Skip to main content
Top
Published in: BMC Pulmonary Medicine 1/2021

Open Access 01-12-2021 | Computed Tomography | Research

Deep learning computer-aided detection system for pneumonia in febrile neutropenia patients: a diagnostic cohort study

Authors: Eui Jin Hwang, Jong Hyuk Lee, Jae Hyun Kim, Woo Hyeon Lim, Jin Mo Goo, Chang Min Park

Published in: BMC Pulmonary Medicine | Issue 1/2021

Login to get access

Abstract

Background

Diagnosis of pneumonia is critical in managing patients with febrile neutropenia (FN), however, chest X-ray (CXR) has limited performance in the detection of pneumonia. We aimed to evaluate the performance of a deep learning-based computer-aided detection (CAD) system in pneumonia detection in the CXRs of consecutive FN patients and investigated whether CAD could improve radiologists’ diagnostic performance when used as a second reader.

Methods

CXRs of patients with FN (a body temperature ≥ 38.3 °C, or a sustained body temperature ≥ 38.0 °C for an hour; absolute neutrophil count < 500/mm3) obtained between January and December 2017 were consecutively included, from a single tertiary referral hospital. Reference standards for the diagnosis of pneumonia were defined by consensus of two thoracic radiologists after reviewing medical records and CXRs. A commercialized, deep learning-based CAD system was retrospectively applied to detect pulmonary infiltrates on CXRs. For comparing performance, five radiologists independently interpreted CXRs initially without the CAD results (radiologist-alone interpretation), followed by the interpretation with CAD. The sensitivities and specificities for detection of pneumonia were compared between radiologist-alone interpretation and interpretation with CAD. The standalone performance of the CAD was also evaluated, using area under the receiver operating characteristic curve (AUC), sensitivity, and specificity. Moreover, sensitivity and specificity of standalone CAD were compared with those of radiologist-alone interpretation.

Results

Among 525 CXRs from 413 patients (52.3% men; median age 59 years), pneumonia was diagnosed in 128 (24.4%) CXRs. In the interpretation with CAD, average sensitivity of radiologists was significantly improved (75.4% to 79.4%, P = 0.003) while their specificity remained similar (75.4% to 76.8%, P = 0.101), compared to radiologist-alone interpretation. The CAD exhibited AUC, sensitivity, and specificity of 0.895, 88.3%, and 68.3%, respectively. The standalone CAD exhibited higher sensitivity (86.6% vs. 75.2%, P < 0.001) and lower specificity (64.8% vs. 75.4%, P < 0.001) compared to radiologist-alone interpretation.

