Skip to main content
Top
Published in: Journal of Translational Medicine 1/2015

Open Access 01-12-2015 | Research

Cofilin1 is involved in hypertension-induced renal damage via the regulation of NF-κB in renal tubular epithelial cells

Authors: Quan-zhen Wang, Hai-qing Gao, Ying Liang, Jun Zhang, Jian Wang, Jie Qiu

Published in: Journal of Translational Medicine | Issue 1/2015

Login to get access

Abstract

Background

Inflammation mediated by nuclear factor-κB (NF-κB) plays a critical role in the pathogenesis of hypertensive nephropathy (HN). Cytoskeletal remodelling is necessary for the activation of NF-κB. An actin-binding protein, cofilin-1 promotes dynamic alterations to the cytoskeleton by severing actin filaments. However, whether cofilin1 modulates NF-κB activity via cytoskeletal remodelling in the setting of hypertensive renal damage and what mechanisms underlie this phenomenon, remain unknown.

Methods

Twenty-one-week old spontaneously hypertensive rats (SHRs) were treated with an antioxidant (100 or 250 mg kg−1 day−1), grape seed proanthocyanidins extract (GSPE), for 22 weeks. Twenty-four-hour urinary protein, serum creatinine and urea nitrogen levels were measured. Haematoxylin and eosin (HE) staining was performed, and the expression levels of renal cortex cofilin1, monocyte chemotactic protein 1 (MCP1), interleukin-1β (IL1β) and NF-κB were evaluated via either Western blotting or immunohistochemistry. In vitro, human proximal renal tubular epithelial cells (HK-2 cells) were pre-incubated either with or without GSPE and subsequently treated with angiotensinII (AngII). Furthermore, a lentiviral shRNA-vector was utilized to knockdown cofilin1 expression in the HK-2 cells, which were stimulated with AngII. Actin filaments, NF-κB activity and several downstream inflammatory factors, including MCP1 and IL-1β, were investigated.

Results

In addition to elevated blood pressure and 24 h urinary protein levels, NF-κB activity and the expression levels of MCP1 and IL-1β were significantly increased, resulting in tubulointerstitial inflammatory infiltration in SHRs. The phosphorylation (inactivation) of cofilin1 was increased in the kidneys of the SHRs. In vitro, AngII stimulation resulted in the phosphorylation of cofilin1, the formation of actin stress fibres and nuclear translocation of NF-κB p65 in the HK2 cells. Both GSPE pretreatment and the shRNA knockdown of cofilin1 inhibited Rel/p65 nuclear translocation, as well as the expression of both MCP-1 and IL-1β in the AngII-induced HK2 cells.

Conclusion

These results demonstrate that cofilin1 is involved in hypertensive nephropathy by modulating the nuclear translocation of NF-κB and the expression of its downstream inflammatory factors in renal tubular epithelial cells.
Appendix
Available only for authorised users
Literature
1.
go back to reference Li L, Yan J, Hu K, Gu J, Wang JJ, Deng XL, et al. Protective effects of Eucommia lignans against hypertensive renal injury by inhibiting expression of aldose reductase. J Ethnopharmacol. 2012;139:454–61.CrossRefPubMed Li L, Yan J, Hu K, Gu J, Wang JJ, Deng XL, et al. Protective effects of Eucommia lignans against hypertensive renal injury by inhibiting expression of aldose reductase. J Ethnopharmacol. 2012;139:454–61.CrossRefPubMed
2.
go back to reference Nava M, Quiroz Y, Vaziri N. Rodriguez-Iturbe B. Melatonin reduces renal interstitial inflammation and improves hypertension in spontaneously hypertensive rats. Am J Physiol Renal Physiol. 2003;284:F447–54.CrossRefPubMed Nava M, Quiroz Y, Vaziri N. Rodriguez-Iturbe B. Melatonin reduces renal interstitial inflammation and improves hypertension in spontaneously hypertensive rats. Am J Physiol Renal Physiol. 2003;284:F447–54.CrossRefPubMed
3.
go back to reference Rodríguez-Iturbe B, Ferrebuz A, Vanegas V, Quiroz Y, Mezzano S, Vaziri ND. Early and sustained inhibition of nuclear factor-κB prevents hypertension in spontaneously hypertensive rats. J Pharmacol Exp Ther. 2005;315:51–7.CrossRefPubMed Rodríguez-Iturbe B, Ferrebuz A, Vanegas V, Quiroz Y, Mezzano S, Vaziri ND. Early and sustained inhibition of nuclear factor-κB prevents hypertension in spontaneously hypertensive rats. J Pharmacol Exp Ther. 2005;315:51–7.CrossRefPubMed
4.
5.
go back to reference Zhu P, Lin H, Sun C, Lin F, Yu H, Zhuo X, et al. Synergistic effects of telmisartan and pyridoxamine on early renal damage in spontaneously hypertensive rats. Mol Med Rep. 2012;5:655–62.PubMed Zhu P, Lin H, Sun C, Lin F, Yu H, Zhuo X, et al. Synergistic effects of telmisartan and pyridoxamine on early renal damage in spontaneously hypertensive rats. Mol Med Rep. 2012;5:655–62.PubMed
6.
go back to reference Fazal F, Minhajuddin M, Bijli KM, McGrath JL, Rahman A. Evidence for actin cytoskeleton-dependent and -independent pathways for RelA/p65 nuclear translocation in endothelial cells. Biol Chem. 2007;282:3940–50.CrossRef Fazal F, Minhajuddin M, Bijli KM, McGrath JL, Rahman A. Evidence for actin cytoskeleton-dependent and -independent pathways for RelA/p65 nuclear translocation in endothelial cells. Biol Chem. 2007;282:3940–50.CrossRef
7.
go back to reference Mizuno K. Signaling mechanisms and functional roles of cofilin phosphorylation and dephosphorylation. Cell Signal. 2013;25:457–69.CrossRefPubMed Mizuno K. Signaling mechanisms and functional roles of cofilin phosphorylation and dephosphorylation. Cell Signal. 2013;25:457–69.CrossRefPubMed
8.
go back to reference Fazal F, Bijli KM, Minhajuddin M, Rein T, Finkelstein JN, Rahman A. Essential role of cofilin-1 in regulating thrombin-induced RelA/p65 nuclear translocation and intercellular adhesion molecule 1 (ICAM-1) expression in endothelial cells. J Biol Chem. 2009;284:21047–56.PubMedCentralCrossRefPubMed Fazal F, Bijli KM, Minhajuddin M, Rein T, Finkelstein JN, Rahman A. Essential role of cofilin-1 in regulating thrombin-induced RelA/p65 nuclear translocation and intercellular adhesion molecule 1 (ICAM-1) expression in endothelial cells. J Biol Chem. 2009;284:21047–56.PubMedCentralCrossRefPubMed
10.
go back to reference Rodriguez-Iturbe B, Zhan CD, Quiroz Y, Sindhu RK, Vaziri ND. Antioxidant-rich diet relieves hypertension and reduces renal immune infiltration in spontaneously hypertensive rats. Hypertension. 2003;41:341–6.CrossRefPubMed Rodriguez-Iturbe B, Zhan CD, Quiroz Y, Sindhu RK, Vaziri ND. Antioxidant-rich diet relieves hypertension and reduces renal immune infiltration in spontaneously hypertensive rats. Hypertension. 2003;41:341–6.CrossRefPubMed
11.
