Skip to main content
Top
Published in: Inflammation 4/2018

01-08-2018 | ORIGINAL ARTICLE

Rapamycin Alleviates Hormone Imbalance-Induced Chronic Nonbacterial Inflammation in Rat Prostate Through Activating Autophagy via the mTOR/ULK1/ATG13 Signaling Pathway

Authors: Yang Su, Jingxiao Lu, Xianguo Chen, Chaozhao Liang, Pengcheng Luo, Cong Qin, Jie Zhang

Published in: Inflammation | Issue 4/2018

Login to get access

Abstract

Chronic prostatitis (CP) is a clinically common disease with high morbidity. It affects the patients’ quality of life (QoL) as well as physical and mental health seriously due to the recurring symptoms of lower urinary tract and genitalia. As the opinions about the etiology of CP are still not uniform, it is very difficult to be treated or even cured. Autophagy is a highly conserved physiological function which is widely found in eukaryotic cells. In general, cells maintain a certain level of autophagy under physiological conditions, and the basal level of autophagy can be regulated by a variety of autophagy-related genes under stress such as hunger, infection, trauma, and other circumstances. Therefore, the main purpose of this study is to investigate the role of autophagy in chronic nonbacterial prostatitis (CNP, also called CP). In this paper, we established the CNP model via hypodermic injection of 17β-estradiol and subsequently abdominal rapamycin (a common autophagy inducer) treatment based on castrated rats. Then, the expression of nuclear factor-κB (NF-κB), interleukin-1β (IL-1β), and autophagy-related markers as well as autophagosome formation in prostate tissues, peripheral blood mononuclear cells (PBMCs), and serum of rats were evaluated respectively. In addition to some histological changes in the prostate tissues, we found the levels of NF-κB and IL-1β were significantly increased in the model group, along with significantly suppressed autophagy, whereas rapamycin could reverse these effects which involved in the mTOR/ULK1/ATG13 signaling pathway. In conclusion, our results suggested that rapamycin could ameliorate hormone imbalance-induced CNP by activating autophagy.
Literature
1.
go back to reference Hu, Y., X. Niu, G. Wang, J. Huang, M. Liu, et al. 2016. Chronic prostatitis/chronic pelvic pain syndrome impairs erectile function through increased endothelial dysfunction, oxidative stress, apoptosis, and corporal fibrosis in a rat model. Andrology 4 (6): 1209–1216.CrossRefPubMed Hu, Y., X. Niu, G. Wang, J. Huang, M. Liu, et al. 2016. Chronic prostatitis/chronic pelvic pain syndrome impairs erectile function through increased endothelial dysfunction, oxidative stress, apoptosis, and corporal fibrosis in a rat model. Andrology 4 (6): 1209–1216.CrossRefPubMed
2.
go back to reference Schwartz, E.S., A. Xie, J.H. La, and G.F. Gebhart. 2015. Nociceptive and inflammatory mediator upregulation in a mouse model of chronic prostatitis. Pain 156 (8): 1537–1544.CrossRefPubMedPubMedCentral Schwartz, E.S., A. Xie, J.H. La, and G.F. Gebhart. 2015. Nociceptive and inflammatory mediator upregulation in a mouse model of chronic prostatitis. Pain 156 (8): 1537–1544.CrossRefPubMedPubMedCentral
3.
go back to reference Rees, J., M. Abrahams, A. Doble, and A. Cooper. 2015. Diagnosis and treatment of chronic bacterial prostatitis and chronic prostatitis/chronic pelvic pain syndrome: a consensus guideline. BJU International 116 (4): 509–525.CrossRefPubMedPubMedCentral Rees, J., M. Abrahams, A. Doble, and A. Cooper. 2015. Diagnosis and treatment of chronic bacterial prostatitis and chronic prostatitis/chronic pelvic pain syndrome: a consensus guideline. BJU International 116 (4): 509–525.CrossRefPubMedPubMedCentral
4.
go back to reference Ihsan, A.U., F.U. Khan, W. Nawaz, M.Z. Khan, M. Yang, and X. Zhou. 2017. Establishment of a rat model of chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) induced by immunization with a novel peptide T2. Biomedicine & Pharmacotherapy 91: 687–692.CrossRef Ihsan, A.U., F.U. Khan, W. Nawaz, M.Z. Khan, M. Yang, and X. Zhou. 2017. Establishment of a rat model of chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) induced by immunization with a novel peptide T2. Biomedicine & Pharmacotherapy 91: 687–692.CrossRef
5.