Conclusions

In patients with FN, the deep learning-based CAD system exhibited radiologist-level performance in detecting pneumonia on CXRs and enhanced radiologists’ performance.
Appendix
Available only for authorised users
Literature
1.
go back to reference Klastersky J, de Naurois J, Rolston K, Rapoport B, Maschmeyer G, Aapro M, Herrstedt J, Committee EG. Management of febrile neutropaenia: ESMO Clinical Practice Guidelines. Ann Oncol. 2016;27(suppl 5):v111–8.CrossRef Klastersky J, de Naurois J, Rolston K, Rapoport B, Maschmeyer G, Aapro M, Herrstedt J, Committee EG. Management of febrile neutropaenia: ESMO Clinical Practice Guidelines. Ann Oncol. 2016;27(suppl 5):v111–8.CrossRef
2.
go back to reference Chindaprasirt J, Wanitpongpun C, Limpawattana P, Thepsuthammarat K, Sripakdee W, Sookprasert A, Wirasorn K. Mortality, length of stay, and cost associated with hospitalized adult cancer patients with febrile neutropenia. Asian Pac J Cancer Prev. 2013;14(2):1115–9.CrossRef Chindaprasirt J, Wanitpongpun C, Limpawattana P, Thepsuthammarat K, Sripakdee W, Sookprasert A, Wirasorn K. Mortality, length of stay, and cost associated with hospitalized adult cancer patients with febrile neutropenia. Asian Pac J Cancer Prev. 2013;14(2):1115–9.CrossRef
3.
go back to reference Kuderer NM, Dale DC, Crawford J, Cosler LE, Lyman GH. Mortality, morbidity, and cost associated with febrile neutropenia in adult cancer patients. Cancer. 2006;106(10):2258–66.CrossRef Kuderer NM, Dale DC, Crawford J, Cosler LE, Lyman GH. Mortality, morbidity, and cost associated with febrile neutropenia in adult cancer patients. Cancer. 2006;106(10):2258–66.CrossRef
4.
go back to reference Crawford J, Dale DC, Lyman GH. Chemotherapy-induced neutropenia: risks, consequences, and new directions for its management. Cancer. 2004;100(2):228–37.CrossRef Crawford J, Dale DC, Lyman GH. Chemotherapy-induced neutropenia: risks, consequences, and new directions for its management. Cancer. 2004;100(2):228–37.CrossRef
5.
go back to reference Taplitz RA, Kennedy EB, Bow EJ, Crews J, Gleason C, Hawley DK, Langston AA, Nastoupil LJ, Rajotte M, Rolston K, et al. Outpatient management of fever and neutropenia in adults treated for malignancy: American Society of Clinical Oncology and Infectious Diseases Society of America Clinical Practice Guideline Update. J Clin Oncol. 2018;36(14):1443–53.CrossRef Taplitz RA, Kennedy EB, Bow EJ, Crews J, Gleason C, Hawley DK, Langston AA, Nastoupil LJ, Rajotte M, Rolston K, et al. Outpatient management of fever and neutropenia in adults treated for malignancy: American Society of Clinical Oncology and Infectious Diseases Society of America Clinical Practice Guideline Update. J Clin Oncol. 2018;36(14):1443–53.CrossRef
6.
go back to reference Yoshida M, Akiyama N, Fujita H, Miura K, Miyatake J, Handa H, Kito K, Takahashi M, Shigeno K, Kanda Y, et al. Analysis of bacteremia/fungemia and pneumonia accompanying acute myelogenous leukemia from 1987 to 2001 in the Japan Adult Leukemia Study Group. Int J Hematol. 2011;93(1):66–73.CrossRef Yoshida M, Akiyama N, Fujita H, Miura K, Miyatake J, Handa H, Kito K, Takahashi M, Shigeno K, Kanda Y, et al. Analysis of bacteremia/fungemia and pneumonia accompanying acute myelogenous leukemia from 1987 to 2001 in the Japan Adult Leukemia Study Group. Int J Hematol. 2011;93(1):66–73.CrossRef
7.
go back to reference Lanoix JP, Schmit JL, Douadi Y. Bacterial lung sepsis in patients with febrile neutropenia. Curr Opin Pulm Med. 2012;18(3):175–80.CrossRef Lanoix JP, Schmit JL, Douadi Y. Bacterial lung sepsis in patients with febrile neutropenia. Curr Opin Pulm Med. 2012;18(3):175–80.CrossRef
8.
go back to reference Evans SE, Ost DE. Pneumonia in the neutropenic cancer patient. Curr Opin Pulm Med. 2015;21(3):260–71.CrossRef Evans SE, Ost DE. Pneumonia in the neutropenic cancer patient. Curr Opin Pulm Med. 2015;21(3):260–71.CrossRef
9.
go back to reference Maschmeyer G, Link H, Hiddemann W, Meyer P, Helmerking M, Eisenmann E, Schmitt J, Adam D. Pulmonary infiltrations in febrile patients with neutropenia. Risk factors and outcome under empirical antimicrobial therapy in a randomized multicenter study. Cancer. 1994;73(9):2296–304.CrossRef Maschmeyer G, Link H, Hiddemann W, Meyer P, Helmerking M, Eisenmann E, Schmitt J, Adam D. Pulmonary infiltrations in febrile patients with neutropenia. Risk factors and outcome under empirical antimicrobial therapy in a randomized multicenter study. Cancer. 1994;73(9):2296–304.CrossRef
10.
go back to reference Turkoglu M, Mirza E, Tunccan OG, Erdem GU, Dizbay M, Yagci M, Aygencel G, Turkoz Sucak G. Acinetobacter baumannii infection in patients with hematologic malignancies in intensive care unit: risk factors and impact on mortality. J Crit Care. 2011;26(5):460–7.CrossRef Turkoglu M, Mirza E, Tunccan OG, Erdem GU, Dizbay M, Yagci M, Aygencel G, Turkoz Sucak G. Acinetobacter baumannii infection in patients with hematologic malignancies in intensive care unit: risk factors and impact on mortality. J Crit Care. 2011;26(5):460–7.CrossRef
11.
go back to reference Heussel CP, Kauczor HU, Ullmann AJ. Pneumonia in neutropenic patients. Eur Radiol. 2004;14(2):256–71.CrossRef Heussel CP, Kauczor HU, Ullmann AJ. Pneumonia in neutropenic patients. Eur Radiol. 2004;14(2):256–71.CrossRef
12.
go back to reference Heussel CP. Importance of pulmonary imaging diagnostics in the management of febrile neutropenic patients. Mycoses. 2011;54(Suppl 1):17–26.CrossRef Heussel CP. Importance of pulmonary imaging diagnostics in the management of febrile neutropenic patients. Mycoses. 2011;54(Suppl 1):17–26.CrossRef
13.
go back to reference Freifeld AG, Bow EJ, Sepkowitz KA, Boeckh MJ, Ito JI, Mullen CA, Raad II, Rolston KV, Young JA, Wingard JR, et al. Clinical practice guideline for the use of antimicrobial agents in neutropenic patients with cancer: 2010 update by the infectious diseases society of America. Clin Infect Dis. 2011;52(4):e56-93.CrossRef Freifeld AG, Bow EJ, Sepkowitz KA, Boeckh MJ, Ito JI, Mullen CA, Raad II, Rolston KV, Young JA, Wingard JR, et al. Clinical practice guideline for the use of antimicrobial agents in neutropenic patients with cancer: 2010 update by the infectious diseases society of America. Clin Infect Dis. 2011;52(4):e56-93.CrossRef
14.
go back to reference Heussel CP, Kauczor HU, Heussel GE, Fischer B, Begrich M, Mildenberger P, Thelen M. Pneumonia in febrile neutropenic patients and in bone marrow and blood stem-cell transplant recipients: use of high-resolution computed tomography. J Clin Oncol. 1999;17(3):796–805.CrossRef Heussel CP, Kauczor HU, Heussel GE, Fischer B, Begrich M, Mildenberger P, Thelen M. Pneumonia in febrile neutropenic patients and in bone marrow and blood stem-cell transplant recipients: use of high-resolution computed tomography. J Clin Oncol. 1999;17(3):796–805.CrossRef
15.
go back to reference Yolin-Raley DS, Dagogo-Jack I, Niell HB, Soiffer RJ, Antin JH, Alyea EP 3rd, Glotzbecker BE. The utility of routine chest radiography in the initial evaluation of adult patients with febrile neutropenia patients undergoing HSCT. J Natl Compr Canc Netw. 2015;13(2):184–9.CrossRef Yolin-Raley DS, Dagogo-Jack I, Niell HB, Soiffer RJ, Antin JH, Alyea EP 3rd, Glotzbecker BE. The utility of routine chest radiography in the initial evaluation of adult patients with febrile neutropenia patients undergoing HSCT. J Natl Compr Canc Netw. 2015;13(2):184–9.CrossRef
16.
go back to reference Zornoza J, Goldman AM, Wallace S, Valdivieso M, Bodey GP. Radiologic features of gram-negative pneumonias in the neutropenic patient. AJR Am J Roentgenol. 1976;127(6):989–96.CrossRef Zornoza J, Goldman AM, Wallace S, Valdivieso M, Bodey GP. Radiologic features of gram-negative pneumonias in the neutropenic patient. AJR Am J Roentgenol. 1976;127(6):989–96.CrossRef
17.
go back to reference Hopstaken RM, Witbraad T, van Engelshoven JM, Dinant GJ. Inter-observer variation in the interpretation of chest radiographs for pneumonia in community-acquired lower respiratory tract infections. Clin Radiol. 2004;59(8):743–52.CrossRef Hopstaken RM, Witbraad T, van Engelshoven JM, Dinant GJ. Inter-observer variation in the interpretation of chest radiographs for pneumonia in community-acquired lower respiratory tract infections. Clin Radiol. 2004;59(8):743–52.CrossRef
18.
go back to reference Melbye H, Dale K. Interobserver variability in the radiographic diagnosis of adult outpatient pneumonia. Acta Radiol. 1992;33(1):79–81.PubMed Melbye H, Dale K. Interobserver variability in the radiographic diagnosis of adult outpatient pneumonia. Acta Radiol. 1992;33(1):79–81.PubMed
19.
go back to reference Hashmi MF, Katiyar S, Keskar AG, Bokde ND, Geem ZW. Efficient pneumonia detection in chest Xray images using deep transfer learning. Diagnostics (Basel). 2020;10(6):417.CrossRef Hashmi MF, Katiyar S, Keskar AG, Bokde ND, Geem ZW. Efficient pneumonia detection in chest Xray images using deep transfer learning. Diagnostics (Basel). 2020;10(6):417.CrossRef
20.
go back to reference Kermany DS, Goldbaum M, Cai W, Valentim CCS, Liang H, Baxter SL, McKeown A, Yang G, Wu X, Yan F, et al. Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell. 2018;172(5):1122–31.CrossRef Kermany DS, Goldbaum M, Cai W, Valentim CCS, Liang H, Baxter SL, McKeown A, Yang G, Wu X, Yan F, et al. Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell. 2018;172(5):1122–31.CrossRef
21.
go back to reference Hwang EJ, Park S, Jin KN, Kim JI, Choi SY, Lee JH, Goo JM, Aum J, Yim JJ, Cohen JG, et al. Development and validation of a deep learning-based automated detection algorithm for major thoracic diseases on chest radiographs. JAMA Netw Open. 2019;2(3):e191095.CrossRef Hwang EJ, Park S, Jin KN, Kim JI, Choi SY, Lee JH, Goo JM, Aum J, Yim JJ, Cohen JG, et al. Development and validation of a deep learning-based automated detection algorithm for major thoracic diseases on chest radiographs. JAMA Netw Open. 2019;2(3):e191095.CrossRef
22.
go back to reference Zech JR, Badgeley MA, Liu M, Costa AB, Titano JJ, Oermann EK. Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: a cross-sectional study. PLoS Med. 2018;15(11):e1002683.CrossRef Zech JR, Badgeley MA, Liu M, Costa AB, Titano JJ, Oermann EK. Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: a cross-sectional study. PLoS Med. 2018;15(11):e1002683.CrossRef
23.
go back to reference Metlay JP, Waterer GW, Long AC, Anzueto A, Brozek J, Crothers K, Cooley LA, Dean NC, Fine MJ, Flanders SA, et al. Diagnosis and treatment of adults with community-acquired pneumonia. An official clinical practice guideline of the American Thoracic Society and Infectious Diseases Society of America. Am J Respir Crit Care Med. 2019;200(7):e45–67.CrossRef Metlay JP, Waterer GW, Long AC, Anzueto A, Brozek J, Crothers K, Cooley LA, Dean NC, Fine MJ, Flanders SA, et al. Diagnosis and treatment of adults with community-acquired pneumonia. An official clinical practice guideline of the American Thoracic Society and Infectious Diseases Society of America. Am J Respir Crit Care Med. 2019;200(7):e45–67.CrossRef
24.
go back to reference DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44(3):837–45.CrossRef DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44(3):837–45.CrossRef
25.
go back to reference Genders TS, Spronk S, Stijnen T, Steyerberg EW, Lesaffre E, Hunink MG. Methods for calculating sensitivity and specificity of clustered data: a tutorial. Radiology. 2012;265(3):910–6.CrossRef Genders TS, Spronk S, Stijnen T, Steyerberg EW, Lesaffre E, Hunink MG. Methods for calculating sensitivity and specificity of clustered data: a tutorial. Radiology. 2012;265(3):910–6.CrossRef
26.
go back to reference Maschmeyer G. Pneumonia in febrile neutropenic patients: radiologic diagnosis. Curr Opin Oncol. 2001;13(4):229–35.CrossRef Maschmeyer G. Pneumonia in febrile neutropenic patients: radiologic diagnosis. Curr Opin Oncol. 2001;13(4):229–35.CrossRef
27.
go back to reference Park SH, Han K. Methodologic guide for evaluating clinical performance and effect of artificial intelligence technology for medical diagnosis and prediction. Radiology. 2018;286(3):800–9.CrossRef Park SH, Han K. Methodologic guide for evaluating clinical performance and effect of artificial intelligence technology for medical diagnosis and prediction. Radiology. 2018;286(3):800–9.CrossRef
28.
