Skip to main content
Top
Published in: World Journal of Surgical Oncology 1/2021

Open Access 01-12-2021 | Colorectal Cancer | Research

Identification and verification of HCAR3 and INSL5 as new potential therapeutic targets of colorectal cancer

Authors: Xuan Yang, Wangao Wei, Shisheng Tan, Linrui Guo, Song Qiao, Biao Yao, Zi Wang

Published in: World Journal of Surgical Oncology | Issue 1/2021

Login to get access

Abstract

Background

Colorectal cancer (CRC) is one of the most common cancers of the gastrointestinal tract and ranks third in cancer-related deaths worldwide. This study was conducted to identify novel biomarkers related to the pathogenesis of CRC based upon a bioinformatics analysis, and further verify the biomarkers in clinical tumor samples and CRC cell lines.

Methods

A series of bioinformatics analyses were performed using datasets from NCBI-GEO and constructed a protein–protein interaction (PPI) network. This analysis enabled the identification of Hub genes, for which the mRNA expression and overall survival of CRC patients data distribution was explored in The Cancer Genome Atlas (TCGA) colon cancer and rectal cancer (COADREAD) database. Furthermore, the differential expression of HCAR3 and INLS5 was validated in clinical tumor samples by Real-time quantitative PCR analysis, western blotting analysis, and immunohistochemistry analysis. Finally, CRC cells over-expressing INSL5 were constructed and used for CCK8, cell cycle, and cell apoptosis validation assays in vitro.

Results

A total of 286 differentially expressed genes (DEGs) were screened, including 64 genes with increased expression and 143 genes with decreased expression in 2 CRC database, from which 10 key genes were identified: CXCL1, HCAR3, CXCL6, CXCL8, CXCL2, CXCL5, PPY, SST, INSL5, and NPY1R. Among these genes, HCAR3 and INSL5 had not previously been explored and were further verified in vitro.

Conclusions

HCAR3 expression was higher in CRC tissues and associated with better overall survival of CRC patients. INSL5 expression in normal tissue was higher than that in tumor tissue and its high expression was associated with a better prognosis for CRC. The overexpression of INSL5 significantly inhibited the proliferation and promoted the shearing of PARP of CRC cells. This integrated bioinformatics study presented 10 key hub genes associated with CRC. HCAR3 and INSL5 were expressed in tumor tissue and these were associated with poor survival and warrant further studies as potential therapeutic targets.
Appendix
Available only for authorised users
Literature
1.
go back to reference Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.CrossRef Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.CrossRef
2.
go back to reference Coppedè F, Lopomo A, Spisni R, Migliore L. Genetic and epigenetic biomarkers for diagnosis, prognosis and treatment of colorectal cancer. World J Gastroenterol. 2014;20:943–56.CrossRef Coppedè F, Lopomo A, Spisni R, Migliore L. Genetic and epigenetic biomarkers for diagnosis, prognosis and treatment of colorectal cancer. World J Gastroenterol. 2014;20:943–56.CrossRef
3.
go back to reference Dekker E, Tanis PJ, Vleugels JLA, Kasi PM, Wallace MB. Colorectal cancer. Lancet. 2019;394:1467–80.CrossRef Dekker E, Tanis PJ, Vleugels JLA, Kasi PM, Wallace MB. Colorectal cancer. Lancet. 2019;394:1467–80.CrossRef
4.
go back to reference Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69:7–34.CrossRef Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69:7–34.CrossRef
5.
go back to reference Yiu AJ, Yiu CY. Biomarkers in colorectal cancer. Anticancer Res. 2016;36:1093–102.PubMed Yiu AJ, Yiu CY. Biomarkers in colorectal cancer. Anticancer Res. 2016;36:1093–102.PubMed
6.
go back to reference Nobile MS, Cazzaniga P, Tangherloni A, Besozzi D. Graphics processing units in bioinformatics, computational biology and systems biology. Brief Bioinform. 2017;18:870–85.PubMed Nobile MS, Cazzaniga P, Tangherloni A, Besozzi D. Graphics processing units in bioinformatics, computational biology and systems biology. Brief Bioinform. 2017;18:870–85.PubMed
7.
go back to reference Wang YR, Meng LB, Su F, Qiu Y, Shi JH, Xu X, Luo QF. Insights regarding novel biomarkers and the pathogenesis of primary colorectal carcinoma based on bioinformatic analysis. Comput Biol Chem. 2020;85:107229.CrossRef Wang YR, Meng LB, Su F, Qiu Y, Shi JH, Xu X, Luo QF. Insights regarding novel biomarkers and the pathogenesis of primary colorectal carcinoma based on bioinformatic analysis. Comput Biol Chem. 2020;85:107229.CrossRef
8.
go back to reference Xu H, Ma Y, Zhang J, Gu J, Jing X, Lu S, Fu S, Huo J. Identification and verification of core genes in colorectal cancer. Biomed Res Int. 2020;2020:8082697.PubMedPubMedCentral Xu H, Ma Y, Zhang J, Gu J, Jing X, Lu S, Fu S, Huo J. Identification and verification of core genes in colorectal cancer. Biomed Res Int. 2020;2020:8082697.PubMedPubMedCentral
9.
go back to reference Zhou J, Xie Z, Cui P, Su Q, Zhang Y, Luo L, Li Z, Ye L, Liang H, Huang J. SLC1A1, SLC16A9, and CNTN3 are potential biomarkers for the occurrence of colorectal cancer. Biomed Res Int. 2020;2020:1204605. Zhou J, Xie Z, Cui P, Su Q, Zhang Y, Luo L, Li Z, Ye L, Liang H, Huang J. SLC1A1, SLC16A9, and CNTN3 are potential biomarkers for the occurrence of colorectal cancer. Biomed Res Int. 2020;2020:1204605.
10.
go back to reference Hou X, Hou N, Fu J, He X, Xiong H, Xie W, Jia G, Zuo X, Qin X, Pang M. Identification of key mRNAs and pathways in colorectal cancer. Nutr Cancer. 2021;73:1040–6. Hou X, Hou N, Fu J, He X, Xiong H, Xie W, Jia G, Zuo X, Qin X, Pang M. Identification of key mRNAs and pathways in colorectal cancer. Nutr Cancer. 2021;73:1040–6.
11.
go back to reference Zhang Y, Wu W, Qu H. Integrated analysis of the gene expression changes during colorectal cancer progression by bioinformatic methods. J Comput Biol. 2019;26:1168–76.CrossRef Zhang Y, Wu W, Qu H. Integrated analysis of the gene expression changes during colorectal cancer progression by bioinformatic methods. J Comput Biol. 2019;26:1168–76.CrossRef
12.
go back to reference Chen L, Lu D, Sun K, Xu Y, Hu P, Li X, Xu F. Identification of biomarkers associated with diagnosis and prognosis of colorectal cancer patients based on integrated bioinformatics analysis. Gene. 2019;692:119–25.CrossRef Chen L, Lu D, Sun K, Xu Y, Hu P, Li X, Xu F. Identification of biomarkers associated with diagnosis and prognosis of colorectal cancer patients based on integrated bioinformatics analysis. Gene. 2019;692:119–25.CrossRef
13.
go back to reference Ahmed K, Tunaru S, Langhans CD, Hanson J, Michalski CW, Kölker S, Jones PM, Okun JG, Offermanns S. Deorphanization of GPR109B as a receptor for the beta-oxidation intermediate 3-OH-octanoic acid and its role in the regulation of lipolysis. J Biol Chem. 2009;284:21928–33.CrossRef Ahmed K, Tunaru S, Langhans CD, Hanson J, Michalski CW, Kölker S, Jones PM, Okun JG, Offermanns S. Deorphanization of GPR109B as a receptor for the beta-oxidation intermediate 3-OH-octanoic acid and its role in the regulation of lipolysis. J Biol Chem. 2009;284:21928–33.CrossRef
14.
go back to reference Ding H, Xiong XX, Fan GL, Yi YX, Chen YR, Wang JT, Zhang W. The new biomarker for cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) based on public database mining. Biomed Res Int. 2020;2020:5478574.PubMedPubMedCentral Ding H, Xiong XX, Fan GL, Yi YX, Chen YR, Wang JT, Zhang W. The new biomarker for cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) based on public database mining. Biomed Res Int. 2020;2020:5478574.PubMedPubMedCentral
15.
go back to reference Li SB, Liu YY, Yuan L, Ji MF, Zhang A, Li HY, Tang LQ, Fang SG, Zhang H, Xing S, Li MZ, Zhong Q, Lin SJ, Liu WL, Huang P, Zeng YX, Zheng YM, Ling ZQ, Sui JH, Zeng MS. Autocrine INSL5 promotes tumor progression and glycolysis via activation of STAT5 signaling. EMBO Mol Med. 2020;12:e12050. Li SB, Liu YY, Yuan L, Ji MF, Zhang A, Li HY, Tang LQ, Fang SG, Zhang H, Xing S, Li MZ, Zhong Q, Lin SJ, Liu WL, Huang P, Zeng YX, Zheng YM, Ling ZQ, Sui JH, Zeng MS. Autocrine INSL5 promotes tumor progression and glycolysis via activation of STAT5 signaling. EMBO Mol Med. 2020;12:e12050.
16.
go back to reference Mashima H, Ohno H, Yamada Y, Sakai T, Ohnishi H. INSL5 may be a unique marker of colorectal endocrine cells and neuroendocrine tumors. Biochem Biophys Res Commun. 2013;432:586–92.CrossRef Mashima H, Ohno H, Yamada Y, Sakai T, Ohnishi H. INSL5 may be a unique marker of colorectal endocrine cells and neuroendocrine tumors. Biochem Biophys Res Commun. 2013;432:586–92.CrossRef
17.
go back to reference Belgi A, Hossain MA, Shabanpoor F, Chan L, Zhang S, Bathgate RA, Tregear GW, Wade JD. Structure and function relationship of murine insulin-like peptide 5 (INSL5): free C-terminus is essential for RXFP4 receptor binding and activation. Biochemistry. 2011;50:8352–61.CrossRef Belgi A, Hossain MA, Shabanpoor F, Chan L, Zhang S, Bathgate RA, Tregear GW, Wade JD. Structure and function relationship of murine insulin-like peptide 5 (INSL5): free C-terminus is essential for RXFP4 receptor binding and activation. Biochemistry. 2011;50:8352–61.CrossRef
18.
go back to reference Liu C, Chen J, Sutton S, Roland B, Kuei C, Farmer N, Sillard R, Lovenberg TW. Identification of relaxin-3/INSL7 as a ligand for GPCR142. J Biol Chem. 2003;278:50765–70.CrossRef Liu C, Chen J, Sutton S, Roland B, Kuei C, Farmer N, Sillard R, Lovenberg TW. Identification of relaxin-3/INSL7 as a ligand for GPCR142. J Biol Chem. 2003;278:50765–70.CrossRef
19.
go back to reference Liu C, Kuei C, Sutton S, Chen J, Bonaventure P, Wu J, Nepomuceno D, Kamme F, Tran DT, Zhu J, et al. INSL5 is a high affinity specific agonist for GPCR142 (GPR100). J Biol Chem. 2005;280:292–300.CrossRef Liu C, Kuei C, Sutton S, Chen J, Bonaventure P, Wu J, Nepomuceno D, Kamme F, Tran DT, Zhu J, et al. INSL5 is a high affinity specific agonist for GPCR142 (GPR100). J Biol Chem. 2005;280:292–300.CrossRef
20.
go back to reference Kawamura M, Toiyama Y, Tanaka K, Saigusa S, Okugawa Y, Hiro J, Uchida K, Mohri Y, Inoue Y, Kusunoki M. CXCL5, a promoter of cell proliferation, migration and invasion, is a novel serum prognostic marker in patients with colorectal cancer. Eur J Cancer. 2012;48:2244–51.CrossRef Kawamura M, Toiyama Y, Tanaka K, Saigusa S, Okugawa Y, Hiro J, Uchida K, Mohri Y, Inoue Y, Kusunoki M. CXCL5, a promoter of cell proliferation, migration and invasion, is a novel serum prognostic marker in patients with colorectal cancer. Eur J Cancer. 2012;48:2244–51.CrossRef
21.
go back to reference Zhuo C, Wu X, Li J, Hu D, Jian J, Chen C, Zheng X, Yang C. Chemokine (C-X-C motif) ligand 1 is associated with tumor progression and poor prognosis in patients with colorectal cancer. Biosci Rep. 2018;38:BSR20180580. Zhuo C, Wu X, Li J, Hu D, Jian J, Chen C, Zheng X, Yang C. Chemokine (C-X-C motif) ligand 1 is associated with tumor progression and poor prognosis in patients with colorectal cancer. Biosci Rep. 2018;38:BSR20180580.
22.
go back to reference Tseng WW, Liu CD. Peptide YY and cancer: current findings and potential clinical applications. Peptides. 2002;23:389–95.CrossRef Tseng WW, Liu CD. Peptide YY and cancer: current findings and potential clinical applications. Peptides. 2002;23:389–95.CrossRef
23.
go back to reference Pyronnet S, Bousquet C, Najib S, Azar R, Laklai H, Susini C. Antitumor effects of somatostatin. Mol Cell Endocrinol. 2008;286:230–7.CrossRef Pyronnet S, Bousquet C, Najib S, Azar R, Laklai H, Susini C. Antitumor effects of somatostatin. Mol Cell Endocrinol. 2008;286:230–7.CrossRef
24.
go back to reference Chandrasekharan B, Nezami BG, Srinivasan S. Emerging neuropeptide targets in inflammation: NPY and VIP. Am J Physiol Gastrointest Liver Physiol. 2013;304:G949-957.CrossRef Chandrasekharan B, Nezami BG, Srinivasan S. Emerging neuropeptide targets in inflammation: NPY and VIP. Am J Physiol Gastrointest Liver Physiol. 2013;304:G949-957.CrossRef
25.
go back to reference Luo X, Li T, Zhu Y, Dai Y, Zhao J, Guo ZY, Wang MW. The insulinotrophic effect of insulin-like peptide 5 in vitro and in vivo. Biochem J. 2015;466:467–73.CrossRef Luo X, Li T, Zhu Y, Dai Y, Zhao J, Guo ZY, Wang MW. The insulinotrophic effect of insulin-like peptide 5 in vitro and in vivo. Biochem J. 2015;466:467–73.CrossRef
26.
go back to reference Zhou Y, Liu L, Tao S, Yao Y, Wang Y, Wei Q, Shao A, Deng Y. Parthanatos and its associated components: promising therapeutic targets for cancer. Pharmacol Res. 2021;163:105299.CrossRef Zhou Y, Liu L, Tao S, Yao Y, Wang Y, Wei Q, Shao A, Deng Y. Parthanatos and its associated components: promising therapeutic targets for cancer. Pharmacol Res. 2021;163:105299.CrossRef
27.
go back to reference Fatokun AA, Dawson VL, Dawson TM. Parthanatos: mitochondrial-linked mechanisms and therapeutic opportunities. Br J Pharmacol. 2014;171:2000–16.CrossRef Fatokun AA, Dawson VL, Dawson TM. Parthanatos: mitochondrial-linked mechanisms and therapeutic opportunities. Br J Pharmacol. 2014;171:2000–16.CrossRef
28.
go back to reference Madungwe NB, Feng Y, Lie M, Tombo N, Liu L, Kaya F, Bopassa JC. Mitochondrial inner membrane protein (mitofilin) knockdown induces cell death by apoptosis via an AIF-PARP-dependent mechanism and cell cycle arrest. Am J Physiol Cell Physiol. 2018;315:C28–43.CrossRef Madungwe NB, Feng Y, Lie M, Tombo N, Liu L, Kaya F, Bopassa JC. Mitochondrial inner membrane protein (mitofilin) knockdown induces cell death by apoptosis via an AIF-PARP-dependent mechanism and cell cycle arrest. Am J Physiol Cell Physiol. 2018;315:C28–43.CrossRef
29.
go back to reference Peters A, Krumbholz P, Jäger E, Heintz-Buschart A, Çakir MV, Rothemund S, Gaudl A, Ceglarek U, Schöneberg T, Stäubert C. Metabolites of lactic acid bacteria present in fermented foods are highly potent agonists of human hydroxycarboxylic acid receptor 3. PLoS Genet. 2019;15:e1008145.CrossRef Peters A, Krumbholz P, Jäger E, Heintz-Buschart A, Çakir MV, Rothemund S, Gaudl A, Ceglarek U, Schöneberg T, Stäubert C. Metabolites of lactic acid bacteria present in fermented foods are highly potent agonists of human hydroxycarboxylic acid receptor 3. PLoS Genet. 2019;15:e1008145.CrossRef
30.
go back to reference Ru Y, Kechris KJ, Tabakoff B, Hoffman P, Radcliffe RA, Bowler R, Mahaffey S, Rossi S, Calin GA, Bemis L, Theodorescu D. The multiMiR R package and database: integration of microRNA-target interactions along with their disease and drug associations. Nucleic Acids Res. 2014;42:e133.CrossRef Ru Y, Kechris KJ, Tabakoff B, Hoffman P, Radcliffe RA, Bowler R, Mahaffey S, Rossi S, Calin GA, Bemis L, Theodorescu D. The multiMiR R package and database: integration of microRNA-target interactions along with their disease and drug associations. Nucleic Acids Res. 2014;42:e133.CrossRef
31.
go back to reference Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.CrossRef Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.CrossRef
32.
go back to reference Lex A, Gehlenborg N, Strobelt H, Vuillemot R, Pfister H. UpSet: Visualization of Intersecting Sets. IEEE Trans Vis Comput Graph. 2014;20:1983–92.CrossRef Lex A, Gehlenborg N, Strobelt H, Vuillemot R, Pfister H. UpSet: Visualization of Intersecting Sets. IEEE Trans Vis Comput Graph. 2014;20:1983–92.CrossRef
Metadata
Title
Identification and verification of HCAR3 and INSL5 as new potential therapeutic targets of colorectal cancer
Authors
Xuan Yang
Wangao Wei
Shisheng Tan
Linrui Guo
Song Qiao
Biao Yao
Zi Wang
Publication date
01-12-2021
Publisher
BioMed Central
Published in
World Journal of Surgical Oncology / Issue 1/2021
Electronic ISSN: 1477-7819
DOI
https://doi.org/10.1186/s12957-021-02335-x

Other articles of this Issue 1/2021

World Journal of Surgical Oncology 1/2021 Go to the issue