approach in TKA.

Level of evidence

III.
Literature
1.
go back to reference Moreland JR, Bassett LW, Hanker GJ (1987) Radiographic analysis of the axial alignment of the lower extremity. J Bone Jt Surg Am 69:745–749CrossRef Moreland JR, Bassett LW, Hanker GJ (1987) Radiographic analysis of the axial alignment of the lower extremity. J Bone Jt Surg Am 69:745–749CrossRef
2.
go back to reference Bellemans J, Colyn W, Vandenneucker H, Victor J (2012) The Chitranjan Ranawat award: is neutral mechanical alignment normal for all patients? The concept of constitutional varus. Clin Orthop Relat Res 470:45–53CrossRefPubMed Bellemans J, Colyn W, Vandenneucker H, Victor J (2012) The Chitranjan Ranawat award: is neutral mechanical alignment normal for all patients? The concept of constitutional varus. Clin Orthop Relat Res 470:45–53CrossRefPubMed
3.
go back to reference Cooke D, Scudamore A, Li J, Wyss U, Bryant T et al (1997) Axial lower-limb alignment: comparison of knee geometry in normal volunteers and osteoarthritis patients. Osteoarthr Cartil 5:39–47CrossRefPubMed Cooke D, Scudamore A, Li J, Wyss U, Bryant T et al (1997) Axial lower-limb alignment: comparison of knee geometry in normal volunteers and osteoarthritis patients. Osteoarthr Cartil 5:39–47CrossRefPubMed
4.
go back to reference Tang WM, Zhu YH, Chiu KY (2000) Axial alignment of the lower extremity in Chinese adults. J Bone Jt Surg Am 82:1603–1608CrossRef Tang WM, Zhu YH, Chiu KY (2000) Axial alignment of the lower extremity in Chinese adults. J Bone Jt Surg Am 82:1603–1608CrossRef
6.
go back to reference Hirschmann MT, Konala P, Amsler F, Iranpour F, Friederich NF et al (2011) The position and orientation of total knee replacement components: a comparison of conventional radiographs, transverse 2D-CT slices and 3D-CT reconstruction. J Bone Jt Surg Br 93:629–633CrossRef Hirschmann MT, Konala P, Amsler F, Iranpour F, Friederich NF et al (2011) The position and orientation of total knee replacement components: a comparison of conventional radiographs, transverse 2D-CT slices and 3D-CT reconstruction. J Bone Jt Surg Br 93:629–633CrossRef
7.
go back to reference Hovinga KR, Lerner AL (2009) Anatomic variations between Japanese and Caucasian populations in the healthy young adult knee joint. J Orthop Res 27:1191–1196CrossRefPubMed Hovinga KR, Lerner AL (2009) Anatomic variations between Japanese and Caucasian populations in the healthy young adult knee joint. J Orthop Res 27:1191–1196CrossRefPubMed
8.
go back to reference Jabalameli M, Moghimi J, Yeganeh A, Nojomi M (2015) Parameters of lower extremities alignment view in Iranian adult population. Acta Med Iran 53:293–296PubMed Jabalameli M, Moghimi J, Yeganeh A, Nojomi M (2015) Parameters of lower extremities alignment view in Iranian adult population. Acta Med Iran 53:293–296PubMed
9.
go back to reference Kawakami H, Sugano N, Yonenobu K, Yoshikawa H, Ochi T et al (2004) Effects of rotation on measurement of lower limb alignment for knee osteotomy. J Orthop Res 22:1248–1253CrossRefPubMed Kawakami H, Sugano N, Yonenobu K, Yoshikawa H, Ochi T et al (2004) Effects of rotation on measurement of lower limb alignment for knee osteotomy. J Orthop Res 22:1248–1253CrossRefPubMed
11.
go back to reference Maini L, Singh S, Kushwaha NS, Saini A, Rohilla S et al (2015) Radiographic analysis of the axial alignment of the lower extremity in Indian adult males. JAJS 2:128–131 Maini L, Singh S, Kushwaha NS, Saini A, Rohilla S et al (2015) Radiographic analysis of the axial alignment of the lower extremity in Indian adult males. JAJS 2:128–131
12.
go back to reference Mullaji AB, Marawar SV, Mittal V (2009) A comparison of coronal plane axial femoral relationships in Asian patients with varus osteoarthritic knees and healthy knees. J Arthroplasty 24:861–867CrossRefPubMed Mullaji AB, Marawar SV, Mittal V (2009) A comparison of coronal plane axial femoral relationships in Asian patients with varus osteoarthritic knees and healthy knees. J Arthroplasty 24:861–867CrossRefPubMed
15.
go back to reference Khattak MJ, Umer M, Davis ET, Habib M, Ahmed M (2010) Lower-limb alignment and posterior tibial slope in Pakistanis: a radiographic study. J Orthop Surg (Hong Kong) 18:22–25CrossRef Khattak MJ, Umer M, Davis ET, Habib M, Ahmed M (2010) Lower-limb alignment and posterior tibial slope in Pakistanis: a radiographic study. J Orthop Surg (Hong Kong) 18:22–25CrossRef
16.
go back to reference Nakano N, Matsumoto T, Hashimura M, Takayama K, Ishida K et al (2016) Coronal lower limb alignment in normal knees—a radiographic analysis of 797 normal knee subjects. Knee 23:209–213CrossRefPubMed Nakano N, Matsumoto T, Hashimura M, Takayama K, Ishida K et al (2016) Coronal lower limb alignment in normal knees—a radiographic analysis of 797 normal knee subjects. Knee 23:209–213CrossRefPubMed
17.
go back to reference Song M-H, Yoo S-H, Kang S-W, Kim Y-J, Park G-T et al (2015) Coronal alignment of the lower limb and the incidence of constitutional varus knee in Korean females. Knee Surg Relat Res 27:49–55CrossRefPubMedPubMedCentral Song M-H, Yoo S-H, Kang S-W, Kim Y-J, Park G-T et al (2015) Coronal alignment of the lower limb and the incidence of constitutional varus knee in Korean females. Knee Surg Relat Res 27:49–55CrossRefPubMedPubMedCentral
18.
go back to reference Sailhan F, Jacob L, Hamadouche M (2017) Differences in limb alignment and femoral mechanical-anatomical angles using two dimension versus three dimension radiographic imaging. Int Orthop 41:2009–2016CrossRefPubMed Sailhan F, Jacob L, Hamadouche M (2017) Differences in limb alignment and femoral mechanical-anatomical angles using two dimension versus three dimension radiographic imaging. Int Orthop 41:2009–2016CrossRefPubMed
Metadata
Title
Phenotyping the knee in young non-osteoarthritic knees shows a wide distribution of femoral and tibial coronal alignment
Authors
Michael T. Hirschmann
Lukas B. Moser
Felix Amsler
Henrik Behrend
Vincent Leclercq
Silvan Hess
Publication date
01-05-2019
Publisher
Springer Berlin Heidelberg
Published in
Knee Surgery, Sports Traumatology, Arthroscopy / Issue 5/2019
Print ISSN: 0942-2056
Electronic ISSN: 1433-7347
DOI
https://doi.org/10.1007/s00167-019-05508-0

Other articles of this Issue 5/2019

Knee Surgery, Sports Traumatology, Arthroscopy 5/2019 Go to the issue