Skip to main content
Top
Published in: Osteoporosis International 11/2015

01-11-2015 | Review Article

Circulating monocytes: an appropriate model for bone-related study

Authors: Y. Zhou, H.-W. Deng, H. Shen

Published in: Osteoporosis International | Issue 11/2015

Login to get access

Abstract

Summary

Peripheral blood monocytes (PBMs) are an important source of precursors of osteoclasts, the bone-resorbing cells and the cytokines produced by PBMs that have profound effects on osteoclast differentiation, activation, and apoptosis. So PBMs represent a highly valuable and unique working cell model for bone-related study.
Finding an appropriate working cell model for clinical and (epi-)genomic studies of human skeletal disorders is a challenge. Peripheral blood monocytes (PBMs) can give rise to osteoclasts, the bone-resorbing cells. Particularly, PBMs provide the sole source of osteoclast precursors for adult peripheral skeleton where the bone marrow is normally hematopoietically inactive. PBMs can secrete potent pro- and anti-inflammatory cytokines, which are important for osteoclast differentiation, activation, and apoptosis. Reduced production of PBM cytokines represents a major mechanism for the inhibitory effects of sex hormones on osteoclastogenesis and bone resorption. Abnormalities in PBMs have been linked to various skeletal disorders/traits, strongly supporting for the biological relevance of PBMs with bone metabolism and disorders. Here, we briefly review the origin and further differentiation of PBMs. In particular, we discuss the close relationship between PBMs and osteoclasts, and highlight the utility of PBMs in study the pathophysiological mechanisms underlying various skeletal disorders.
Literature
2.
go back to reference Liu YZ, Dvornyk V, Lu Y, Shen H, Lappe JM, Recker RR, Deng HW (2005) A novel pathophysiological mechanism for osteoporosis suggested by an in vivo gene expression study of circulating monocytes. J Biol Chem 280(32):29011–29016PubMedCrossRef Liu YZ, Dvornyk V, Lu Y, Shen H, Lappe JM, Recker RR, Deng HW (2005) A novel pathophysiological mechanism for osteoporosis suggested by an in vivo gene expression study of circulating monocytes. J Biol Chem 280(32):29011–29016PubMedCrossRef
3.
go back to reference Hirayama T, Danks L, Sabokbar A, Athanasou NA (2002) Osteoclast formation and activity in the pathogenesis of osteoporosis in rheumatoid arthritis. Rheumatology 41(11):1232–1239PubMedCrossRef Hirayama T, Danks L, Sabokbar A, Athanasou NA (2002) Osteoclast formation and activity in the pathogenesis of osteoporosis in rheumatoid arthritis. Rheumatology 41(11):1232–1239PubMedCrossRef
4.
go back to reference Laso FJ, Vaquero JM, Almeida J, Marcos M, Orfao A (2007) Production of inflammatory cytokines by peripheral blood monocytes in chronic alcoholism: relationship with ethanol intake and liver disease. Cytometry B Clin Cytom 72(5):408–415. doi:10.1002/cyto.b.20169 PubMedCrossRef Laso FJ, Vaquero JM, Almeida J, Marcos M, Orfao A (2007) Production of inflammatory cytokines by peripheral blood monocytes in chronic alcoholism: relationship with ethanol intake and liver disease. Cytometry B Clin Cytom 72(5):408–415. doi:10.​1002/​cyto.​b.​20169 PubMedCrossRef
5.
go back to reference Longhi MS, Mitry RR, Samyn M, Scalori A, Hussain MJ, Quaglia A, Mieli-Vergani G, Ma Y, Vergani D (2009) Vigorous activation of monocytes in juvenile autoimmune liver disease escapes the control of regulatory T-cells. Hepatology 50(1):130–142. doi:10.1002/hep.22914 PubMedCrossRef Longhi MS, Mitry RR, Samyn M, Scalori A, Hussain MJ, Quaglia A, Mieli-Vergani G, Ma Y, Vergani D (2009) Vigorous activation of monocytes in juvenile autoimmune liver disease escapes the control of regulatory T-cells. Hepatology 50(1):130–142. doi:10.​1002/​hep.​22914 PubMedCrossRef
6.