go back to reference Cohen, J.M., A.P. Fagin, E. Hariton, J.R. Niska, M.W. Pierce, A. Kuriyama, J.S. Whelan, J.L. Jackson, and J.D. Dimitrakoff. 2012. Therapeutic intervention for chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS): a systematic review and meta-analysis. PLoS One 7 (8): e41941.CrossRefPubMedPubMedCentral Cohen, J.M., A.P. Fagin, E. Hariton, J.R. Niska, M.W. Pierce, A. Kuriyama, J.S. Whelan, J.L. Jackson, and J.D. Dimitrakoff. 2012. Therapeutic intervention for chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS): a systematic review and meta-analysis. PLoS One 7 (8): e41941.CrossRefPubMedPubMedCentral
6.
go back to reference Hu, C., H. Yang, Y. Zhao, X. Chen, Y. Dong, et al. 2016. The role of inflammatory cytokines and ERK1/2 signaling in chronic prostatitis/chronic pelvic pain syndrome with related mental health disorders. Scientific Reports 6: 28608.CrossRefPubMedPubMedCentral Hu, C., H. Yang, Y. Zhao, X. Chen, Y. Dong, et al. 2016. The role of inflammatory cytokines and ERK1/2 signaling in chronic prostatitis/chronic pelvic pain syndrome with related mental health disorders. Scientific Reports 6: 28608.CrossRefPubMedPubMedCentral
7.
go back to reference Motrich, R.D., M.L. Breser, L.R. Sanchez, G.J. Godoy, I. Prinz, et al. 2016. IL-17 is not essential for inflammation and chronic pelvic pain development in an experimental model of chronic prostatitis/chronic pelvic pain syndrome. Pain 157 (3): 585–597.CrossRefPubMed Motrich, R.D., M.L. Breser, L.R. Sanchez, G.J. Godoy, I. Prinz, et al. 2016. IL-17 is not essential for inflammation and chronic pelvic pain development in an experimental model of chronic prostatitis/chronic pelvic pain syndrome. Pain 157 (3): 585–597.CrossRefPubMed
8.
go back to reference Talero, E., A. Alcaide, J. Avila-Roman, S. Garcia-Maurino, D. Vendramini-Costa, et al. 2016. Expression patterns of sirtuin 1-AMPK-autophagy pathway in chronic colitis and inflammation-associated colon neoplasia in IL-10-deficient mice. International Immunopharmacology 35: 248–256.CrossRefPubMed Talero, E., A. Alcaide, J. Avila-Roman, S. Garcia-Maurino, D. Vendramini-Costa, et al. 2016. Expression patterns of sirtuin 1-AMPK-autophagy pathway in chronic colitis and inflammation-associated colon neoplasia in IL-10-deficient mice. International Immunopharmacology 35: 248–256.CrossRefPubMed
9.
go back to reference Zhang, Q., J. Sun, Y. Wang, W. He, L. Wang, Y. Zheng, J. Wu, Y. Zhang, and X. Jiang. 2017. Antimycobacterial and anti-inflammatory mechanisms of baicalin via induced autophagy in macrophages infected with Mycobacterium tuberculosis. Frontiers in Microbiology 8: 2142.CrossRefPubMedPubMedCentral Zhang, Q., J. Sun, Y. Wang, W. He, L. Wang, Y. Zheng, J. Wu, Y. Zhang, and X. Jiang. 2017. Antimycobacterial and anti-inflammatory mechanisms of baicalin via induced autophagy in macrophages infected with Mycobacterium tuberculosis. Frontiers in Microbiology 8: 2142.CrossRefPubMedPubMedCentral
10.
go back to reference Junkins, R.D., C. McCormick, and T.J. Lin. 2014. The emerging potential of autophagy-based therapies in the treatment of cystic fibrosis lung infections. Autophagy 10 (3): 538–547.CrossRefPubMedPubMedCentral Junkins, R.D., C. McCormick, and T.J. Lin. 2014. The emerging potential of autophagy-based therapies in the treatment of cystic fibrosis lung infections. Autophagy 10 (3): 538–547.CrossRefPubMedPubMedCentral
11.
