Skip to main content
Top
Published in: Journal of Medical Systems 4/2021

01-04-2021 | Computed Tomography | Image & Signal Processing

5K+ CT Images on Fractured Limbs: A Dataset for Medical Imaging Research

Authors: Darshan D. Ruikar, K.C. Santosh, Ravindra S. Hegadi, Lakhan Rupnar, Vivek A. Choudhary

Published in: Journal of Medical Systems | Issue 4/2021

Login to get access

Abstract

Imaging techniques widely use Computed Tomography (CT) scans for various purposes, such as screening, diagnosis, and decision-making. Of all, it holds true for bone injuries. To build fully automated Computer-Aided Detection (CADe) and Diagnosis (CADx) tools and techniques, it requires fairly large amount of data (with gold standard). Therefore, in this paper, since state-of-the-art works relied on small dataset, we introduced a CT image dataset on limbs that is designed to understand bone injuries. Our dataset is a collection of 24 patient-specific CT cases having fractures at upper and lower limbs. From upper limbs, 8 cases were collected from bones in/around the shoulder (left and right). Similarly, from lower limbs, 16 cases were collected from knees (left and right). Altogether, 5684 CT images (upper limbs: 2057 and lower limbs: 3627) were collected. Each patient-specific CT case is composed of maximum 257 scans/slices in average. Of all, clinically approved annotations were made on every 10th slices, resulting in 1787 images. Importantly, no fractured limbs were missed in our annotation. Besides, to avoid privacy and confidential issues, patient-related information were deleted. The proposed dataset could be a promising resource for the medical imaging research community, where imaging techniques are employed for various purposes. To the best of our knowledge, this is the first time 5K+ CT images on fractured limbs are provided for research and educational purposes.
Footnotes
1
HIPPA: Health Insurance Portability and Accountability Act
 
2
IRB: Institutional Review Board
 
4
DICOM: Digital Imaging and Communications in Medicine
 
Literature
1.
go back to reference Han G., Liu X., Han F., Santika, et al., The LISS–a public database of common imaging signs of lung diseases for computer-aided detection and diagnosis research and medical education. IEEE Trans. Biomed. Eng. 62(2):648–656, 2014CrossRef Han G., Liu X., Han F., Santika, et al., The LISS–a public database of common imaging signs of lung diseases for computer-aided detection and diagnosis research and medical education. IEEE Trans. Biomed. Eng. 62(2):648–656, 2014CrossRef
2.
go back to reference Armato SG. III, McLennan G., McNitt-Gray M. F., et al., Lung image database consortium: Developing a resource for the medical imaging research community. Radiology 232(3):739–748, 2004CrossRef Armato SG. III, McLennan G., McNitt-Gray M. F., et al., Lung image database consortium: Developing a resource for the medical imaging research community. Radiology 232(3):739–748, 2004CrossRef
3.
go back to reference Sinha A. P., Study of orthopedic injuries pattern by road traffic accident victims. Int. J. Life. Sci. Scienti. Res 3(2):961–963, 2017 Sinha A. P., Study of orthopedic injuries pattern by road traffic accident victims. Int. J. Life. Sci. Scienti. Res 3(2):961–963, 2017
4.
go back to reference World Health Organization, et al., (2018) Global status report on road safety 2018: Summary. Technical report, World Health Organization World Health Organization, et al., (2018) Global status report on road safety 2018: Summary. Technical report, World Health Organization
5.
go back to reference Ansari S., Akhdar F., Mandoorah M, Moutaery K., Causes and effects of road traffic accidents in saudi arabia. Public Health 114(1):37–39, 2000CrossRef Ansari S., Akhdar F., Mandoorah M, Moutaery K., Causes and effects of road traffic accidents in saudi arabia. Public Health 114(1):37–39, 2000CrossRef
6.
go back to reference Simina V., Najarian K., Automated bone segmentation from pelvic CT images. In: 2008 IEEE International Conference On Bioinformatics and Biomeidcine Workshops. IEEE, 2008, pp. 41–47 Simina V., Najarian K., Automated bone segmentation from pelvic CT images. In: 2008 IEEE International Conference On Bioinformatics and Biomeidcine Workshops. IEEE, 2008, pp. 41–47
7.
go back to reference Velnar T., Bunc G., Gradisnik L., et al., Fractures and biomechanical characteristics of the bone. Surg. Sci. 6(06):255, 2015CrossRef Velnar T., Bunc G., Gradisnik L., et al., Fractures and biomechanical characteristics of the bone. Surg. Sci. 6(06):255, 2015CrossRef
8.
go back to reference Ruikar D. D., Santosh K. C., Hegadi R. S., Segmentation and analysis of CT images for bone fracture detection and labeling. In: Medical imaging Artificial Intelligence Image Recognition, and Machine Learning Techniques, 2019, p. 131 Ruikar D. D., Santosh K. C., Hegadi R. S., Segmentation and analysis of CT images for bone fracture detection and labeling. In: Medical imaging Artificial Intelligence Image Recognition, and Machine Learning Techniques, 2019, p. 131
9.
go back to reference Ruikar D. D., Santosh K. C., Hegadi R. S., Automated fractured bone segmentation and labeling from CT images. J. Med. Syst. 43(3):60, 2019CrossRef Ruikar D. D., Santosh K. C., Hegadi R. S., Automated fractured bone segmentation and labeling from CT images. J. Med. Syst. 43(3):60, 2019CrossRef
10.
go back to reference Hounsfield G. N., Computed medical imaging. Med. Phys. 7(4):283–290, 1980CrossRef Hounsfield G. N., Computed medical imaging. Med. Phys. 7(4):283–290, 1980CrossRef
11.
go back to reference Balaji G. N., Subashini T. S., Madhavi P., Bhavani C. H., Manikandarajan A., Computer-aided detection and diagnosis of diaphyseal femur fracture. In: Smart Intelligent Computing and Applications. Springer, 2020, pp. 549–559 Balaji G. N., Subashini T. S., Madhavi P., Bhavani C. H., Manikandarajan A., Computer-aided detection and diagnosis of diaphyseal femur fracture. In: Smart Intelligent Computing and Applications. Springer, 2020, pp. 549–559
