Skip to main content
Top
Published in: Journal of Clinical Immunology 1/2016

01-05-2016

Components and Mechanisms of Import, Modification, Folding, and Assembly of Immunoglobulins in the Endoplasmic Reticulum

Author: Richard Zimmermann

Published in: Journal of Clinical Immunology | Special Issue 1/2016

Login to get access

Abstract

In mammalian cells, the endoplasmic reticulum (ER) plays a central role in biogenesis of secretory- and plasma membrane proteins as well as in cellular calcium (Ca2+) homeostasis. The protein biogenesis function involves an aqueous polypeptide conducting channel in the ER membrane, which is formed by the heterotrimeric Sec61 complex; the store- and receptor-controlled Ca2+- release function requires a steep ER to cytosol gradient, with more than 500 μM free Ca2+ in the ER and 50 nM Ca2+ in the cytosol. Recent work demonstrated that the Sec61 complex can transiently allow passive ER Ca2+ efflux. Therefore, gating of the Sec61 channel has to be tightly regulated by substrates as well as allosteric effectors. The ER lumenal Hsp70-type molecular chaperone, immunoglobulin heavy-chain binding protein (BiP), together with its membrane resident co-chaperone Sec63 facilitates channel opening in a precursor specific manner. In addition, BiP, together with its lumenal co-chaperones, ERj3 and ERj6, as well as cytosolic Ca2+-calmodulin (CaM) in collaboration with the membrane resident Sec62 protein represent allosteric effectors for channel closure. In the course of the last couple of years several human diseases were linked to the Sec61 complex and its effectors and were termed Sec61-channelopathies.
Literature
1.
go back to reference Zimmermann R, Eyrisch S, Ahmad M, Helms V. Potein translocation across the ER membrane. Biochim Biophys Acta. 1808;2011:912–24. Zimmermann R, Eyrisch S, Ahmad M, Helms V. Potein translocation across the ER membrane. Biochim Biophys Acta. 1808;2011:912–24.
2.
go back to reference Dudek J, Pfeffer S, Lee P-H, Jung M, Cavalié A, Helms V, et al. Protein transport into the human endoplasmic reticulum. J Mol Biol. 2015;427:1159–75.CrossRefPubMed Dudek J, Pfeffer S, Lee P-H, Jung M, Cavalié A, Helms V, et al. Protein transport into the human endoplasmic reticulum. J Mol Biol. 2015;427:1159–75.CrossRefPubMed
3.
go back to reference Pfeffer S, Dudek J, Gogala M, Schorr S, Linxweiler J, Lang S, et al. Structure of the mammalian oligosaccharyl-transferase in the native ER protein translocon. Nature Commun. 2014;5:3072.CrossRef Pfeffer S, Dudek J, Gogala M, Schorr S, Linxweiler J, Lang S, et al. Structure of the mammalian oligosaccharyl-transferase in the native ER protein translocon. Nature Commun. 2014;5:3072.CrossRef
4.
go back to reference Pfeffer S, Burbaum L, Unverdorben P, Pech M, Chen Y, Zimmermann R, et al. Structure of the native Sec61 protein-conducting channel. Nature Commun. 2015;6:8403.CrossRef Pfeffer S, Burbaum L, Unverdorben P, Pech M, Chen Y, Zimmermann R, et al. Structure of the native Sec61 protein-conducting channel. Nature Commun. 2015;6:8403.CrossRef
5.
go back to reference Lang S, Benedix J, Fedeles SV, Schorr S, Schirra C, Schäuble N, et al. Different effects of Sec61α-, Sec62 and Sec63-depletion on transport of polypeptides into the endoplasmic reticulum of mammalian cells. J Cell Sci. 2012;125:1958–69.CrossRefPubMedPubMedCentral Lang S, Benedix J, Fedeles SV, Schorr S, Schirra C, Schäuble N, et al. Different effects of Sec61α-, Sec62 and Sec63-depletion on transport of polypeptides into the endoplasmic reticulum of mammalian cells. J Cell Sci. 2012;125:1958–69.CrossRefPubMedPubMedCentral