go back to reference De Nunzio, C., S. Giglio, A. Stoppacciaro, M. Gacci, R. Cirombella, et al. 2017. Autophagy deactivation is associated with severe prostatic inflammation in patients with lower urinary tract symptoms and benign prostatic hyperplasia. Oncotarget 8 (31): 50904–50910.CrossRefPubMedPubMedCentral De Nunzio, C., S. Giglio, A. Stoppacciaro, M. Gacci, R. Cirombella, et al. 2017. Autophagy deactivation is associated with severe prostatic inflammation in patients with lower urinary tract symptoms and benign prostatic hyperplasia. Oncotarget 8 (31): 50904–50910.CrossRefPubMedPubMedCentral
12.
go back to reference Bullon, P., M.D. Cordero, J.L. Quiles, M.C. Ramirez-Tortosa, A. Gonzalez-Alonso, et al. 2012. Autophagy in periodontitis patients and gingival fibroblasts: unraveling the link between chronic diseases and inflammation. BMC Medicine 10: 122.CrossRefPubMedPubMedCentral Bullon, P., M.D. Cordero, J.L. Quiles, M.C. Ramirez-Tortosa, A. Gonzalez-Alonso, et al. 2012. Autophagy in periodontitis patients and gingival fibroblasts: unraveling the link between chronic diseases and inflammation. BMC Medicine 10: 122.CrossRefPubMedPubMedCentral
13.
go back to reference Codogno, P., and A.J. Meijer. 2013. Autophagy in the liver. Journal of Hepatology 59 (2): 389–391.CrossRefPubMed Codogno, P., and A.J. Meijer. 2013. Autophagy in the liver. Journal of Hepatology 59 (2): 389–391.CrossRefPubMed
14.
go back to reference Zaglia, T., G. Milan, A. Ruhs, M. Franzoso, E. Bertaggia, N. Pianca, A. Carpi, P. Carullo, P. Pesce, D. Sacerdoti, C. Sarais, D. Catalucci, M. Krüger, M. Mongillo, and M. Sandri. 2014. Atrogin-1 deficiency promotes cardiomyopathy and premature death via impaired autophagy. Journal of Clinical Investigation 124 (6): 2410–2424.CrossRefPubMed Zaglia, T., G. Milan, A. Ruhs, M. Franzoso, E. Bertaggia, N. Pianca, A. Carpi, P. Carullo, P. Pesce, D. Sacerdoti, C. Sarais, D. Catalucci, M. Krüger, M. Mongillo, and M. Sandri. 2014. Atrogin-1 deficiency promotes cardiomyopathy and premature death via impaired autophagy. Journal of Clinical Investigation 124 (6): 2410–2424.CrossRefPubMed
15.
go back to reference Osorio, J. 2014. Diabetes: Protective role of autophagy in pancreatic beta cells. Nature Reviews Endocrinology 10 (10): 575.CrossRefPubMed Osorio, J. 2014. Diabetes: Protective role of autophagy in pancreatic beta cells. Nature Reviews Endocrinology 10 (10): 575.CrossRefPubMed
16.
go back to reference Scharl, M., and G. Rogler. 2012. Inflammatory bowel disease: dysfunction of autophagy? Digestive Diseases 30 (Suppl 3): 12–19.CrossRefPubMed Scharl, M., and G. Rogler. 2012. Inflammatory bowel disease: dysfunction of autophagy? Digestive Diseases 30 (Suppl 3): 12–19.CrossRefPubMed
17.
go back to reference Yoshizaki, T., C. Kusunoki, M. Kondo, M. Yasuda, S. Kume, K. Morino, O. Sekine, S. Ugi, T. Uzu, Y. Nishio, A. Kashiwagi, and H. Maegawa. 2012. Autophagy regulates inflammation in adipocytes. Biochemical and Biophysical Research Communications 417 (1): 352–357.CrossRefPubMed Yoshizaki, T., C. Kusunoki, M. Kondo, M. Yasuda, S. Kume, K. Morino, O. Sekine, S. Ugi, T. Uzu, Y. Nishio, A. Kashiwagi, and H. Maegawa. 2012. Autophagy regulates inflammation in adipocytes. Biochemical and Biophysical Research Communications 417 (1): 352–357.CrossRefPubMed
18.
