Skip to main content
Top
Published in: Journal of Translational Medicine 1/2024

Open Access 01-12-2024 | Computed Tomography | Research

Lung nodule malignancy classification with associated pulmonary fibrosis using 3D attention-gated convolutional network with CT scans

Authors: Yucheng Liu, Hao Yun Hsu, Tiffany Lin, Boyu Peng, Anjali Saqi, Mary M. Salvatore, Sachin Jambawalikar

Published in: Journal of Translational Medicine | Issue 1/2024

Login to get access

Abstract

Background

Chest Computed tomography (CT) scans detect lung nodules and assess pulmonary fibrosis. While pulmonary fibrosis indicates increased lung cancer risk, current clinical practice characterizes nodule risk of malignancy based on nodule size and smoking history; little consideration is given to the fibrotic microenvironment.

Purpose

To evaluate the effect of incorporating fibrotic microenvironment into classifying malignancy of lung nodules in chest CT images using deep learning techniques.

Materials and methods

We developed a visualizable 3D classification model trained with in-house CT dataset for the nodule malignancy classification task. Three slightly-modified datasets were created: (1) nodule alone (microenvironment removed); (2) nodule with surrounding lung microenvironment; and (3) nodule in microenvironment with semantic fibrosis metadata. For each of the models, tenfold cross-validation was performed. Results were evaluated using quantitative measures, such as accuracy, sensitivity, specificity, and area-under-curve (AUC), as well as qualitative assessments, such as attention maps and class activation maps (CAM).

Results

The classification model trained with nodule alone achieved 75.61% accuracy, 50.00% sensitivity, 88.46% specificity, and 0.78 AUC; the model trained with nodule and microenvironment achieved 79.03% accuracy, 65.46% sensitivity, 85.86% specificity, and 0.84 AUC. The model trained with additional semantic fibrosis metadata achieved 80.84% accuracy, 74.67% sensitivity, 84.95% specificity, and 0.89 AUC. Our visual evaluation of attention maps and CAM suggested that both the nodules and the microenvironment contributed to the task.