12.
go back to reference Ruikar D. D., Hegadi R. S., Santosh K. C., A systematic review on orthopedic simulators for psycho-motor skill and surgical procedure training. J. Med. Syst. 42(9):168, 2018CrossRef Ruikar D. D., Hegadi R. S., Santosh K. C., A systematic review on orthopedic simulators for psycho-motor skill and surgical procedure training. J. Med. Syst. 42(9):168, 2018CrossRef
13.
go back to reference Sharma K., Virmani J., A decision support system for classification of normal and medical renal disease using ultrasound images: A decision support system for medical renal diseases. Int. J. Ambient Comput. Intell. (IJACI) 8(2):52–69, 2017CrossRef Sharma K., Virmani J., A decision support system for classification of normal and medical renal disease using ultrasound images: A decision support system for medical renal diseases. Int. J. Ambient Comput. Intell. (IJACI) 8(2):52–69, 2017CrossRef
14.
go back to reference Sobrinho A., Da S., Queiroz A. C. M., Da Silva L. D., De Barros Costa E., Pinheiro M. E., Perkusich A., Computer-aided diagnosis of chronic kidney disease in developing countries: A comparative analysis of machine learning techniques. IEEE Access 8:25407–25419, 2020CrossRef Sobrinho A., Da S., Queiroz A. C. M., Da Silva L. D., De Barros Costa E., Pinheiro M. E., Perkusich A., Computer-aided diagnosis of chronic kidney disease in developing countries: A comparative analysis of machine learning techniques. IEEE Access 8:25407–25419, 2020CrossRef
15.
go back to reference Jiménez-Delgado J. J., Paulano-Godino F., Pulidoram-ramírez R., Jiménez-Pérez. J. R., Computer assisted preoperative planning of bone fracture reduction: Simulation techniques and new trends. Med. Image Anal. 30:30–45, 2016CrossRef Jiménez-Delgado J. J., Paulano-Godino F., Pulidoram-ramírez R., Jiménez-Pérez. J. R., Computer assisted preoperative planning of bone fracture reduction: Simulation techniques and new trends. Med. Image Anal. 30:30–45, 2016CrossRef
16.
go back to reference Donnelley M., Knowles G., Hearn T., A cad system for long-bone segmentation and fracture detection. In: International Conference on Image and Signal Processing. Springer, 2008, pp. 153–162 Donnelley M., Knowles G., Hearn T., A cad system for long-bone segmentation and fracture detection. In: International Conference on Image and Signal Processing. Springer, 2008, pp. 153–162
17.
go back to reference Jiménez-Sánchez A., Kazi A., Albarqouni S., et al., (2019) Towards an interactive and interpretable cad system to support proximal femur fracture classification. arXiv:1902.01338 Jiménez-Sánchez A., Kazi A., Albarqouni S., et al., (2019) Towards an interactive and interpretable cad system to support proximal femur fracture classification. arXiv:1902.​01338
18.
go back to reference Testi D., Quadrani P., Viceconti M., Physiomespace: Digital library service for biomedical data. Philosophical Trans. R. Soc. Math. Phys. Eng. Sci. 368(1921):2853–2861, 2010 Testi D., Quadrani P., Viceconti M., Physiomespace: Digital library service for biomedical data. Philosophical Trans. R. Soc. Math. Phys. Eng. Sci. 368(1921):2853–2861, 2010
19.
go back to reference Ruikar D. D., Sawat D. D., Santosh K. C., Hegadi R. S., (2019) 3d imaging in biomedical applications: A systematic review (chap.8) Ruikar D. D., Sawat D. D., Santosh K. C., Hegadi R. S., (2019) 3d imaging in biomedical applications: A systematic review (chap.8)
20.
go back to reference Zhang Y., Tong R., Song D., Yan X., Lin L., Jian W., Joined fragment segmentation for fractured bones using gpu-accelerated shape-preserving erosion and dilation. Med. Biol. Eng. Comput. 58(1):155–170, 2020CrossRef Zhang Y., Tong R., Song D., Yan X., Lin L., Jian W., Joined fragment segmentation for fractured bones using gpu-accelerated shape-preserving erosion and dilation. Med. Biol. Eng. Comput. 58(1):155–170, 2020CrossRef
21.
go back to reference Shadid W. G., Willis A., Bone fragment segmentation from 3D CT imagery. Computer. Med. Imaging Graph. 66:14–27, 2018CrossRef Shadid W. G., Willis A., Bone fragment segmentation from 3D CT imagery. Computer. Med. Imaging Graph. 66:14–27, 2018CrossRef