go back to reference Gukovsky, I., N. Li, J. Todoric, A. Gukovskaya, and M. Karin. 2013. Inflammation, autophagy, and obesity: common features in the pathogenesis of pancreatitis and pancreatic cancer. Gastroenterology 144 (6): 1199–1209.CrossRefPubMedPubMedCentral Gukovsky, I., N. Li, J. Todoric, A. Gukovskaya, and M. Karin. 2013. Inflammation, autophagy, and obesity: common features in the pathogenesis of pancreatitis and pancreatic cancer. Gastroenterology 144 (6): 1199–1209.CrossRefPubMedPubMedCentral
19.
go back to reference Jia, Y.L., X. Liu, J.Y. Yan, L.M. Chong, L. Li, A.C. Ma, L. Zhou, and Z.Y. Sun. 2015. The alteration of inflammatory markers and apoptosis on chronic prostatitis induced by estrogen and androgen. International Urology and Nephrology 47 (1): 39–46.CrossRefPubMed Jia, Y.L., X. Liu, J.Y. Yan, L.M. Chong, L. Li, A.C. Ma, L. Zhou, and Z.Y. Sun. 2015. The alteration of inflammatory markers and apoptosis on chronic prostatitis induced by estrogen and androgen. International Urology and Nephrology 47 (1): 39–46.CrossRefPubMed
20.
go back to reference Vykhovanets, E.V., M.I. Resnick, G.T. MacLennan, and S. Gupta. 2007. Experimental rodent models of prostatitis: limitations and potential. Prostate Cancer and Prostatic Diseases 10 (1): 15–29.CrossRefPubMed Vykhovanets, E.V., M.I. Resnick, G.T. MacLennan, and S. Gupta. 2007. Experimental rodent models of prostatitis: limitations and potential. Prostate Cancer and Prostatic Diseases 10 (1): 15–29.CrossRefPubMed
21.
go back to reference Said, M.M., and M.C. Bosland. 2017. The anti-inflammatory effect of montelukast, a cysteinyl leukotriene receptor-1 antagonist, against estradiol-induced nonbacterial inflammation in the rat prostate. Naunyn-Schmiedeberg's Archives of Pharmacology 390 (2): 197–205.CrossRefPubMed Said, M.M., and M.C. Bosland. 2017. The anti-inflammatory effect of montelukast, a cysteinyl leukotriene receptor-1 antagonist, against estradiol-induced nonbacterial inflammation in the rat prostate. Naunyn-Schmiedeberg's Archives of Pharmacology 390 (2): 197–205.CrossRefPubMed
22.
go back to reference Fujishima, Y., S. Nishiumi, A. Masuda, J. Inoue, N.M. Nguyen, et al. 2011. Autophagy in the intestinal epithelium reduces endotoxin-induced inflammatory responses by inhibiting NF-kappaB activation. Archives of Biochemistry and Biophysics 506 (2): 223–235.CrossRefPubMed Fujishima, Y., S. Nishiumi, A. Masuda, J. Inoue, N.M. Nguyen, et al. 2011. Autophagy in the intestinal epithelium reduces endotoxin-induced inflammatory responses by inhibiting NF-kappaB activation. Archives of Biochemistry and Biophysics 506 (2): 223–235.CrossRefPubMed
23.
go back to reference Atreya, I., R. Atreya, and M.F. Neurath. 2008. NF-kappaB in inflammatory bowel disease. Journal of Internal Medicine 263 (6): 591–596.CrossRefPubMed Atreya, I., R. Atreya, and M.F. Neurath. 2008. NF-kappaB in inflammatory bowel disease. Journal of Internal Medicine 263 (6): 591–596.CrossRefPubMed
24.
go back to reference Mohammed-Ali, Z., G.L. Cruz, and J.G. Dickhout. 2015. Crosstalk between the unfolded protein response and NF-kappaB-mediated inflammation in the progression of chronic kidney disease. Journal of Immunology Research 2015: 428508.CrossRefPubMedPubMedCentral Mohammed-Ali, Z., G.L. Cruz, and J.G. Dickhout. 2015. Crosstalk between the unfolded protein response and NF-kappaB-mediated inflammation in the progression of chronic kidney disease. Journal of Immunology Research 2015: 428508.CrossRefPubMedPubMedCentral
25.