go back to reference Chuang CC, McIntosh MK. Potential mechanisms by which polyphenol-rich grapes prevent obesity-mediated inflammation and metabolic diseases. Annu Rev Nutr. 2011;31:155–76.CrossRefPubMed Chuang CC, McIntosh MK. Potential mechanisms by which polyphenol-rich grapes prevent obesity-mediated inflammation and metabolic diseases. Annu Rev Nutr. 2011;31:155–76.CrossRefPubMed
12.
go back to reference Kim YJ, Kim YA, Yokozawa T. Attenuation of oxidative stress and inflammation by gravinol in high glucose-exposed renal tubular epithelial cells. Toxicology. 2010;270:106–11.CrossRefPubMed Kim YJ, Kim YA, Yokozawa T. Attenuation of oxidative stress and inflammation by gravinol in high glucose-exposed renal tubular epithelial cells. Toxicology. 2010;270:106–11.CrossRefPubMed
13.
go back to reference Chen HY, Huang XR, Wang W, Li JH, Heuchel RL, Chung AC, et al. The protective role of Smad7 in diabetic kidney disease: mechanism and therapeutic potential. Diabetes. 2011;60:590–601.PubMedCentralCrossRefPubMed Chen HY, Huang XR, Wang W, Li JH, Heuchel RL, Chung AC, et al. The protective role of Smad7 in diabetic kidney disease: mechanism and therapeutic potential. Diabetes. 2011;60:590–601.PubMedCentralCrossRefPubMed
14.
go back to reference Giani JF, Muñoz MC, Pons RA, Cao G, Toblli JE, Turyn D, et al. Angiotensin-(1-7) reduces proteinuria and diminishes structural damage in renal tissue of stroke-pronespontaneously hypertensive rats. Am J Physiol Renal Physiol. 2011;300:F272–82.CrossRefPubMed Giani JF, Muñoz MC, Pons RA, Cao G, Toblli JE, Turyn D, et al. Angiotensin-(1-7) reduces proteinuria and diminishes structural damage in renal tissue of stroke-pronespontaneously hypertensive rats. Am J Physiol Renal Physiol. 2011;300:F272–82.CrossRefPubMed
15.
go back to reference Panchapakesan U, Peqq K, Gross S, Komala MG, Mudaliar H, Forbes J, et al. Effects of SGLT2 Inhibition in human kidney proximal tubular cells–renoprotection in diabetic nephropathy? PLoS One. 2013;8(2):e54442.PubMedCentralCrossRefPubMed Panchapakesan U, Peqq K, Gross S, Komala MG, Mudaliar H, Forbes J, et al. Effects of SGLT2 Inhibition in human kidney proximal tubular cells–renoprotection in diabetic nephropathy? PLoS One. 2013;8(2):e54442.PubMedCentralCrossRefPubMed
16.
go back to reference Zhao SH, Gao HQ, Ji X, Wang Y, Liu XJ, You BA, et al. Effect of ouabain on myocardial ultrastructure and cytoskeleton during the development of ventricularhypertrophy. Heart Vessels. 2013;28:101–13.CrossRefPubMed Zhao SH, Gao HQ, Ji X, Wang Y, Liu XJ, You BA, et al. Effect of ouabain on myocardial ultrastructure and cytoskeleton during the development of ventricularhypertrophy. Heart Vessels. 2013;28:101–13.CrossRefPubMed
17.
go back to reference Bakoush O, Tencer J, Torffvit O, Tenstad O, Skogvall I, Rippe B. Increased glomerular albumin permeability in old spontaneously hypertensive rats. Nephrol Dial Transplant. 2004;19:1724–31.CrossRefPubMed Bakoush O, Tencer J, Torffvit O, Tenstad O, Skogvall I, Rippe B. Increased glomerular albumin permeability in old spontaneously hypertensive rats. Nephrol Dial Transplant. 2004;19:1724–31.CrossRefPubMed
18.
go back to reference Hultström M. Development of structural kidney damage in spontaneously hypertensive rats. J Hypertens. 2012;30(6):1087–91.CrossRefPubMed Hultström M. Development of structural kidney damage in spontaneously hypertensive rats. J Hypertens. 2012;30(6):1087–91.CrossRefPubMed
19.
go back to reference Awad AS, El-Sharif AA. Curcumin immune-mediated and anti-apoptotic mechanisms protect against renal ischemia/reperfusion and distant organ induced injuries. Int Immunopharmacol. 2011;11:992–6.CrossRefPubMed Awad AS, El-Sharif AA. Curcumin immune-mediated and anti-apoptotic mechanisms protect against renal ischemia/reperfusion and distant organ induced injuries. Int Immunopharmacol. 2011;11:992–6.CrossRefPubMed
20.