Conclusion

The nodule malignancy classification performance was found to be improving with microenvironment data. Further improvement was found when incorporating semantic fibrosis information.
Appendix
Available only for authorised users
Literature
1.
go back to reference Erasmus JJ, Connolly JE, McAdams HP, Roggli VL. Solitary pulmonary nodules: Part I. Morphologic evaluation for differentiation of benign and malignant lesions. Radiographics. 2000;20:43–58.CrossRefPubMed Erasmus JJ, Connolly JE, McAdams HP, Roggli VL. Solitary pulmonary nodules: Part I. Morphologic evaluation for differentiation of benign and malignant lesions. Radiographics. 2000;20:43–58.CrossRefPubMed
2.
go back to reference Ten Haaf K, Jeon J, Tammemägi MC, Han SS, Kong CY, Plevritis SK, et al. Risk prediction models for selection of lung cancer screening candidates: a retrospective validation study. PLoS Med. 2017;14: e1002277.CrossRefPubMedPubMedCentral Ten Haaf K, Jeon J, Tammemägi MC, Han SS, Kong CY, Plevritis SK, et al. Risk prediction models for selection of lung cancer screening candidates: a retrospective validation study. PLoS Med. 2017;14: e1002277.CrossRefPubMedPubMedCentral
3.
go back to reference National Lung Screening Trial Research Team, Aberle DR, Adams AM, Berg CD, Black WC, Clapp JD, et al. Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med. 2011;365:395–409.CrossRef National Lung Screening Trial Research Team, Aberle DR, Adams AM, Berg CD, Black WC, Clapp JD, et al. Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med. 2011;365:395–409.CrossRef
4.
go back to reference Martin MD, Kanne JP, Broderick LS, Kazerooni EA, Meyer CA. Lung-RADS: pushing the limits. Radiographics. 2017;37:1975–93.CrossRefPubMed Martin MD, Kanne JP, Broderick LS, Kazerooni EA, Meyer CA. Lung-RADS: pushing the limits. Radiographics. 2017;37:1975–93.CrossRefPubMed
5.
go back to reference Karampitsakos T, Tzilas V, Tringidou R, Steiropoulos P, Aidinis V, Papiris SA, et al. Lung cancer in patients with idiopathic pulmonary fibrosis. Pulm Pharmacol Ther. 2017;45:1–10.CrossRefPubMed Karampitsakos T, Tzilas V, Tringidou R, Steiropoulos P, Aidinis V, Papiris SA, et al. Lung cancer in patients with idiopathic pulmonary fibrosis. Pulm Pharmacol Ther. 2017;45:1–10.CrossRefPubMed
6.
go back to reference Li J, Yang M, Li P, Su Z, Gao P, Zhang J. Idiopathic pulmonary fibrosis will increase the risk of lung cancer. Chin Med J. 2014;127:3142–9.PubMed Li J, Yang M, Li P, Su Z, Gao P, Zhang J. Idiopathic pulmonary fibrosis will increase the risk of lung cancer. Chin Med J. 2014;127:3142–9.PubMed
7.
go back to reference Salvatore M, Henschke CI, Yip R, Jacobi A, Eber C, Padilla M, et al. JOURNAL CLUB: evidence of interstitial lung disease on low-dose chest CT images: prevalence, patterns, and progression. AJR Am J Roentgenol. 2016;206:487–94.CrossRefPubMed Salvatore M, Henschke CI, Yip R, Jacobi A, Eber C, Padilla M, et al. JOURNAL CLUB: evidence of interstitial lung disease on low-dose chest CT images: prevalence, patterns, and progression. AJR Am J Roentgenol. 2016;206:487–94.CrossRefPubMed
8.
go back to reference Lynch DA, Sverzellati N, Travis WD, Brown KK, Colby TV, Galvin JR, et al. Diagnostic criteria for idiopathic pulmonary fibrosis: a Fleischner Society White Paper. Lancet Respir Med. 2018;6:138–53.CrossRefPubMed Lynch DA, Sverzellati N, Travis WD, Brown KK, Colby TV, Galvin JR, et al. Diagnostic criteria for idiopathic pulmonary fibrosis: a Fleischner Society White Paper. Lancet Respir Med. 2018;6:138–53.CrossRefPubMed
9.
go back to reference Yoo H, Jeong B-H, Chung MJ, Lee KS, Kwon OJ, Chung MP. Risk factors and clinical characteristics of lung cancer in idiopathic pulmonary fibrosis: a retrospective cohort study. BMC Pulm Med. 2019;19:149.CrossRefPubMedPubMedCentral Yoo H, Jeong B-H, Chung MJ, Lee KS, Kwon OJ, Chung MP. Risk factors and clinical characteristics of lung cancer in idiopathic pulmonary fibrosis: a retrospective cohort study. BMC Pulm Med. 2019;19:149.CrossRefPubMedPubMedCentral
10.
go back to reference Jogin M, Mohana, Madhulika MS, Divya GD, Meghana RK, Apoorva S. Feature extraction using convolution neural networks (CNN) and deep learning. In: Jogin M, editor. 2018 3rd IEEE International conference on recent trends in electronics, information communication technology (RTEICT). Bangalore: IEEE; 2018. p. 2319–23. Jogin M, Mohana, Madhulika MS, Divya GD, Meghana RK, Apoorva S. Feature extraction using convolution neural networks (CNN) and deep learning. In: Jogin M, editor. 2018 3rd IEEE International conference on recent trends in electronics, information communication technology (RTEICT). Bangalore: IEEE; 2018. p. 2319–23.
12.
go back to reference Xiao N, Qiang Y, Zia MB, Wang S, Lian J. Ensemble classification for predicting the malignancy level of pulmonary nodules on chest computed tomography images. Oncol Lett. 2020;20:401–8.CrossRefPubMedPubMedCentral Xiao N, Qiang Y, Zia MB, Wang S, Lian J. Ensemble classification for predicting the malignancy level of pulmonary nodules on chest computed tomography images. Oncol Lett. 2020;20:401–8.CrossRefPubMedPubMedCentral