7.
go back to reference Borgese N, Fasana E. Targeting pathways of C-tail-anchored proteins. Biochem Biophys Acta. 1808;2011:937–46. Borgese N, Fasana E. Targeting pathways of C-tail-anchored proteins. Biochem Biophys Acta. 1808;2011:937–46.
8.
go back to reference Nickel W, Rabouille C. Mechanisms of regulated unconventional secretion. Nat Rev Mol Cell Biol. 2009;10:148–55.CrossRefPubMed Nickel W, Rabouille C. Mechanisms of regulated unconventional secretion. Nat Rev Mol Cell Biol. 2009;10:148–55.CrossRefPubMed
9.
go back to reference Voigt S, Jungnickel B, Hartmann E, Rapoport TA. Signal sequence-dependent function of the TRAM protein during early phases of protein transport across the endoplasmic reticulum membrane. J Cell Biol. 1996;134:25–35.CrossRefPubMed Voigt S, Jungnickel B, Hartmann E, Rapoport TA. Signal sequence-dependent function of the TRAM protein during early phases of protein transport across the endoplasmic reticulum membrane. J Cell Biol. 1996;134:25–35.CrossRefPubMed
10.
go back to reference Hegde RS, Voigt S, Rapoport TA, Lingappa VR. TRAM regulates the exposure of nascent secretory proteins to the cytosol during translocation into the endoplasmic reticulum. Cell. 1998;92:621–31.CrossRefPubMed Hegde RS, Voigt S, Rapoport TA, Lingappa VR. TRAM regulates the exposure of nascent secretory proteins to the cytosol during translocation into the endoplasmic reticulum. Cell. 1998;92:621–31.CrossRefPubMed
11.
go back to reference Fons RD, Bogert BA, Hegde RS. Substrate-specific function of the translocon-associated protein complex during translocation across the ER membrane. J Cell Biol. 2003;160:529–39.CrossRefPubMedPubMedCentral Fons RD, Bogert BA, Hegde RS. Substrate-specific function of the translocon-associated protein complex during translocation across the ER membrane. J Cell Biol. 2003;160:529–39.CrossRefPubMedPubMedCentral
12.
go back to reference Sommer N, Junne T, Spiess M, Hartmann E. TRAP assists membrane protein topogenesis at the mammalian ER membrane. Biochim Biophys Acta. 1833;2013:3104–11. Sommer N, Junne T, Spiess M, Hartmann E. TRAP assists membrane protein topogenesis at the mammalian ER membrane. Biochim Biophys Acta. 1833;2013:3104–11.
13.
go back to reference Losfeld ME, Ng BG, Kircher M, Buckingham KJ, Turner EH, Eroshkin A, et al. A new congential disorder of glycosylation caused by a mutation in SSR4, the signal sequence receptor 4 protein of the TRAP compex. Hum Mol Gen. 2014;23:1602–5.CrossRefPubMedPubMedCentral Losfeld ME, Ng BG, Kircher M, Buckingham KJ, Turner EH, Eroshkin A, et al. A new congential disorder of glycosylation caused by a mutation in SSR4, the signal sequence receptor 4 protein of the TRAP compex. Hum Mol Gen. 2014;23:1602–5.CrossRefPubMedPubMedCentral
14.
go back to reference Schäuble N, Lang S, Jung M, Cappel S, Schorr S, Ulucan Ö, et al. BiP-mediated closing of the Sec61 channel limits Ca2+ leakage from the ER. EMBO J. 2012;31:3282–96.CrossRefPubMedPubMedCentral Schäuble N, Lang S, Jung M, Cappel S, Schorr S, Ulucan Ö, et al. BiP-mediated closing of the Sec61 channel limits Ca2+ leakage from the ER. EMBO J. 2012;31:3282–96.CrossRefPubMedPubMedCentral
15.