go back to reference Dorffel Y, Latsch C, Stuhlmuller B, Schreiber S, Scholze S, Burmester GR, Scholze J (1999) Preactivated peripheral blood monocytes in patients with essential hypertension. Hypertension 34(1):113–117PubMedCrossRef Dorffel Y, Latsch C, Stuhlmuller B, Schreiber S, Scholze S, Burmester GR, Scholze J (1999) Preactivated peripheral blood monocytes in patients with essential hypertension. Hypertension 34(1):113–117PubMedCrossRef
10.
13.
go back to reference Ziegler-Heitbrock L, Ancuta P, Crowe S, Dalod M, Grau V, Hart DN, Leenen PJ, Liu YJ, MacPherson G, Randolph GJ, Scherberich J, Schmitz J, Shortman K, Sozzani S, Strobl H, Zembala M, Austyn JM, Lutz MB (2010) Nomenclature of monocytes and dendritic cells in blood. Blood 116(16):e74–e80. doi:10.1182/blood-2010-02-258558 PubMedCrossRef Ziegler-Heitbrock L, Ancuta P, Crowe S, Dalod M, Grau V, Hart DN, Leenen PJ, Liu YJ, MacPherson G, Randolph GJ, Scherberich J, Schmitz J, Shortman K, Sozzani S, Strobl H, Zembala M, Austyn JM, Lutz MB (2010) Nomenclature of monocytes and dendritic cells in blood. Blood 116(16):e74–e80. doi:10.​1182/​blood-2010-02-258558 PubMedCrossRef
18.
go back to reference Weber C, Belge KU, von Hundelshausen P, Draude G, Steppich B, Mack M, Frankenberger M, Weber KS, Ziegler-Heitbrock HW (2000) Differential chemokine receptor expression and function in human monocyte subpopulations. J Leukoc Biol 67(5):699–704PubMed Weber C, Belge KU, von Hundelshausen P, Draude G, Steppich B, Mack M, Frankenberger M, Weber KS, Ziegler-Heitbrock HW (2000) Differential chemokine receptor expression and function in human monocyte subpopulations. J Leukoc Biol 67(5):699–704PubMed
19.
go back to reference Ancuta P, Rao R, Moses A, Mehle A, Shaw SK, Luscinskas FW, Gabuzda D (2003) Fractalkine preferentially mediates arrest and migration of CD16+ monocytes. J Experiment Med 197(12):1701–1707. doi:10.1084/jem.20022156 CrossRef Ancuta P, Rao R, Moses A, Mehle A, Shaw SK, Luscinskas FW, Gabuzda D (2003) Fractalkine preferentially mediates arrest and migration of CD16+ monocytes. J Experiment Med 197(12):1701–1707. doi:10.​1084/​jem.​20022156 CrossRef
20.
go back to reference Geissmann F, Jung S, Littman DR (2003) Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 19(1):71–82PubMedCrossRef Geissmann F, Jung S, Littman DR (2003) Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 19(1):71–82PubMedCrossRef
21.
go back to reference Belge KU, Dayyani F, Horelt A, Siedlar M, Frankenberger M, Frankenberger B, Espevik T, Ziegler-Heitbrock L (2002) The proinflammatory CD14+CD16+DR++ monocytes are a major source of TNF. J Immunol 168(7):3536–3542PubMedCrossRef Belge KU, Dayyani F, Horelt A, Siedlar M, Frankenberger M, Frankenberger B, Espevik T, Ziegler-Heitbrock L (2002) The proinflammatory CD14+CD16+DR++ monocytes are a major source of TNF. J Immunol 168(7):3536–3542PubMedCrossRef
22.
go back to reference Wong KL, Tai JJ, Wong WC, Han H, Sem X, Yeap WH, Kourilsky P, Wong SC (2011) Gene expression profiling reveals the defining features of the classical, intermediate, and nonclassical human monocyte subsets. Blood 118(5):e16–e31. doi:10.1182/blood-2010-12-326355 PubMedCrossRef Wong KL, Tai JJ, Wong WC, Han H, Sem X, Yeap WH, Kourilsky P, Wong SC (2011) Gene expression profiling reveals the defining features of the classical, intermediate, and nonclassical human monocyte subsets. Blood 118(5):e16–e31. doi:10.​1182/​blood-2010-12-326355 PubMedCrossRef
23.
24.
go back to reference Frankenberger M, Sternsdorf T, Pechumer H, Pforte A, Ziegler-Heitbrock HW (1996) Differential cytokine expression in human blood monocyte subpopulations: a polymerase chain reaction analysis. Blood 87(1):373–377PubMed Frankenberger M, Sternsdorf T, Pechumer H, Pforte A, Ziegler-Heitbrock HW (1996) Differential cytokine expression in human blood monocyte subpopulations: a polymerase chain reaction analysis. Blood 87(1):373–377PubMed
26.
28.