go back to reference Hwang EJ, Kim H, Lee JH, Goo JM, Park CM. Automated identification of chest radiographs with referable abnormality with deep learning: need for recalibration. Eur Radiol. 2020;30(12):6902–12.CrossRef Hwang EJ, Kim H, Lee JH, Goo JM, Park CM. Automated identification of chest radiographs with referable abnormality with deep learning: need for recalibration. Eur Radiol. 2020;30(12):6902–12.CrossRef
29.
go back to reference Petrick N, Sahiner B, Armato SG 3rd, Bert A, Correale L, Delsanto S, Freedman MT, Fryd D, Gur D, Hadjiiski L, et al. Evaluation of computer-aided detection and diagnosis systems. Med Phys. 2013;40(8):087001.CrossRef Petrick N, Sahiner B, Armato SG 3rd, Bert A, Correale L, Delsanto S, Freedman MT, Fryd D, Gur D, Hadjiiski L, et al. Evaluation of computer-aided detection and diagnosis systems. Med Phys. 2013;40(8):087001.CrossRef
30.
go back to reference Hwang EJ, Park CM. Clinical implementation of deep learning in thoracic radiology: potential applications and challenges. Korean J Radiol. 2020;21(5):511–25.CrossRef Hwang EJ, Park CM. Clinical implementation of deep learning in thoracic radiology: potential applications and challenges. Korean J Radiol. 2020;21(5):511–25.CrossRef
31.
go back to reference Hwang EJ, Kim H, Yoon SH, Goo JM, Park CM. Implementation of a deep learning-based computer-aided detection system for the interpretation of chest radiographs in patients suspected for COVID-19. Korean J Radiol. 2020;21(10):1150–60.CrossRef Hwang EJ, Kim H, Yoon SH, Goo JM, Park CM. Implementation of a deep learning-based computer-aided detection system for the interpretation of chest radiographs in patients suspected for COVID-19. Korean J Radiol. 2020;21(10):1150–60.CrossRef
32.
go back to reference Gerritsen MG, Willemink MJ, Pompe E, van der Bruggen T, van Rhenen A, Lammers JW, Wessels F, Sprengers RW, de Jong PA, Minnema MC. Improving early diagnosis of pulmonary infections in patients with febrile neutropenia using low-dose chest computed tomography. PLoS ONE. 2017;12(2):e0172256.CrossRef Gerritsen MG, Willemink MJ, Pompe E, van der Bruggen T, van Rhenen A, Lammers JW, Wessels F, Sprengers RW, de Jong PA, Minnema MC. Improving early diagnosis of pulmonary infections in patients with febrile neutropenia using low-dose chest computed tomography. PLoS ONE. 2017;12(2):e0172256.CrossRef
33.
go back to reference Patsios D, Maimon N, Chung T, Roberts H, Disperati P, Minden M, Paul N. Chest low-dose computed tomography in neutropenic acute myeloid leukaemia patients. Respir Med. 2010;104(4):600–5.CrossRef Patsios D, Maimon N, Chung T, Roberts H, Disperati P, Minden M, Paul N. Chest low-dose computed tomography in neutropenic acute myeloid leukaemia patients. Respir Med. 2010;104(4):600–5.CrossRef
34.
go back to reference Kunz WG, Patzig M, Crispin A, Stahl R, Reiser MF, Notohamiprodjo M. The value of supine chest X-ray in the diagnosis of pneumonia in the basal lung zones. Acad Radiol. 2018;25(10):1252–6.CrossRef Kunz WG, Patzig M, Crispin A, Stahl R, Reiser MF, Notohamiprodjo M. The value of supine chest X-ray in the diagnosis of pneumonia in the basal lung zones. Acad Radiol. 2018;25(10):1252–6.CrossRef
35.
go back to reference Kitazono MT, Lau CT, Parada AN, Renjen P, Miller WT Jr. Differentiation of pleural effusions from parenchymal opacities: accuracy of bedside chest radiography. AJR Am J Roentgenol. 2010;194(2):407–12.CrossRef Kitazono MT, Lau CT, Parada AN, Renjen P, Miller WT Jr. Differentiation of pleural effusions from parenchymal opacities: accuracy of bedside chest radiography. AJR Am J Roentgenol. 2010;194(2):407–12.CrossRef
Metadata
Title
Deep learning computer-aided detection system for pneumonia in febrile neutropenia patients: a diagnostic cohort study
Authors
Eui Jin Hwang
Jong Hyuk Lee
Jae Hyun Kim
Woo Hyeon Lim
Jin Mo Goo
Chang Min Park
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Pulmonary Medicine / Issue 1/2021
Electronic ISSN: 1471-2466
DOI
https://doi.org/10.1186/s12890-021-01768-0

Other articles of this Issue 1/2021

BMC Pulmonary Medicine 1/2021 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.