go back to reference Tyedmers J, Lerner M, Wiedmann M, Volkmer J, Zimmermann R. Polypeptide-binding proteins mediate completion of co-translational protein translocation into the mammalian endoplasmic reticulum. EMBO Rep. 2003;4:505–10.CrossRefPubMedPubMedCentral Tyedmers J, Lerner M, Wiedmann M, Volkmer J, Zimmermann R. Polypeptide-binding proteins mediate completion of co-translational protein translocation into the mammalian endoplasmic reticulum. EMBO Rep. 2003;4:505–10.CrossRefPubMedPubMedCentral
17.
go back to reference Melnyk A, Rieger H, Zimmermann R. Co-chaperones of the mammalian endoplasmic reticulum, in Networking of Chaperones by Co-chaperones (Blatch, G.L. and Edkins, A., eds), Subcell Biochem. 2014;78:179–200. Melnyk A, Rieger H, Zimmermann R. Co-chaperones of the mammalian endoplasmic reticulum, in Networking of Chaperones by Co-chaperones (Blatch, G.L. and Edkins, A., eds), Subcell Biochem. 2014;78:179–200.
19.
go back to reference Berridge MJ. The endoplasmic reticulum: a multifunctional signalling organelle. Cell Calcium. 2002;32:235–49.CrossRefPubMed Berridge MJ. The endoplasmic reticulum: a multifunctional signalling organelle. Cell Calcium. 2002;32:235–49.CrossRefPubMed
20.
go back to reference Rizzuto R, Pozzan T. Microdomains of intracellular Ca2+: molecular determinants and functional consequences. Physiol Rev. 2006;86:369–408.CrossRefPubMed Rizzuto R, Pozzan T. Microdomains of intracellular Ca2+: molecular determinants and functional consequences. Physiol Rev. 2006;86:369–408.CrossRefPubMed
21.
go back to reference Wuytack F, Raeymaekers L, Missiaen L. Molecular physiology of the SERCA and SPCA pumps. Cell Calcium. 2002;32:279–305.CrossRefPubMed Wuytack F, Raeymaekers L, Missiaen L. Molecular physiology of the SERCA and SPCA pumps. Cell Calcium. 2002;32:279–305.CrossRefPubMed
22.
go back to reference Lang S, Erdmann F, Jung M, Wagner R, Cavalié A, Zimmermann R. Sec61 complexes form ubiquitous ER Ca2+ leak channels. Channels. 2011;5:228–35.CrossRefPubMed Lang S, Erdmann F, Jung M, Wagner R, Cavalié A, Zimmermann R. Sec61 complexes form ubiquitous ER Ca2+ leak channels. Channels. 2011;5:228–35.CrossRefPubMed
23.
go back to reference Schorr S, Klein M-C, Gamayun I, Melnyk A, Jung M, Schäuble N, et al. Co-chaperone specificity in gating of the polypeptide conducting channel in the membrane of the human endoplamic reticulum. J Biol Chem. 2015;290:18621–35.CrossRefPubMed Schorr S, Klein M-C, Gamayun I, Melnyk A, Jung M, Schäuble N, et al. Co-chaperone specificity in gating of the polypeptide conducting channel in the membrane of the human endoplamic reticulum. J Biol Chem. 2015;290:18621–35.CrossRefPubMed
24.
go back to reference Erdmann F, Schäuble N, Lang S, Jung M, Honigmann A, Ahmad M, et al. Interaction of calmodulin with Sec61α limits Ca2+ leakage from the endoplasmic reticulum. EMBO J. 2011;30:17–31.CrossRefPubMedPubMedCentral Erdmann F, Schäuble N, Lang S, Jung M, Honigmann A, Ahmad M, et al. Interaction of calmodulin with Sec61α limits Ca2+ leakage from the endoplasmic reticulum. EMBO J. 2011;30:17–31.CrossRefPubMedPubMedCentral
25.
go back to reference Greiner M, Kreutzer B, Lang S, Jung V, Cavalié A, Unteregger G, et al. Sec62 protein level is crucial for ER-stress tolerance of prostate cancer. The Prostate. 2011;71:1074–83.CrossRefPubMed Greiner M, Kreutzer B, Lang S, Jung V, Cavalié A, Unteregger G, et al. Sec62 protein level is crucial for ER-stress tolerance of prostate cancer. The Prostate. 2011;71:1074–83.CrossRefPubMed
26.