go back to reference Faure S, Meyer L, Costagliola D, Vaneensberghe C, Genin E, Autran B, Delfraissy JF, McDermott DH, Murphy PM, Debre P, Theodorou I, Combadiere C (2000) Rapid progression to AIDS in HIV+ individuals with a structural variant of the chemokine receptor CX3CR1. Science 287(5461):2274–2277PubMedCrossRef Faure S, Meyer L, Costagliola D, Vaneensberghe C, Genin E, Autran B, Delfraissy JF, McDermott DH, Murphy PM, Debre P, Theodorou I, Combadiere C (2000) Rapid progression to AIDS in HIV+ individuals with a structural variant of the chemokine receptor CX3CR1. Science 287(5461):2274–2277PubMedCrossRef
29.
go back to reference Lawson LJ, Perry VH, Gordon S (1992) Turnover of resident microglia in the normal adult mouse brain. Neuroscience 48(2):405–415PubMedCrossRef Lawson LJ, Perry VH, Gordon S (1992) Turnover of resident microglia in the normal adult mouse brain. Neuroscience 48(2):405–415PubMedCrossRef
30.
go back to reference de Groot CJ, Huppes W, Sminia T, Kraal G, Dijkstra CD (1992) Determination of the origin and nature of brain macrophages and microglial cells in mouse central nervous system, using non-radioactive in situ hybridization and immunoperoxidase techniques. Glia 6(4):301–309. doi:10.1002/glia.440060408 PubMedCrossRef de Groot CJ, Huppes W, Sminia T, Kraal G, Dijkstra CD (1992) Determination of the origin and nature of brain macrophages and microglial cells in mouse central nervous system, using non-radioactive in situ hybridization and immunoperoxidase techniques. Glia 6(4):301–309. doi:10.​1002/​glia.​440060408 PubMedCrossRef
33.
go back to reference van Furth R, Diesselhoff-den Dulk MM (1984) Dual origin of mouse spleen macrophages. J Experiment Med 160(5):1273–1283CrossRef van Furth R, Diesselhoff-den Dulk MM (1984) Dual origin of mouse spleen macrophages. J Experiment Med 160(5):1273–1283CrossRef
34.
35.
go back to reference Merad M, Manz MG, Karsunky H, Wagers A, Peters W, Charo I, Weissman IL, Cyster JG, Engleman EG (2002) Langerhans cells renew in the skin throughout life under steady-state conditions. Nat Immunol 3(12):1135–1141. doi:10.1038/ni852 PubMedCrossRef Merad M, Manz MG, Karsunky H, Wagers A, Peters W, Charo I, Weissman IL, Cyster JG, Engleman EG (2002) Langerhans cells renew in the skin throughout life under steady-state conditions. Nat Immunol 3(12):1135–1141. doi:10.​1038/​ni852 PubMedCrossRef
37.
go back to reference Matute-Bello G, Lee JS, Frevert CW, Liles WC, Sutlief S, Ballman K, Wong V, Selk A, Martin TR (2004) Optimal timing to repopulation of resident alveolar macrophages with donor cells following total body irradiation and bone marrow transplantation in mice. J Immunol Methods 292(1–2):25–34. doi:10.1016/j.jim.2004.05.010 PubMedCrossRef Matute-Bello G, Lee JS, Frevert CW, Liles WC, Sutlief S, Ballman K, Wong V, Selk A, Martin TR (2004) Optimal timing to repopulation of resident alveolar macrophages with donor cells following total body irradiation and bone marrow transplantation in mice. J Immunol Methods 292(1–2):25–34. doi:10.​1016/​j.​jim.​2004.​05.​010 PubMedCrossRef
38.
go back to reference Thomas ED, Ramberg RE, Sale GE, Sparkes RS, Golde DW (1976) Direct evidence for a bone marrow origin of the alveolar macrophage in man. Science 192(4243):1016–1018PubMedCrossRef Thomas ED, Ramberg RE, Sale GE, Sparkes RS, Golde DW (1976) Direct evidence for a bone marrow origin of the alveolar macrophage in man. Science 192(4243):1016–1018PubMedCrossRef
40.
go back to reference Landsman L, Varol C, Jung S (2007) Distinct differentiation potential of blood monocyte subsets in the lung. J Immunol 178(4):2000–2007PubMedCrossRef Landsman L, Varol C, Jung S (2007) Distinct differentiation potential of blood monocyte subsets in the lung. J Immunol 178(4):2000–2007PubMedCrossRef
42.
go back to reference Kuwana M, Okazaki Y, Kodama H, Izumi K, Yasuoka H, Ogawa Y, Kawakami Y, Ikeda Y (2003) Human circulating CD14+ monocytes as a source of progenitors that exhibit mesenchymal cell differentiation. J Leukoc Biol 74(5):833–845. doi:10.1189/jlb.0403170 PubMedCrossRef Kuwana M, Okazaki Y, Kodama H, Izumi K, Yasuoka H, Ogawa Y, Kawakami Y, Ikeda Y (2003) Human circulating CD14+ monocytes as a source of progenitors that exhibit mesenchymal cell differentiation. J Leukoc Biol 74(5):833–845. doi:10.​1189/​jlb.​0403170 PubMedCrossRef