go back to reference Choi, S., H. Shin, H. Song, and H.J. Lim. 2014. Suppression of autophagic activation in the mouse uterus by estrogen and progesterone. Journal of Endocrinology 221 (1): 39–50.CrossRefPubMed Choi, S., H. Shin, H. Song, and H.J. Lim. 2014. Suppression of autophagic activation in the mouse uterus by estrogen and progesterone. Journal of Endocrinology 221 (1): 39–50.CrossRefPubMed
26.
go back to reference Wang, F., J. Xiao, Y. Shen, F. Yao, and Y. Chen. 2014. Estrogen protects cardiomyocytes against lipopolysaccharide by inhibiting autophagy. Molecular Medicine Reports 10 (3): 1509–1512.CrossRefPubMed Wang, F., J. Xiao, Y. Shen, F. Yao, and Y. Chen. 2014. Estrogen protects cardiomyocytes against lipopolysaccharide by inhibiting autophagy. Molecular Medicine Reports 10 (3): 1509–1512.CrossRefPubMed
27.
go back to reference Mei, J., X.Y. Zhu, L.P. Jin, Z.L. Duan, D.J. Li, and M.Q. Li. 2015. Estrogen promotes the survival of human secretory phase endometrial stromal cells via CXCL12/CXCR4 up-regulation-mediated autophagy inhibition. Human Reproduction 30 (7): 1677–1689.CrossRefPubMed Mei, J., X.Y. Zhu, L.P. Jin, Z.L. Duan, D.J. Li, and M.Q. Li. 2015. Estrogen promotes the survival of human secretory phase endometrial stromal cells via CXCL12/CXCR4 up-regulation-mediated autophagy inhibition. Human Reproduction 30 (7): 1677–1689.CrossRefPubMed
28.
go back to reference Boya, P., F. Reggiori, and P. Codogno. 2013. Emerging regulation and functions of autophagy. Nature Cell Biology 15 (7): 713–720.CrossRefPubMed Boya, P., F. Reggiori, and P. Codogno. 2013. Emerging regulation and functions of autophagy. Nature Cell Biology 15 (7): 713–720.CrossRefPubMed
29.
go back to reference Klionsky, D.J., F.C. Abdalla, H. Abeliovich, R.T. Abraham, A. Acevedo-Arozena, et al. 2012. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 8 (4): 445–544.CrossRefPubMedPubMedCentral Klionsky, D.J., F.C. Abdalla, H. Abeliovich, R.T. Abraham, A. Acevedo-Arozena, et al. 2012. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 8 (4): 445–544.CrossRefPubMedPubMedCentral
30.
go back to reference Li, L., H. Chen, Y. Gao, Y.W. Wang, G.Q. Zhang, S.H. Pan, L. Ji, R. Kong, G. Wang, Y.H. Jia, X.W. Bai, and B. Sun. 2016. Long noncoding RNA MALAT1 promotes aggressive pancreatic cancer proliferation and metastasis via the stimulation of autophagy. Molecular Cancer Therapeutics 15 (9): 2232–2243.CrossRefPubMed Li, L., H. Chen, Y. Gao, Y.W. Wang, G.Q. Zhang, S.H. Pan, L. Ji, R. Kong, G. Wang, Y.H. Jia, X.W. Bai, and B. Sun. 2016. Long noncoding RNA MALAT1 promotes aggressive pancreatic cancer proliferation and metastasis via the stimulation of autophagy. Molecular Cancer Therapeutics 15 (9): 2232–2243.CrossRefPubMed
31.
go back to reference Nakahira, K., S.M. Cloonan, K. Mizumura, A.M. Choi, and S.W. Ryter. 2014. Autophagy: a crucial moderator of redox balance, inflammation, and apoptosis in lung disease. Antioxidants & Redox Signaling 20 (3): 474–494.CrossRef Nakahira, K., S.M. Cloonan, K. Mizumura, A.M. Choi, and S.W. Ryter. 2014. Autophagy: a crucial moderator of redox balance, inflammation, and apoptosis in lung disease. Antioxidants & Redox Signaling 20 (3): 474–494.CrossRef
32.