13.
go back to reference Shen S, Han SX, Aberle DR, Bui AA, Hsu W. An interpretable deep hierarchical semantic convolutional neural network for lung nodule malignancy classification. Expert Syst Appl. 2019;128:84–95.CrossRefPubMedPubMedCentral Shen S, Han SX, Aberle DR, Bui AA, Hsu W. An interpretable deep hierarchical semantic convolutional neural network for lung nodule malignancy classification. Expert Syst Appl. 2019;128:84–95.CrossRefPubMedPubMedCentral
14.
go back to reference Al-Shabi M, Lan BL, Chan WY, Ng K-H, Tan M. Lung nodule classification using deep local-global networks. Int J Comput Assist Radiol Surg. 2019;14:1815–9.CrossRefPubMed Al-Shabi M, Lan BL, Chan WY, Ng K-H, Tan M. Lung nodule classification using deep local-global networks. Int J Comput Assist Radiol Surg. 2019;14:1815–9.CrossRefPubMed
15.
go back to reference Hu L, Liu Q, Zhang J, Jiang F, Liu Y, Zhang S. A-DARTS: attention-guided differentiable architecture search for lung nodule classification. JEI. 2021;30: 013012. Hu L, Liu Q, Zhang J, Jiang F, Liu Y, Zhang S. A-DARTS: attention-guided differentiable architecture search for lung nodule classification. JEI. 2021;30: 013012.
17.
go back to reference Dutande P, Baid U, Talbar S. LNCDS: A 2D–3D cascaded CNN approach for lung nodule classification, detection and segmentation. Biomed Signal Process Control. 2021;67: 102527.CrossRef Dutande P, Baid U, Talbar S. LNCDS: A 2D–3D cascaded CNN approach for lung nodule classification, detection and segmentation. Biomed Signal Process Control. 2021;67: 102527.CrossRef
19.
go back to reference Suryani AI, Chang C-W, Feng Y-F, Lin T-K, Lin C-W, Cheng J-C, et al. Lung tumor localization and visualization in chest X-ray images using deep fusion network and class activation mapping. IEEE Access. 2022;10:124448–63.CrossRef Suryani AI, Chang C-W, Feng Y-F, Lin T-K, Lin C-W, Cheng J-C, et al. Lung tumor localization and visualization in chest X-ray images using deep fusion network and class activation mapping. IEEE Access. 2022;10:124448–63.CrossRef
21.
go back to reference Armato SG 3rd, McLennan G, Bidaut L, McNitt-Gray MF, Meyer CR, Reeves AP, et al. The Lung Image Database Consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans. Med Phys. 2011;38:915–31.CrossRefPubMedPubMedCentral Armato SG 3rd, McLennan G, Bidaut L, McNitt-Gray MF, Meyer CR, Reeves AP, et al. The Lung Image Database Consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans. Med Phys. 2011;38:915–31.CrossRefPubMedPubMedCentral
23.
go back to reference Devaraj A, van Ginneken B, Nair A, Baldwin D. Use of volumetry for lung nodule management: theory and practice. Radiology. 2017;284:630–44.CrossRefPubMed Devaraj A, van Ginneken B, Nair A, Baldwin D. Use of volumetry for lung nodule management: theory and practice. Radiology. 2017;284:630–44.CrossRefPubMed
24.
go back to reference Kanashiki M, Tomizawa T, Yamaguchi I, Kurishima K, Hizawa N, Ishikawa H, et al. Volume doubling time of lung cancers detected in a chest radiograph mass screening program: comparison with CT screening. Oncol Lett. 2012;4:513–6.CrossRefPubMedPubMedCentral Kanashiki M, Tomizawa T, Yamaguchi I, Kurishima K, Hizawa N, Ishikawa H, et al. Volume doubling time of lung cancers detected in a chest radiograph mass screening program: comparison with CT screening. Oncol Lett. 2012;4:513–6.CrossRefPubMedPubMedCentral
25.
go back to reference Schlemper J, Oktay O, Schaap M, Heinrich M, Kainz B, Glocker B, et al. Attention gated networks: learning to leverage salient regions in medical images. Med Image Anal. 2019;53:197–207.CrossRefPubMedPubMedCentral Schlemper J, Oktay O, Schaap M, Heinrich M, Kainz B, Glocker B, et al. Attention gated networks: learning to leverage salient regions in medical images. Med Image Anal. 2019;53:197–207.CrossRefPubMedPubMedCentral
26.
go back to reference Yin Y, Han Z, Jian M, Wang G-G, Chen L, Wang R. AMSUnet: a neural network using atrous multi-scale convolution for medical image segmentation. Comput Biol Med. 2023;162: 107120.CrossRefPubMed Yin Y, Han Z, Jian M, Wang G-G, Chen L, Wang R. AMSUnet: a neural network using atrous multi-scale convolution for medical image segmentation. Comput Biol Med. 2023;162: 107120.CrossRefPubMed
27.
go back to reference Jian M, Wu R, Chen H, Fu L, Yang C. Dual-branch-UNet: a dual-branch convolutional neural network for medical image segmentation. Comput Model Eng Sci. 2023;137:705–16. Jian M, Wu R, Chen H, Fu L, Yang C. Dual-branch-UNet: a dual-branch convolutional neural network for medical image segmentation. Comput Model Eng Sci. 2023;137:705–16.
Metadata
Title
Lung nodule malignancy classification with associated pulmonary fibrosis using 3D attention-gated convolutional network with CT scans
Authors
Yucheng Liu
Hao Yun Hsu
Tiffany Lin
Boyu Peng
Anjali Saqi
Mary M. Salvatore
Sachin Jambawalikar
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2024
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-023-04798-w

Other articles of this Issue 1/2024

Journal of Translational Medicine 1/2024 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.