go back to reference Batal I, De Serres SA, Mfarrej BG, Grafals M, Pinkus GS, Kalra A, et al. Glomerular inflammation correlates with endothelial injury and with IL-6 and IL-1β secretion in the peripheral blood. Transplantation. 2014;97:1034–42.CrossRefPubMed Batal I, De Serres SA, Mfarrej BG, Grafals M, Pinkus GS, Kalra A, et al. Glomerular inflammation correlates with endothelial injury and with IL-6 and IL-1β secretion in the peripheral blood. Transplantation. 2014;97:1034–42.CrossRefPubMed
21.
22.
go back to reference Liu Zhen, Huang Xiao R, Lan Hui Y, et al. Smad3 mediates ANG II-induced hypertensive kidney disease in mice. Am J Physiol Renal Physiol. 2012;302:F986–97.CrossRefPubMed Liu Zhen, Huang Xiao R, Lan Hui Y, et al. Smad3 mediates ANG II-induced hypertensive kidney disease in mice. Am J Physiol Renal Physiol. 2012;302:F986–97.CrossRefPubMed
23.
go back to reference Rodríguez-Iturbe B, Quiroz Y, Ferrebuz A, Parra G, Vaziri ND. Evolution of renal interstitial inflammation and NF-kappaB activation in spontaneously hypertensive rats. Am J Nephrol. 2004;24:587–94.CrossRefPubMed Rodríguez-Iturbe B, Quiroz Y, Ferrebuz A, Parra G, Vaziri ND. Evolution of renal interstitial inflammation and NF-kappaB activation in spontaneously hypertensive rats. Am J Nephrol. 2004;24:587–94.CrossRefPubMed
24.
go back to reference Ruiz-Ortega M, Lorenzo O, Suzuki Y, Rupérez M, Egido J. Proinflammatory actions of angiotensins. Curr Opin Nephrol Hypertens. 2001;10:321–9.CrossRefPubMed Ruiz-Ortega M, Lorenzo O, Suzuki Y, Rupérez M, Egido J. Proinflammatory actions of angiotensins. Curr Opin Nephrol Hypertens. 2001;10:321–9.CrossRefPubMed
25.
go back to reference Ruiz-Ortega M, Ruperez M, Esteban V, Egido J. Molecular mechanisms of angiotensin II-induced vascular injury. Curr Hypertens Rep. 2003;5:73–9.CrossRefPubMed Ruiz-Ortega M, Ruperez M, Esteban V, Egido J. Molecular mechanisms of angiotensin II-induced vascular injury. Curr Hypertens Rep. 2003;5:73–9.CrossRefPubMed
26.
go back to reference Alique M, Civantos E, Sanchez-Lopez E, Lavoz C, Rayego-Mateos S, Rodrigues-Díez R, et al. Integrin-linked kinase plays a key role in the regulation of angiotensin II-induced renal inflammation. Clin Sci (Lond). 2014;127:19–31.CrossRef Alique M, Civantos E, Sanchez-Lopez E, Lavoz C, Rayego-Mateos S, Rodrigues-Díez R, et al. Integrin-linked kinase plays a key role in the regulation of angiotensin II-induced renal inflammation. Clin Sci (Lond). 2014;127:19–31.CrossRef
27.
go back to reference Hotulainen P, Paunola E, Vartiainen MK, Lappalainen P. Actin-depolymerizing factor and cofilin-1 play overlapping roles in promoting rapid F-actin depolymerization in mammalian nonmuscle cells. Mol Biol Cell. 2005;16:649–64.PubMedCentralCrossRefPubMed Hotulainen P, Paunola E, Vartiainen MK, Lappalainen P. Actin-depolymerizing factor and cofilin-1 play overlapping roles in promoting rapid F-actin depolymerization in mammalian nonmuscle cells. Mol Biol Cell. 2005;16:649–64.PubMedCentralCrossRefPubMed
28.
go back to reference Theriot JA. Accelerating on a treadmill: ADF/cofilin promotes rapid actin filament turnover in the dynamic cytoskeleton. J Cell Biol. 1997;136:1165–8.PubMedCentralCrossRefPubMed Theriot JA. Accelerating on a treadmill: ADF/cofilin promotes rapid actin filament turnover in the dynamic cytoskeleton. J Cell Biol. 1997;136:1165–8.PubMedCentralCrossRefPubMed
29.
go back to reference Ichetovkin I, Grant W, Condeelis J. Cofilin produces newly polymerized actin filaments that are preferred for dendritic nucleation by the Arp2/3 complex. Curr Biol. 2002;12:79–84.CrossRefPubMed Ichetovkin I, Grant W, Condeelis J. Cofilin produces newly polymerized actin filaments that are preferred for dendritic nucleation by the Arp2/3 complex. Curr Biol. 2002;12:79–84.CrossRefPubMed
30.
go back to reference Scott RW, Olson MF. LIM kinases: function, regulation and association with human disease. J Mol Med. 2007;85:555–68.CrossRefPubMed Scott RW, Olson MF. LIM kinases: function, regulation and association with human disease. J Mol Med. 2007;85:555–68.CrossRefPubMed