go back to reference Pei, F., H.S. Wang, Z. Chen, and L. Zhang. 2016. Autophagy regulates odontoblast differentiation by suppressing NF-kappaB activation in an inflammatory environment. Cell Death & Disease 7: e2122.CrossRef Pei, F., H.S. Wang, Z. Chen, and L. Zhang. 2016. Autophagy regulates odontoblast differentiation by suppressing NF-kappaB activation in an inflammatory environment. Cell Death & Disease 7: e2122.CrossRef
33.
go back to reference Qu, X., Z. Zou, Q. Sun, K. Luby-Phelps, P. Cheng, et al. 2007. Autophagy gene-dependent clearance of apoptotic cells during embryonic development. Cell 128 (5): 931–946.CrossRefPubMed Qu, X., Z. Zou, Q. Sun, K. Luby-Phelps, P. Cheng, et al. 2007. Autophagy gene-dependent clearance of apoptotic cells during embryonic development. Cell 128 (5): 931–946.CrossRefPubMed
34.
go back to reference Mathew, R., C.M. Karp, B. Beaudoin, N. Vuong, G. Chen, H.Y. Chen, K. Bray, A. Reddy, G. Bhanot, C. Gelinas, R.S. DiPaola, V. Karantza-Wadsworth, and E. White. 2009. Autophagy suppresses tumorigenesis through elimination of p62. Cell 137 (6): 1062–1075.CrossRefPubMedPubMedCentral Mathew, R., C.M. Karp, B. Beaudoin, N. Vuong, G. Chen, H.Y. Chen, K. Bray, A. Reddy, G. Bhanot, C. Gelinas, R.S. DiPaola, V. Karantza-Wadsworth, and E. White. 2009. Autophagy suppresses tumorigenesis through elimination of p62. Cell 137 (6): 1062–1075.CrossRefPubMedPubMedCentral
35.
go back to reference White, E., C. Karp, A.M. Strohecker, Y. Guo, and R. Mathew. 2010. Role of autophagy in suppression of inflammation and cancer. Current Opinion in Cell Biology 22 (2): 212–217.CrossRefPubMedPubMedCentral White, E., C. Karp, A.M. Strohecker, Y. Guo, and R. Mathew. 2010. Role of autophagy in suppression of inflammation and cancer. Current Opinion in Cell Biology 22 (2): 212–217.CrossRefPubMedPubMedCentral
36.
go back to reference Bachetti, T., S. Chiesa, P. Castagnola, D. Bani, E. Di Zanni, et al. 2013. Autophagy contributes to inflammation in patients with TNFR-associated periodic syndrome (TRAPS). Annals of the Rheumatic Diseases 72 (6): 1044–1052.CrossRefPubMed Bachetti, T., S. Chiesa, P. Castagnola, D. Bani, E. Di Zanni, et al. 2013. Autophagy contributes to inflammation in patients with TNFR-associated periodic syndrome (TRAPS). Annals of the Rheumatic Diseases 72 (6): 1044–1052.CrossRefPubMed
37.
go back to reference Xi, C., J. Zhou, S. Du, and S. Peng. 2016. Autophagy upregulation promotes macrophages to escape mesoporous silica nanoparticle (MSN)-induced NF-kappaB-dependent inflammation. Inflammation Research 65 (4): 325–341.CrossRefPubMed Xi, C., J. Zhou, S. Du, and S. Peng. 2016. Autophagy upregulation promotes macrophages to escape mesoporous silica nanoparticle (MSN)-induced NF-kappaB-dependent inflammation. Inflammation Research 65 (4): 325–341.CrossRefPubMed
Metadata
Title
Rapamycin Alleviates Hormone Imbalance-Induced Chronic Nonbacterial Inflammation in Rat Prostate Through Activating Autophagy via the mTOR/ULK1/ATG13 Signaling Pathway
Authors
Yang Su
Jingxiao Lu
Xianguo Chen
Chaozhao Liang
Pengcheng Luo
Cong Qin
Jie Zhang
Publication date
01-08-2018
Publisher
Springer US
Published in
Inflammation / Issue 4/2018
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-018-0786-7

Other articles of this Issue 4/2018

Inflammation 4/2018 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine