Skip to main content
Top
Published in: Inflammation 4/2018

01-08-2018 | ORIGINAL ARTICLE

Cold Stimuli Facilitate Inflammatory Responses Through Transient Receptor Potential Melastatin 8 (TRPM8) in Primary Airway Epithelial Cells of Asthmatic Mice

Authors: Haipei Liu, Li Hua, Quanhua Liu, Jun Pan, Yixiao Bao

Published in: Inflammation | Issue 4/2018

Login to get access

Abstract

Bronchial asthma is a chronic inflammatory airway disease that can be aggravated by cold air. However, its mechanism remains largely unknown. As a thermo-sensing cation channel, transient receptor potential melastatin 8 (TRPM8) can be activated by cold stimuli (8–22 °C) and cooling agents. Whereas TRPM8 activation leads to enhanced expression of inflammatory cytokines and mucus hypersecretion in human bronchial epithelial cell lines, no previous study has examined its role in regulating the cold-induced inflammatory responses and its mechanism in asthmatic airway epithelium. Airway epithelial cells were isolated from asthma model mice and exposed to low temperature (18 °C). The TRPM8 overexpression plasmid and siRNA lentivirus were transfected to up- or downregulate the TRPM8 level. The expression of mRNAs of inflammatory cytokines was tested using real-time reverse transcription–polymerase chain reaction (RT-PCR). The activities of phosphorylated protein kinase C (PKC) and phosphorylated inhibitor of nuclear factor kappa B (IκB) were measured using the immunofluorescence assay. The expression of mRNAs of inflammatory cytokines [interleukin (IL)-1β, IL-4, IL-6, IL-8, IL-10, IL-13, granulocyte macrophage colony-stimulating factor (GM-CSF), and tumor necrosis factor (TNF)-α] increased significantly under cold conditions, which was boosted after TRPM8 overexpression and augmented further in the presence of PKC inhibitor, calphostin C. However, the downregulation of TRPM8 and nuclear factor kappa B (NF-κB) impaired the transcription of these cytokine genes. In addition, the phosphorylated PKC and phosphorylated IκB were activated by cold stimuli. Moreover, the expression of phosphorylated IκB protein improved in the presence of TRPM8, while disruption with the TRPM8 gene or TRPM8 antagonist prohibited the activation of IκB. Cold air could induce inflammatory responses through the TRPM8-mediated PKC/NF-κB signal pathway in primary airway epithelial cells of asthmatic mice.
Literature
6.
go back to reference Li, M., Q. Li, G. Yang, V.P. Kolosov, J.M. Perelman, and X.D. Zhou. 2011. Cold temperature induces mucin hypersecretion from normal human bronchial epithelial cells in vitro through a transient receptor potential melastatin 8 (TRPM8)-mediated mechanism. The Journal of Allergy and Clinical Immunology 128 (626–634): e621–e625. https://doi.org/10.1016/j.jaci.2011.04.032.CrossRef Li, M., Q. Li, G. Yang, V.P. Kolosov, J.M. Perelman, and X.D. Zhou. 2011. Cold temperature induces mucin hypersecretion from normal human bronchial epithelial cells in vitro through a transient receptor potential melastatin 8 (TRPM8)-mediated mechanism. The Journal of Allergy and Clinical Immunology 128 (626–634): e621–e625. https://​doi.​org/​10.​1016/​j.​jaci.​2011.​04.​032.CrossRef
8.
go back to reference Kim, J.H., Y.S. Jang, S.H. Jang, K.S. Jung, S.H. Kim, Y.M. Ye, and H.S. Park. 2017. Toluene diisocyanate exposure induces airway inflammation of bronchial epithelial cells via the activation of transient receptor potential melastatin 8. Experimental & Molecular Medicine 49: e299. https://doi.org/10.1038/emm.2016.161.CrossRef Kim, J.H., Y.S. Jang, S.H. Jang, K.S. Jung, S.H. Kim, Y.M. Ye, and H.S. Park. 2017. Toluene diisocyanate exposure induces airway inflammation of bronchial epithelial cells via the activation of transient receptor potential melastatin 8. Experimental & Molecular Medicine 49: e299. https://​doi.​org/​10.​1038/​emm.​2016.​161.CrossRef
10.