31.
go back to reference Ashworth S, Teng B, Kaufeld J, Miller E, Tossidou I, Englert C. Cofilin-1 Inactivation Leads to proteinuria-Studies in Zebrafish. Mice and Humans. PLos One. 2010;5:e12626.CrossRefPubMed Ashworth S, Teng B, Kaufeld J, Miller E, Tossidou I, Englert C. Cofilin-1 Inactivation Leads to proteinuria-Studies in Zebrafish. Mice and Humans. PLos One. 2010;5:e12626.CrossRefPubMed
32.
go back to reference Ashworth SL, Sandoval RM, Hosford M, Bamburg JR, Molitoris BA. Ischemic injury induces ADF relocalization to the apical domain of rat proximal tubule cells. Am J Physiol Renal Physiol. 2001;280:F886–94.PubMed Ashworth SL, Sandoval RM, Hosford M, Bamburg JR, Molitoris BA. Ischemic injury induces ADF relocalization to the apical domain of rat proximal tubule cells. Am J Physiol Renal Physiol. 2001;280:F886–94.PubMed
33.
go back to reference Németh ZH, Deitch EA, Davidson MT, Szabó C, Vizi ES, Haskó G. Disruption of the actin cytoskeleton results in nuclear factor-kappaB activation and inflammatory mediator production in cultured human intestinal epithelial cells. J Cell Physiol. 2004;200(1):71–81.CrossRefPubMed Németh ZH, Deitch EA, Davidson MT, Szabó C, Vizi ES, Haskó G. Disruption of the actin cytoskeleton results in nuclear factor-kappaB activation and inflammatory mediator production in cultured human intestinal epithelial cells. J Cell Physiol. 2004;200(1):71–81.CrossRefPubMed
34.
go back to reference Kilian P, Campbell S, Bilodeau L, Guimond MO, Roberge C, Gallo-Payet N, Payet MD. Angiotensin II type 2 receptor stimulation increases the rate of NG108-15 cell migration via actin depolymerization. Endocrinology. 2008;149(6):2923–33.CrossRefPubMed Kilian P, Campbell S, Bilodeau L, Guimond MO, Roberge C, Gallo-Payet N, Payet MD. Angiotensin II type 2 receptor stimulation increases the rate of NG108-15 cell migration via actin depolymerization. Endocrinology. 2008;149(6):2923–33.CrossRefPubMed
35.
go back to reference Zeidan A, Gan XT, Thomas A, Karmazyn M. Prevention of RhoA activation and cofilin-mediated actin polymerization mediates the antihypertrophic effect of adenosine receptor agonists in angiotensin II- and endothelin-1-treated cardiomyocytes. Mol Cell Biochem. 2014;385(1–2):239–48.CrossRefPubMed Zeidan A, Gan XT, Thomas A, Karmazyn M. Prevention of RhoA activation and cofilin-mediated actin polymerization mediates the antihypertrophic effect of adenosine receptor agonists in angiotensin II- and endothelin-1-treated cardiomyocytes. Mol Cell Biochem. 2014;385(1–2):239–48.CrossRefPubMed
36.
go back to reference Peng N, Clark JT, Prasain J, Kim H, White CR, Wyss JM. Antihypertensive and cognitive effects of grape polyphenols in estrogen-depleted, female, spontaneously hypertensive rats. Am J Physiol Regul Integr Comp Physiol. 2005;289:R771–5.CrossRefPubMed Peng N, Clark JT, Prasain J, Kim H, White CR, Wyss JM. Antihypertensive and cognitive effects of grape polyphenols in estrogen-depleted, female, spontaneously hypertensive rats. Am J Physiol Regul Integr Comp Physiol. 2005;289:R771–5.CrossRefPubMed
37.
go back to reference Thandapilly SJ, LeMaistre JL, Louis XL, Anderson CM, Netticadan T, Anderson HD. Vascular and cardiac effects of grape powder in the spontaneously hypertensive rat. Am J Hypertens. 2012;25(10):1070–6.CrossRefPubMed Thandapilly SJ, LeMaistre JL, Louis XL, Anderson CM, Netticadan T, Anderson HD. Vascular and cardiac effects of grape powder in the spontaneously hypertensive rat. Am J Hypertens. 2012;25(10):1070–6.CrossRefPubMed
Metadata
Title
Cofilin1 is involved in hypertension-induced renal damage via the regulation of NF-κB in renal tubular epithelial cells
Authors
Quan-zhen Wang
Hai-qing Gao
Ying Liang
Jun Zhang
Jian Wang
Jie Qiu
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2015
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-015-0685-8

Other articles of this Issue 1/2015

Journal of Translational Medicine 1/2015 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.