Skip to main content
Top
Published in: EJNMMI Research 1/2019

Open Access 01-12-2019 | Computed Tomography | Original research

An untapped potential for imaging of peripheral osteomyelitis in paediatrics using [18F]FDG PET/CT —the inference from a juvenile porcine model

Authors: P. Afzelius, O. L. Nielsen, H. C. Schønheyder, A.K.O. Alstrup, S. B. Hansen

Published in: EJNMMI Research | Issue 1/2019

Login to get access

Abstract

Purpose

To examine parameters affecting the detection of osteomyelitis (OM) by [18F]FDG PET/CT and to reduce tracer activity in a pig model.

Background

[18F]FDG PET/CT is recommended for the diagnosis of OM in the axial skeleton of adults. In children, OM has a tendency to become chronic or recurrent, especially in low-income countries. Early diagnosis and initiation of therapy are therefore essential. We have previously demonstrated that [18F]FDG PET/CT is promising in juvenile Staphylococcus aureus (S. aureus) OM of peripheral bones in a pig model, not failing even small lesions. When using imaging in children, radiation exposure should be balanced against fast diagnostics in the individual case.

Methods

Twenty juvenile pigs were inoculated with S. aureus. One week after inoculation, the pigs were [18F]FDG PET/CT scanned. PET list-mode acquired data of a subgroup were retrospectively processed in order to simulate and examine the image quality obtainable with an injected activity of 132 MBq, 44 MBq, 13.2 MBq, and 4.4 MBq, respectively.

Results

All lesions were detected by [18F]FDG PET and CT. Some lesions were very small (0.01 cm3), and others were larger (4.18 cm3). SUVmax was higher when sequesters (p = 0.023) and fistulas were formed (p < 0.0001). The simulated data demonstrated that it was possible to reduce the activity to 4.4 MBq without compromising image quality in pigs.

Conclusions

[18F]FDG PET/CT localized even small OM lesions in peripheral bones. It was possible to reduce the injected activity considerably without compromising image quality, impacting the applicability of PET/CT in peripheral OM in children.
Literature
1.
go back to reference Nickerson EK, Hongsuwan LD, Wuthiekanun W, Shaha KR, Srisomang P, Mahavanakul W, Wacharaprechasgul T, Fowler JG Jr, West TE, Teerawatanasuk N, Becher H, White NJ, Chierakul W, Day NP, Peacoc SJ. Staphylococcus aureus bacteremia in a tropical setting: patient outcome and impact of antibiotic resistance. PLoS One. 2009;4:e4308.CrossRef Nickerson EK, Hongsuwan LD, Wuthiekanun W, Shaha KR, Srisomang P, Mahavanakul W, Wacharaprechasgul T, Fowler JG Jr, West TE, Teerawatanasuk N, Becher H, White NJ, Chierakul W, Day NP, Peacoc SJ. Staphylococcus aureus bacteremia in a tropical setting: patient outcome and impact of antibiotic resistance. PLoS One. 2009;4:e4308.CrossRef
2.
go back to reference Pääkkkönen M, Kallio PE, Kallio MJT, Peltola H. Management of osteoarticular infections caused by staphylococcus aureus is similar to that of other etiologies. The Pediatric Infectious Disease Journal. 2012;31:436–8. Pääkkkönen M, Kallio PE, Kallio MJT, Peltola H. Management of osteoarticular infections caused by staphylococcus aureus is similar to that of other etiologies. The Pediatric Infectious Disease Journal. 2012;31:436–8.
3.
go back to reference Van Schuppen J, van Doom MM, van Rijn RR. Childhood osteomyelitis: imaging characteristics. Insights Imaging. 2012;3:519–33.CrossRef Van Schuppen J, van Doom MM, van Rijn RR. Childhood osteomyelitis: imaging characteristics. Insights Imaging. 2012;3:519–33.CrossRef
5.
go back to reference Harris WH, Heaney RP. Skeletal renewal and metabolic bone disease. N Engl J Med. 1969;280:193–202.CrossRef Harris WH, Heaney RP. Skeletal renewal and metabolic bone disease. N Engl J Med. 1969;280:193–202.CrossRef
6.
go back to reference Peltola H, Paakkonen M. Acute osteomyelitis in children. N Engl J Med. 2014;370:352–60.CrossRef Peltola H, Paakkonen M. Acute osteomyelitis in children. N Engl J Med. 2014;370:352–60.CrossRef
7.
go back to reference Santiago Restrepo C, Gimenez CR, McCarthy K. Imaging of osteomyelitis and musculoskeletal soft tissue infections: current concepts. Rheum Dis Clin N Am. 2003;29:89–109.CrossRef Santiago Restrepo C, Gimenez CR, McCarthy K. Imaging of osteomyelitis and musculoskeletal soft tissue infections: current concepts. Rheum Dis Clin N Am. 2003;29:89–109.CrossRef
8.
go back to reference Littenberg B, Mushlin AI. Technetium bone scanning in the diagnosis of osteomyelitis: a meta-analysis of test performance. Diagnostic Technology Assessment Consortium. J Gen Intern Med. 1992;7:158–64.CrossRef Littenberg B, Mushlin AI. Technetium bone scanning in the diagnosis of osteomyelitis: a meta-analysis of test performance. Diagnostic Technology Assessment Consortium. J Gen Intern Med. 1992;7:158–64.CrossRef
9.
go back to reference Van den Wyngaert T, Strobel K, Kampen WU, van der Kuwert Bruggen W, Mohan HK, Gnanasegaran G, Delgado-Bolton R, Weber WA, Beheshti M, Langsteger W, Giammarile F, Mottaghy FM, Paycha F, EANM Bone &Joint Committee and Oncology Committee. The EANM practice and guidelines for bone scintigraphy. Eur J Nucl Med Mol Imaging. 2016;43:1723–38.CrossRef Van den Wyngaert T, Strobel K, Kampen WU, van der Kuwert Bruggen W, Mohan HK, Gnanasegaran G, Delgado-Bolton R, Weber WA, Beheshti M, Langsteger W, Giammarile F, Mottaghy FM, Paycha F, EANM Bone &Joint Committee and Oncology Committee. The EANM practice and guidelines for bone scintigraphy. Eur J Nucl Med Mol Imaging. 2016;43:1723–38.CrossRef
10.
go back to reference Parisi MT, Otjen JP, Stanescu AL, Shulkin BL. Radionuclide imaging of infections and inflammation in children: a review. Semin Nucl Med. 2018;48:148–65.CrossRef Parisi MT, Otjen JP, Stanescu AL, Shulkin BL. Radionuclide imaging of infections and inflammation in children: a review. Semin Nucl Med. 2018;48:148–65.CrossRef
11.
go back to reference Pineda C, Vargas A, RodriGuez AV. Imaging of osteomyelitis: current concepts. Infect Dis Clin N Am. 2006;20:789–825.CrossRef Pineda C, Vargas A, RodriGuez AV. Imaging of osteomyelitis: current concepts. Infect Dis Clin N Am. 2006;20:789–825.CrossRef
12.
go back to reference Jamar J, Buscombe J, Chiti A, Christian PE, Delbeke D, Donohoe KJ, Israel O, Martin-Comin J, Signore A. EANM/SNMMI guide-line for 18F-FDG use in inflammation and infection. J Nucl Med. 2013;54:647–58.CrossRef Jamar J, Buscombe J, Chiti A, Christian PE, Delbeke D, Donohoe KJ, Israel O, Martin-Comin J, Signore A. EANM/SNMMI guide-line for 18F-FDG use in inflammation and infection. J Nucl Med. 2013;54:647–58.CrossRef
13.
go back to reference Mathews JD, Forsythe AV, Brady Z, Butler MW, Goergen SK, Byrnes GB, Giles GG, Wallace AB, Anderson PR, Guiver TG, McGale P, Cain TM, Dowty JG, Bickerstaffe AC, Darby SC. Cancer risk in 680000 people exposed to computed tomography scans in childhood or adolescence: data linkage study of 11 million Australians. BMJ. 2013;346:1–18.CrossRef Mathews JD, Forsythe AV, Brady Z, Butler MW, Goergen SK, Byrnes GB, Giles GG, Wallace AB, Anderson PR, Guiver TG, McGale P, Cain TM, Dowty JG, Bickerstaffe AC, Darby SC. Cancer risk in 680000 people exposed to computed tomography scans in childhood or adolescence: data linkage study of 11 million Australians. BMJ. 2013;346:1–18.CrossRef
14.
go back to reference Nielsen OL, Afzelius P, Bender D, Schønheyder HC, Leifsson PS, Nielsen KM, Larsen JO, Jensen SB, Alstrup AK. Comparison of autologous 111In-leukocytes, 18F-FDG, 11C-methionine, 11C-PK11195 and 68Ga-citrate for diagnostic nuclear imaging in a juvenile porcine haematogenous staphylococcus aureus osteomyelitis model. Am J Nucl Med Mol Imaging. 2015;5:169–82.PubMedPubMedCentral Nielsen OL, Afzelius P, Bender D, Schønheyder HC, Leifsson PS, Nielsen KM, Larsen JO, Jensen SB, Alstrup AK. Comparison of autologous 111In-leukocytes, 18F-FDG, 11C-methionine, 11C-PK11195 and 68Ga-citrate for diagnostic nuclear imaging in a juvenile porcine haematogenous staphylococcus aureus osteomyelitis model. Am J Nucl Med Mol Imaging. 2015;5:169–82.PubMedPubMedCentral
15.
go back to reference Afzelius P, Nielsen OL, Alstrup AKO, Bender D, Leifsson PS, Jensen SB, Schønheyder HC. Biodistribution of the radionuclides 18F-FDG, 11C-methionine, 11C-PK11195, and 68Ga-citrate in domestic juvenile female pigs and morphological and molecular imaging of the tracers in hematogenously disseminated Staphylococcus aureus lesions. Am J Nucl Med Mol Imaging. 2016;6:42–58.PubMedPubMedCentral Afzelius P, Nielsen OL, Alstrup AKO, Bender D, Leifsson PS, Jensen SB, Schønheyder HC. Biodistribution of the radionuclides 18F-FDG, 11C-methionine, 11C-PK11195, and 68Ga-citrate in domestic juvenile female pigs and morphological and molecular imaging of the tracers in hematogenously disseminated Staphylococcus aureus lesions. Am J Nucl Med Mol Imaging. 2016;6:42–58.PubMedPubMedCentral
16.
go back to reference Afzelius P, Alstrup AKO, Schønheyder HC, Borghammer P, Jensen SB, Bender D, Nielsen OL. Utility of 11C-methionine and 11C-donepezil for imaging of Staphylococcus aureus induced osteomyelitis in a juvenile porcine model: comparison to autologous 111In-labelled leukocytes, 99mTc-DPD, and 18F-FDG. Am J Nucl Med Mol Imaging. 2016;6:286–300.PubMedPubMedCentral Afzelius P, Alstrup AKO, Schønheyder HC, Borghammer P, Jensen SB, Bender D, Nielsen OL. Utility of 11C-methionine and 11C-donepezil for imaging of Staphylococcus aureus induced osteomyelitis in a juvenile porcine model: comparison to autologous 111In-labelled leukocytes, 99mTc-DPD, and 18F-FDG. Am J Nucl Med Mol Imaging. 2016;6:286–300.PubMedPubMedCentral
17.
go back to reference Calhoun JH, Manring MM, Shirtliff M. Osteomyelitis of the long bones. Semin Plast Surg. 2009;23:59–72.CrossRef Calhoun JH, Manring MM, Shirtliff M. Osteomyelitis of the long bones. Semin Plast Surg. 2009;23:59–72.CrossRef
18.
go back to reference Carek PJ, Dickerson LM, Sack JL. Diagnosis and management of osteomyelitis. Am Fam Physician. 2001;63:2413–20.PubMed Carek PJ, Dickerson LM, Sack JL. Diagnosis and management of osteomyelitis. Am Fam Physician. 2001;63:2413–20.PubMed
19.
go back to reference Lazzarini L, Mader JT, Calhoun JH. Osteomyelitis in long bones. J Bone Joint Surg Am. 2004;86-A:2305–18.CrossRef Lazzarini L, Mader JT, Calhoun JH. Osteomyelitis in long bones. J Bone Joint Surg Am. 2004;86-A:2305–18.CrossRef
20.
go back to reference Johansen LK, Jensen HE. Animal models of hematogenous Staphylococcus aureus osteomyelitis in long bones: a review. Orthop Res Rev. 2013;5:51–64.CrossRef Johansen LK, Jensen HE. Animal models of hematogenous Staphylococcus aureus osteomyelitis in long bones: a review. Orthop Res Rev. 2013;5:51–64.CrossRef
21.
go back to reference Alstrup AK, Nielsen KM, Schønheyder HC, Jensen SB, Afzelius P, Leifsson PS, Nielsen OL. Refinement of a hematogenous localized osteomyelitis model in pigs. Scand J Lab Anim Sci. 2016;42:1–4. Alstrup AK, Nielsen KM, Schønheyder HC, Jensen SB, Afzelius P, Leifsson PS, Nielsen OL. Refinement of a hematogenous localized osteomyelitis model in pigs. Scand J Lab Anim Sci. 2016;42:1–4.
22.
go back to reference Alstrup AK, Winterdahl M. Imaging techniques in large animals. Scand J Lab Anim Sci. 2009;36:55–66. Alstrup AK, Winterdahl M. Imaging techniques in large animals. Scand J Lab Anim Sci. 2009;36:55–66.
23.
go back to reference Aalbæk B, Jensen LK, Jensen HE, Olsen JE, Christensen H. Whole-genome sequence of Staphylococcus aureus S54F9 isolated from a chronic disseminated porcine lung abscess and used in human infection models. Genome Announc. 2015;3:e01207–15.CrossRef Aalbæk B, Jensen LK, Jensen HE, Olsen JE, Christensen H. Whole-genome sequence of Staphylococcus aureus S54F9 isolated from a chronic disseminated porcine lung abscess and used in human infection models. Genome Announc. 2015;3:e01207–15.CrossRef
24.
go back to reference Jensen HE, Nielsen O, Agerholm JS, Iburg T, Johansen LK, Johannesson E, Møller M, Jahn L, Munk L, Aalbæk B, Leifsson PS. A non-traumatic Staphylococcus aureus osteomyelitis model in pigs. In vivo. 2010;24:257–64.PubMed Jensen HE, Nielsen O, Agerholm JS, Iburg T, Johansen LK, Johannesson E, Møller M, Jahn L, Munk L, Aalbæk B, Leifsson PS. A non-traumatic Staphylococcus aureus osteomyelitis model in pigs. In vivo. 2010;24:257–64.PubMed
25.
go back to reference Gelfand MJ, Parisi MT, Treves ST. Pediatric radiopharmaceutical administered doses: 2010 North American consensus guidelines. J Nucl Med. 2011;52:318–22.CrossRef Gelfand MJ, Parisi MT, Treves ST. Pediatric radiopharmaceutical administered doses: 2010 North American consensus guidelines. J Nucl Med. 2011;52:318–22.CrossRef
26.
go back to reference Gatidis S, Schmidt H, la Fougere C, Nikolaou K, Schwenzer NF, Schäfer JF. Defining optimal tracer activities in pediatric oncologic whole-body 18F-FDG-PET/MRI. Eur J Nucl Med Mol Imaging. 2016;43:2283–9.CrossRef Gatidis S, Schmidt H, la Fougere C, Nikolaou K, Schwenzer NF, Schäfer JF. Defining optimal tracer activities in pediatric oncologic whole-body 18F-FDG-PET/MRI. Eur J Nucl Med Mol Imaging. 2016;43:2283–9.CrossRef
27.
go back to reference Signore A, Glaudemans AWJM, Gheysens O, Lauri C, Catalano OA. Nuclear medicine imaging in pediatric infection or chronic inflammatory diseases. Semin Nucl Med. 2017;47:286–303.CrossRef Signore A, Glaudemans AWJM, Gheysens O, Lauri C, Catalano OA. Nuclear medicine imaging in pediatric infection or chronic inflammatory diseases. Semin Nucl Med. 2017;47:286–303.CrossRef
28.
go back to reference Johansen LK, Koch J, Kirketerp-Møller K, Wamsler OJ, Nielsen OL, Leifsson PS, Frees D, Aalbæk B, Jensen HB. Therapy of haematogenous osteomyelitis-a comparative study in a porcine model and Angolan children. In Vivo. 2013;27:305–12.PubMed Johansen LK, Koch J, Kirketerp-Møller K, Wamsler OJ, Nielsen OL, Leifsson PS, Frees D, Aalbæk B, Jensen HB. Therapy of haematogenous osteomyelitis-a comparative study in a porcine model and Angolan children. In Vivo. 2013;27:305–12.PubMed
29.
go back to reference Dartnell J, Ramachandran N, Kartcuburian M. Haematogeneous acute and subacute paediatric osteomyelitis: a systemic review of the literature. J Bone Joint Surg Br. 2012;94:584–95.CrossRef Dartnell J, Ramachandran N, Kartcuburian M. Haematogeneous acute and subacute paediatric osteomyelitis: a systemic review of the literature. J Bone Joint Surg Br. 2012;94:584–95.CrossRef
30.
go back to reference Soret M, Bacharach SL, Buvat I. Partial-volume effect in PET tumor imaging. J Nucl Med. 2007;48:932–45.CrossRef Soret M, Bacharach SL, Buvat I. Partial-volume effect in PET tumor imaging. J Nucl Med. 2007;48:932–45.CrossRef
31.
go back to reference Bettinardi V, Castiglioni I, DeBernardi E, Gilardi MC. PET quantification: strategies for partial volume correction. Clinical and Translational Imaging. 2014;2:199–218.CrossRef Bettinardi V, Castiglioni I, DeBernardi E, Gilardi MC. PET quantification: strategies for partial volume correction. Clinical and Translational Imaging. 2014;2:199–218.CrossRef
32.
go back to reference Hoffman EJ, Huang SC, Phelps ME. Quantitation in positron emission computed tomography: 1. effect of object size. J Comput Assist Tomogr. 1979;3:299–308.CrossRef Hoffman EJ, Huang SC, Phelps ME. Quantitation in positron emission computed tomography: 1. effect of object size. J Comput Assist Tomogr. 1979;3:299–308.CrossRef
33.
go back to reference Padole A, Khawaja RDA, Kalra MK, Singh S. CT radiation dose and iterative reconstruction techniques. AJR. 2015;204:W384–92.CrossRef Padole A, Khawaja RDA, Kalra MK, Singh S. CT radiation dose and iterative reconstruction techniques. AJR. 2015;204:W384–92.CrossRef
34.
go back to reference Den Harder AM, Willemink MJ, De Ruiter QMB, De Jong PA, Schilham AM, Krestin GP, Leiner T, Budde RP. Dose reduction with iterative reconstruction for coronary CT angiography: a systematic review and meta-analysis. Br J Radiol. 2016;89:20150068.CrossRef Den Harder AM, Willemink MJ, De Ruiter QMB, De Jong PA, Schilham AM, Krestin GP, Leiner T, Budde RP. Dose reduction with iterative reconstruction for coronary CT angiography: a systematic review and meta-analysis. Br J Radiol. 2016;89:20150068.CrossRef
35.