go back to reference Madouri, F., P. Chenuet, C. Beuraud, L. Fauconnier, T. Marchiol, N. Rouxel, A. Ledru, M. Gallerand, V. Lombardi, L. Mascarell, Q. Marquant, L. Apetoh, F. Erard, M. Le Bert, F. Trovero, V.F. Quesniaux, B. Ryffel, and D. Togbe. 2017. Protein kinase Ctheta controls type 2 innate lymphoid cell and TH2 responses to house dust mite allergen. The Journal of Allergy and Clinical Immunology 139: 1650–1666. https://doi.org/10.1016/j.jaci.2016.08.044.CrossRefPubMed Madouri, F., P. Chenuet, C. Beuraud, L. Fauconnier, T. Marchiol, N. Rouxel, A. Ledru, M. Gallerand, V. Lombardi, L. Mascarell, Q. Marquant, L. Apetoh, F. Erard, M. Le Bert, F. Trovero, V.F. Quesniaux, B. Ryffel, and D. Togbe. 2017. Protein kinase Ctheta controls type 2 innate lymphoid cell and TH2 responses to house dust mite allergen. The Journal of Allergy and Clinical Immunology 139: 1650–1666. https://​doi.​org/​10.​1016/​j.​jaci.​2016.​08.​044.CrossRefPubMed
13.
go back to reference Lutzny, G., T. Kocher, M. Schmidt-Supprian, M. Rudelius, L. Klein-Hitpass, A.J. Finch, J. Durig, M. Wagner, C. Haferlach, A. Kohlmann, S. Schnittger, M. Seifert, S. Wanninger, N. Zaborsky, R. Oostendorp, J. Ruland, M. Leitges, T. Kuhnt, Y. Schafer, B. Lampl, C. Peschel, A. Egle, and I. Ringshausen. 2013. Protein kinase c-beta-dependent activation of NF-kappaB in stromal cells is indispensable for the survival of chronic lymphocytic leukemia B cells in vivo. Cancer Cell 23: 77–92. https://doi.org/10.1016/j.ccr.2012.12.003.CrossRefPubMedPubMedCentral Lutzny, G., T. Kocher, M. Schmidt-Supprian, M. Rudelius, L. Klein-Hitpass, A.J. Finch, J. Durig, M. Wagner, C. Haferlach, A. Kohlmann, S. Schnittger, M. Seifert, S. Wanninger, N. Zaborsky, R. Oostendorp, J. Ruland, M. Leitges, T. Kuhnt, Y. Schafer, B. Lampl, C. Peschel, A. Egle, and I. Ringshausen. 2013. Protein kinase c-beta-dependent activation of NF-kappaB in stromal cells is indispensable for the survival of chronic lymphocytic leukemia B cells in vivo. Cancer Cell 23: 77–92. https://​doi.​org/​10.​1016/​j.​ccr.​2012.​12.​003.CrossRefPubMedPubMedCentral
17.
go back to reference Lam, H.C., A.M. Choi, and S.W. Ryter. 2011. Isolation of mouse respiratory epithelial cells and exposure to experimental cigarette smoke at air liquid interface. Journal of Visualized Experiments. https://doi.org/10.3791/2513. Lam, H.C., A.M. Choi, and S.W. Ryter. 2011. Isolation of mouse respiratory epithelial cells and exposure to experimental cigarette smoke at air liquid interface. Journal of Visualized Experiments. https://​doi.​org/​10.​3791/​2513.
18.
go back to reference Ohara, Y., T.E. Peterson, B. Zheng, J.F. Kuo, and D.G. Harrison. 1994. Lysophosphatidylcholine increases vascular superoxide anion production via protein kinase C activation. Arteriosclerosis and Thrombosis 14: 1007–1013.CrossRefPubMed Ohara, Y., T.E. Peterson, B. Zheng, J.F. Kuo, and D.G. Harrison. 1994. Lysophosphatidylcholine increases vascular superoxide anion production via protein kinase C activation. Arteriosclerosis and Thrombosis 14: 1007–1013.CrossRefPubMed
20.
go back to reference Pezzulo, A.A., T.D. Starner, T.E. Scheetz, G.L. Traver, A.E. Tilley, B.G. Harvey, R.G. Crystal, McCray PB Jr., and J. Zabner. 2011. The air-liquid interface and use of primary cell cultures are important to recapitulate the transcriptional profile of in vivo airway epithelia. American Journal of Physiology. Lung Cellular and Molecular Physiology 300: L25–L31. https://doi.org/10.1152/ajplung.00256.2010.CrossRefPubMed Pezzulo, A.A., T.D. Starner, T.E. Scheetz, G.L. Traver, A.E. Tilley, B.G. Harvey, R.G. Crystal, McCray PB Jr., and J. Zabner. 2011. The air-liquid interface and use of primary cell cultures are important to recapitulate the transcriptional profile of in vivo airway epithelia. American Journal of Physiology. Lung Cellular and Molecular Physiology 300: L25–L31. https://​doi.​org/​10.​1152/​ajplung.​00256.​2010.CrossRefPubMed
Metadata
Title
Cold Stimuli Facilitate Inflammatory Responses Through Transient Receptor Potential Melastatin 8 (TRPM8) in Primary Airway Epithelial Cells of Asthmatic Mice
Authors
Haipei Liu
Li Hua
Quanhua Liu
Jun Pan
Yixiao Bao
Publication date
01-08-2018
Publisher
Springer US
Published in
Inflammation / Issue 4/2018
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-018-0774-y

Other articles of this Issue 4/2018

Inflammation 4/2018 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.