go back to reference Linxweiler M, Schorr S, Jung M, Schäuble N, Linxweiler J, Langer F, et al. Targeting cell migration and the ER stress response with calmodulin antagonists: A clinically tested small molecule phenocopy of SEC62 gene silencing in human tumor cells. BMC – Cancer. 2013;13:574.CrossRefPubMedPubMedCentral Linxweiler M, Schorr S, Jung M, Schäuble N, Linxweiler J, Langer F, et al. Targeting cell migration and the ER stress response with calmodulin antagonists: A clinically tested small molecule phenocopy of SEC62 gene silencing in human tumor cells. BMC – Cancer. 2013;13:574.CrossRefPubMedPubMedCentral
27.
go back to reference Haßdenteufel S, Klein M-C, Melnyk A, Zimmermann R. Protein transport into the human ER and related diseases: Sec61-channelopathies. Biochem Cell Biol. 2014;92:499–509.CrossRefPubMed Haßdenteufel S, Klein M-C, Melnyk A, Zimmermann R. Protein transport into the human ER and related diseases: Sec61-channelopathies. Biochem Cell Biol. 2014;92:499–509.CrossRefPubMed
28.
go back to reference Davila S, Furu L, Gharavi AG, Tian X, Onoe T, Qian Q, et al. Mutations in SEC63 cause autosomal dominant polycystic liver disease. Nat Gen. 2004;36:575–7.CrossRef Davila S, Furu L, Gharavi AG, Tian X, Onoe T, Qian Q, et al. Mutations in SEC63 cause autosomal dominant polycystic liver disease. Nat Gen. 2004;36:575–7.CrossRef
29.
go back to reference Fedeles SV, Tian X, Gallagher A-R, Mitobe M, Nishio S, et al. A genetic interaction network of five genes for human polycystic kidney and liver disease defines polycystin-1 as the central determinant of cyst formation. Nat Gen. 2011;43:639–47.CrossRef Fedeles SV, Tian X, Gallagher A-R, Mitobe M, Nishio S, et al. A genetic interaction network of five genes for human polycystic kidney and liver disease defines polycystin-1 as the central determinant of cyst formation. Nat Gen. 2011;43:639–47.CrossRef
30.
go back to reference Ladiges WC, Knoblaugh SE, Morton JF, Korth MJ, Sopher BL, Baskin CR, et al. Pancreatic beta-cell failure and diabetes in mice with a deletion mutation of the endoplasmic reticulum molecular chaperone gene P58IPK. Diabetes. 2005;54:1074–81.CrossRefPubMed Ladiges WC, Knoblaugh SE, Morton JF, Korth MJ, Sopher BL, Baskin CR, et al. Pancreatic beta-cell failure and diabetes in mice with a deletion mutation of the endoplasmic reticulum molecular chaperone gene P58IPK. Diabetes. 2005;54:1074–81.CrossRefPubMed
31.
go back to reference Synofzik M, Haack TB, Kopaijtich R, Gorza M, Rapaport D, Greiner M, et al. Absence of BiP co-chaperone DNAJC3 causes diabetes mellitus and multisystemic neurodegeneration. Am J Hum Gen. 2014;95:689–97.CrossRef Synofzik M, Haack TB, Kopaijtich R, Gorza M, Rapaport D, Greiner M, et al. Absence of BiP co-chaperone DNAJC3 causes diabetes mellitus and multisystemic neurodegeneration. Am J Hum Gen. 2014;95:689–97.CrossRef
33.
go back to reference Paton AW, Beddoe T, Thorpe CM, Whisstock JC, Wilche MC, Rossjohn J, et al. (2006) AB5 subtilase cytotoxin inactivates the endoplasmic reticulum chaperone BiP. Nature. 2006;443:548–52.CrossRefPubMed Paton AW, Beddoe T, Thorpe CM, Whisstock JC, Wilche MC, Rossjohn J, et al. (2006) AB5 subtilase cytotoxin inactivates the endoplasmic reticulum chaperone BiP. Nature. 2006;443:548–52.CrossRefPubMed
34.
go back to reference Linxweiler M, Linxweiler J, Barth M, Benedix J, Jung V, Kim Y-J, et al. Sec62 bridges the gap from 3q amplification to molecular cell biology in non-small cell lung cancer. Am J Pathol. 2012;180:473–83.CrossRefPubMed Linxweiler M, Linxweiler J, Barth M, Benedix J, Jung V, Kim Y-J, et al. Sec62 bridges the gap from 3q amplification to molecular cell biology in non-small cell lung cancer. Am J Pathol. 2012;180:473–83.CrossRefPubMed
35.
go back to reference Lu Z, Zhou L, Killela P, Rasheed AB, Di C, Poe WE, et al. Glioblastoma proto-oncogene SEC61γ is required for tumor cell survival and response to endoplasmic reticulum stress. Cancer Res. 2009;69:9105–11.CrossRefPubMedPubMedCentral Lu Z, Zhou L, Killela P, Rasheed AB, Di C, Poe WE, et al. Glioblastoma proto-oncogene SEC61γ is required for tumor cell survival and response to endoplasmic reticulum stress. Cancer Res. 2009;69:9105–11.CrossRefPubMedPubMedCentral
36.
go back to reference Mohorko E, Glockshuber R, Aebi M. Oligosaccharyltransferase: the central enzyme of N-linked protein glycosylation. J Inherit Metab Dis. 2011;34:869–78.CrossRefPubMed Mohorko E, Glockshuber R, Aebi M. Oligosaccharyltransferase: the central enzyme of N-linked protein glycosylation. J Inherit Metab Dis. 2011;34:869–78.CrossRefPubMed
37.
go back to reference Zhao L, Longo-Guess C, Harris BS, Lee J-W, Ackerman SL. Protein accumulation and neurodegeneration in the woozy mutant mouse is caused by disruption of SIL1, a cochaperone of BiP. Nat Gen. 2005;37:974–9.CrossRef Zhao L, Longo-Guess C, Harris BS, Lee J-W, Ackerman SL. Protein accumulation and neurodegeneration in the woozy mutant mouse is caused by disruption of SIL1, a cochaperone of BiP. Nat Gen. 2005;37:974–9.CrossRef
38.
go back to reference Senderek J, Krieger M, Stendel C, Bergmann C, Moser M, Breitbach-Faller N, et al. Mutations in Sil1 cause marinesco-Sjögren syndrome, a cerebellar ataxia with cataract and myopathy. Nat Gen. 2005;37:1312–4.CrossRef Senderek J, Krieger M, Stendel C, Bergmann C, Moser M, Breitbach-Faller N, et al. Mutations in Sil1 cause marinesco-Sjögren syndrome, a cerebellar ataxia with cataract and myopathy. Nat Gen. 2005;37:1312–4.CrossRef
39.
go back to reference Roos A, Buchlremer S, Kollipara L, Labisch T, Gatz C, Zitzelsberger M, et al. Myopathy in marinesco-Sjögren syndrome links endoplasmic reticulum chaperone dysfunction to nuclear envelope pathology. Acta Neuropathologica. 2014;127:761–77.CrossRefPubMed Roos A, Buchlremer S, Kollipara L, Labisch T, Gatz C, Zitzelsberger M, et al. Myopathy in marinesco-Sjögren syndrome links endoplasmic reticulum chaperone dysfunction to nuclear envelope pathology. Acta Neuropathologica. 2014;127:761–77.CrossRefPubMed
40.
go back to reference Hagerstrand D, Tong A, Schumacher SE, Ilic N, Shen RR, Cheung HW, et al. Systematic interrogation of 3q26 identifies TLOC1 and SKIL as cancer drivers. Cancer Discovery. 2013;3:1045–57.CrossRef Hagerstrand D, Tong A, Schumacher SE, Ilic N, Shen RR, Cheung HW, et al. Systematic interrogation of 3q26 identifies TLOC1 and SKIL as cancer drivers. Cancer Discovery. 2013;3:1045–57.CrossRef
Metadata
Title
Components and Mechanisms of Import, Modification, Folding, and Assembly of Immunoglobulins in the Endoplasmic Reticulum
Author
Richard Zimmermann
Publication date
01-05-2016
Publisher
Springer US
Published in
Journal of Clinical Immunology / Issue Special Issue 1/2016
Print ISSN: 0271-9142
Electronic ISSN: 1573-2592
DOI
https://doi.org/10.1007/s10875-016-0250-0

Other articles of this Special Issue 1/2016

Journal of Clinical Immunology 1/2016 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.