22.
go back to reference Tassani S., Matsopoulos G. K., Baruffaldi F., 3d identification of trabecular bone fracture zone using an automatic image registration scheme: A validation study. J. Biomechan. 45(11):2035–2040, 2012CrossRef Tassani S., Matsopoulos G. K., Baruffaldi F., 3d identification of trabecular bone fracture zone using an automatic image registration scheme: A validation study. J. Biomechan. 45(11):2035–2040, 2012CrossRef
23.
go back to reference Paulano F., Jiménez J. J., Pulido R., 3d segmentation and labeling of fractured bone from ct images. Visual Comput. 30(6-8):939–948, 2014CrossRef Paulano F., Jiménez J. J., Pulido R., 3d segmentation and labeling of fractured bone from ct images. Visual Comput. 30(6-8):939–948, 2014CrossRef
24.
go back to reference Yoshii Y., Teramura S., Oyama K., Ogawa T., Hara Y., Ishii T., Development of three-dimensional preoperative planning system for the osteosynthesis of distal humerus fractures. BioMed Eng OnLine 19(1):1–13, 2020CrossRef Yoshii Y., Teramura S., Oyama K., Ogawa T., Hara Y., Ishii T., Development of three-dimensional preoperative planning system for the osteosynthesis of distal humerus fractures. BioMed Eng OnLine 19(1):1–13, 2020CrossRef
25.
go back to reference Tomazevic M., Kreuh D., Kristan A., Puketa V., Cimerman M., Preoperative planning program tool in treatment of articular fractures: Process of segmentation procedure. In: XII Mediterranean Conference on Medical and Biological Engineering and Computing 2010. Springer, 2010, pp. 430–433 Tomazevic M., Kreuh D., Kristan A., Puketa V., Cimerman M., Preoperative planning program tool in treatment of articular fractures: Process of segmentation procedure. In: XII Mediterranean Conference on Medical and Biological Engineering and Computing 2010. Springer, 2010, pp. 430–433
26.
go back to reference Paulano-Godino F., Jiménez-Delgado J. J., Identification of fracture zones and its application in automatic bone fracture reduction. Comput. Methods Programs Biomed. 141:93–104, 2017CrossRef Paulano-Godino F., Jiménez-Delgado J. J., Identification of fracture zones and its application in automatic bone fracture reduction. Comput. Methods Programs Biomed. 141:93–104, 2017CrossRef
27.
go back to reference Ruikar D.D., Santosh K.C., Hegadi R.S., Contrast stretching-based unwanted artifacts removal from ct images. In: International Conference on Recent Trends in Image Processing and Pattern Recognition. Springer, 2018, pp. 3–14 Ruikar D.D., Santosh K.C., Hegadi R.S., Contrast stretching-based unwanted artifacts removal from ct images. In: International Conference on Recent Trends in Image Processing and Pattern Recognition. Springer, 2018, pp. 3–14
28.
go back to reference Montani S., Bellazzi R., Supporting decisions in medical applications: The knowledge management perspective. Int. J. Med. Inform. 68(1-3):79–90, 2002CrossRef Montani S., Bellazzi R., Supporting decisions in medical applications: The knowledge management perspective. Int. J. Med. Inform. 68(1-3):79–90, 2002CrossRef
29.
go back to reference Tomazevic M., Kreuh D., Kristan A., Puketa V., Cimerman M., Preoperative planning program tool in treatment of articular fractures: Process of segmentation procedure. In: XII Mediterranean Conference on Medical and Biological Engineering and Computing 2010. Springer, 2010, pp. 430–433 Tomazevic M., Kreuh D., Kristan A., Puketa V., Cimerman M., Preoperative planning program tool in treatment of articular fractures: Process of segmentation procedure. In: XII Mediterranean Conference on Medical and Biological Engineering and Computing 2010. Springer, 2010, pp. 430–433
30.
go back to reference Fornaro J., Székely G., Harders M., Semi-automatic segmentation of fractured pelvic bones for surgical planning. In: International Symposium on Biomedical Simulation. Springer, 2010, pp. 82–89 Fornaro J., Székely G., Harders M., Semi-automatic segmentation of fractured pelvic bones for surgical planning. In: International Symposium on Biomedical Simulation. Springer, 2010, pp. 82–89
31.
go back to reference Harders M., Barlit A., Gerber C., Hodler J., Székely G., An optimized surgical planning environment for complex proximal humerus fractures. In: MICCAI Workshop on Interaction in Medical Image Analysis and Visualization, Vol. 30, 2007 Harders M., Barlit A., Gerber C., Hodler J., Székely G., An optimized surgical planning environment for complex proximal humerus fractures. In: MICCAI Workshop on Interaction in Medical Image Analysis and Visualization, Vol. 30, 2007
32.
go back to reference Huang C.-Y., Luo L.-J., Lee P.-Y., et al., Efficient segmentation algorithm for 3d bone models construction on medical images. J. Med. Biol. Eng 31:375–386, 2011CrossRef Huang C.-Y., Luo L.-J., Lee P.-Y., et al., Efficient segmentation algorithm for 3d bone models construction on medical images. J. Med. Biol. Eng 31:375–386, 2011CrossRef
33.
go back to reference Sebastian T. B., Tek H., Crisco J. J., Wolfe S. W., Kimia B. B., Segmentation of carpal bones from 3d ct images using skeletally coupled deformable models. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, 1998, pp. 1184–1194 Sebastian T. B., Tek H., Crisco J. J., Wolfe S. W., Kimia B. B., Segmentation of carpal bones from 3d ct images using skeletally coupled deformable models. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, 1998, pp. 1184–1194
34.
go back to reference Egol K. A., Koval K. J., Zuckerman J. D., Handbook of fractures Philadelphia: Lippincott Williams & Wilkins, 2010 Egol K. A., Koval K. J., Zuckerman J. D., Handbook of fractures Philadelphia: Lippincott Williams & Wilkins, 2010
35.
go back to reference Armato S. G. III, Meyer C. R., McNitt-Gray M. F., et al., The reference image database to evaluate response to therapy in lung cancer (rider) project: A resource for the development of change-analysis software. Clinic. Pharmacol. Therapeut. 84(4):448–456, 2008CrossRef Armato S. G. III, Meyer C. R., McNitt-Gray M. F., et al., The reference image database to evaluate response to therapy in lung cancer (rider) project: A resource for the development of change-analysis software. Clinic. Pharmacol. Therapeut. 84(4):448–456, 2008CrossRef
36.
go back to reference Zhang Z., Yin S., Feng, Liu J., et al., Origa-light: An online retinal fundus image database for glaucoma. In: Conference proceedings :... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference, 2010, pp. 3065–3068 Zhang Z., Yin S., Feng, Liu J., et al., Origa-light: An online retinal fundus image database for glaucoma. In: Conference proceedings :... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference, 2010, pp. 3065–3068
37.
go back to reference Kälviäinen R. V. J. P. H., Uusitalo H., Diaretdb1 diabetic retinopathy database and evaluation protocol. In: Medical Image Understanding and Analysis, Vol. 2007. Citeseer, 2007, p. 61 Kälviäinen R. V. J. P. H., Uusitalo H., Diaretdb1 diabetic retinopathy database and evaluation protocol. In: Medical Image Understanding and Analysis, Vol. 2007. Citeseer, 2007, p. 61
38.
go back to reference Varma D. R., Managing dicom images: Tips and tricks for the radiologist. Indian J. Radiol. Imag. 22(1):4, 2012CrossRef Varma D. R., Managing dicom images: Tips and tricks for the radiologist. Indian J. Radiol. Imag. 22(1):4, 2012CrossRef
39.
go back to reference Vannier M. W., Summers R. M., Sharing images. Radiology 228(1):23–25, 2003CrossRef Vannier M. W., Summers R. M., Sharing images. Radiology 228(1):23–25, 2003CrossRef
Metadata
Title
5K+ CT Images on Fractured Limbs: A Dataset for Medical Imaging Research
Authors
Darshan D. Ruikar
K.C. Santosh
Ravindra S. Hegadi
Lakhan Rupnar
Vivek A. Choudhary
Publication date
01-04-2021
Publisher
Springer US
Published in
Journal of Medical Systems / Issue 4/2021
Print ISSN: 0148-5598
Electronic ISSN: 1573-689X
DOI
https://doi.org/10.1007/s10916-021-01724-9

Other articles of this Issue 4/2021

Journal of Medical Systems 4/2021 Go to the issue