go back to reference Leipsic JL, Heilbron BG, Hague C. Iterative reconstruction for coronary CT angiography: finding its way. Int J Cardiovasc Imaging. 2012;28:613–20.CrossRef Leipsic JL, Heilbron BG, Hague C. Iterative reconstruction for coronary CT angiography: finding its way. Int J Cardiovasc Imaging. 2012;28:613–20.CrossRef
36.
go back to reference Den Harder AM, Willemink MJ, De Ruiter QMB, Schilham AM, Krestin GP, Leiner T, de Jong PA, Budde RP. Achievable dose reduction using iterative reconstruction for chest computed tomography: a systematic review. Eur J Radiol. 2015;84:2307–13.CrossRef Den Harder AM, Willemink MJ, De Ruiter QMB, Schilham AM, Krestin GP, Leiner T, de Jong PA, Budde RP. Achievable dose reduction using iterative reconstruction for chest computed tomography: a systematic review. Eur J Radiol. 2015;84:2307–13.CrossRef
37.
go back to reference Liu HL. Model-based iterative reconstruction: a promising algorithm for today’s computed tomography imaging. J Med Imaging and Radiation Sciences. 2014;45:131–6.CrossRef Liu HL. Model-based iterative reconstruction: a promising algorithm for today’s computed tomography imaging. J Med Imaging and Radiation Sciences. 2014;45:131–6.CrossRef
38.
go back to reference Gatewood MO, Grubish L, Busey JM, Shuman WP, Strote J. The use of model-based iterative reconstruction to decrease ED radiation exposure. Am J Emerg Med. 2015;33:559–62.CrossRef Gatewood MO, Grubish L, Busey JM, Shuman WP, Strote J. The use of model-based iterative reconstruction to decrease ED radiation exposure. Am J Emerg Med. 2015;33:559–62.CrossRef
39.
go back to reference Klink T, Obmann V, Heverhagen J, Stork A, Adam G, Begemann P. Reducing CT radiation dose with iterative reconstruction algorithms: the influence of scan and reconstruction parameters on image quality and CTDIvol. Eur J Radiol. 2014;83:1645–54.CrossRef Klink T, Obmann V, Heverhagen J, Stork A, Adam G, Begemann P. Reducing CT radiation dose with iterative reconstruction algorithms: the influence of scan and reconstruction parameters on image quality and CTDIvol. Eur J Radiol. 2014;83:1645–54.CrossRef
40.
go back to reference Jødal L, Nielsen OL, Afzelius P, Alstrup AKO, Hansen SB. Blood perfusion in osteomyelitis studied with [15O]water PET in a juvenile porcine model. Eur J Nucl Med Mol Imag Res. 2017;7:1–10. Jødal L, Nielsen OL, Afzelius P, Alstrup AKO, Hansen SB. Blood perfusion in osteomyelitis studied with [15O]water PET in a juvenile porcine model. Eur J Nucl Med Mol Imag Res. 2017;7:1–10.
41.
go back to reference Jødal L, Jensen SB, Nielsen OL, Afzelius P, Borghammer P, Alstrup AKO, Hansen SB. Kinetic modelling of infection tracers [18F]FDG, [68Ga]Ga-citrate, [11C]methionine and [11C]donepezil in a porcine osteomyelitis model. Contrast Media & Molecular Imaging. 2017; https://doi.org/10.1155/2017/9256858. Jødal L, Jensen SB, Nielsen OL, Afzelius P, Borghammer P, Alstrup AKO, Hansen SB. Kinetic modelling of infection tracers [18F]FDG, [68Ga]Ga-citrate, [11C]methionine and [11C]donepezil in a porcine osteomyelitis model. Contrast Media & Molecular Imaging. 2017; https://​doi.​org/​10.​1155/​2017/​9256858.
Metadata
Title
An untapped potential for imaging of peripheral osteomyelitis in paediatrics using [18F]FDG PET/CT —the inference from a juvenile porcine model
Authors
P. Afzelius
O. L. Nielsen
H. C. Schønheyder
A.K.O. Alstrup
S. B. Hansen
Publication date
01-12-2019
Publisher
Springer Berlin Heidelberg
Published in
EJNMMI Research / Issue 1/2019
Electronic ISSN: 2191-219X
DOI
https://doi.org/10.1186/s13550-019-0498-5

Other articles of this Issue 1/2019

EJNMMI Research 1/2019 Go to the issue