43.
go back to reference Kodama H, Inoue T, Watanabe R, Yasuoka H, Kawakami Y, Ogawa S, Ikeda Y, Mikoshiba K, Kuwana M (2005) Cardiomyogenic potential of mesenchymal progenitors derived from human circulating CD14+ monocytes. Stem Cells Dev 14(6):676–686. doi:10.1089/scd.2005.14.676 PubMedCrossRef Kodama H, Inoue T, Watanabe R, Yasuoka H, Kawakami Y, Ogawa S, Ikeda Y, Mikoshiba K, Kuwana M (2005) Cardiomyogenic potential of mesenchymal progenitors derived from human circulating CD14+ monocytes. Stem Cells Dev 14(6):676–686. doi:10.​1089/​scd.​2005.​14.​676 PubMedCrossRef
47.
go back to reference Athanasou NA (1996) Cellular biology of bone-resorbing cells. J Bone Joint Surg Am 78(7):1096–1112PubMed Athanasou NA (1996) Cellular biology of bone-resorbing cells. J Bone Joint Surg Am 78(7):1096–1112PubMed
50.
go back to reference Udagawa N, Takahashi N, Akatsu T, Tanaka H, Sasaki T, Nishihara T, Koga T, Martin TJ, Suda T (1990) Origin of osteoclasts: mature monocytes and macrophages are capable of differentiating into osteoclasts under a suitable microenvironment prepared by bone marrow-derived stromal cells. Proc Natl Acad Sci U S A 87(18):7260–7264PubMedCentralPubMedCrossRef Udagawa N, Takahashi N, Akatsu T, Tanaka H, Sasaki T, Nishihara T, Koga T, Martin TJ, Suda T (1990) Origin of osteoclasts: mature monocytes and macrophages are capable of differentiating into osteoclasts under a suitable microenvironment prepared by bone marrow-derived stromal cells. Proc Natl Acad Sci U S A 87(18):7260–7264PubMedCentralPubMedCrossRef
51.
go back to reference Custer RPAF (1932) Studies of the structure and function of bone marrow: variations in cellularity in various bones with advancing years of life and their relative response to stimuli. J Lab Clin Med 17:960–962 Custer RPAF (1932) Studies of the structure and function of bone marrow: variations in cellularity in various bones with advancing years of life and their relative response to stimuli. J Lab Clin Med 17:960–962
52.
go back to reference Zambonin Zallone A, Teti A, Primavera MV (1984) Monocytes from circulating blood fuse in vitro with purified osteoclasts in primary culture. J Cell Sci 66:335–342PubMed Zambonin Zallone A, Teti A, Primavera MV (1984) Monocytes from circulating blood fuse in vitro with purified osteoclasts in primary culture. J Cell Sci 66:335–342PubMed
53.
go back to reference Horton MA, Spragg JH, Bodary SC, Helfrich MH (1994) Recognition of cryptic sites in human and mouse laminins by rat osteoclasts is mediated by beta 3 and beta 1 integrins. Bone 15(6):639–646PubMedCrossRef Horton MA, Spragg JH, Bodary SC, Helfrich MH (1994) Recognition of cryptic sites in human and mouse laminins by rat osteoclasts is mediated by beta 3 and beta 1 integrins. Bone 15(6):639–646PubMedCrossRef
57.
go back to reference Yu X, Huang Y, Collin-Osdoby P, Osdoby P (2003) Stromal cell-derived factor-1 (SDF-1) recruits osteoclast precursors by inducing chemotaxis, matrix metalloproteinase-9 (MMP-9) activity, and collagen transmigration. J Bone Min Res : Off J Am Soc Bone Min Res 18(8):1404–1418. doi:10.1359/jbmr.2003.18.8.1404 CrossRef Yu X, Huang Y, Collin-Osdoby P, Osdoby P (2003) Stromal cell-derived factor-1 (SDF-1) recruits osteoclast precursors by inducing chemotaxis, matrix metalloproteinase-9 (MMP-9) activity, and collagen transmigration. J Bone Min Res : Off J Am Soc Bone Min Res 18(8):1404–1418. doi:10.​1359/​jbmr.​2003.​18.​8.​1404 CrossRef
58.
go back to reference Kikuta J, Kawamura S, Okiji F, Shirazaki M, Sakai S, Saito H, Ishii M (2013) Sphingosine-1-phosphate-mediated osteoclast precursor monocyte migration is a critical point of control in antibone-resorptive action of active vitamin D. Proc Natl Acad Sci U S A 110(17):7009–7013. doi:10.1073/pnas.1218799110 PubMedCentralPubMedCrossRef Kikuta J, Kawamura S, Okiji F, Shirazaki M, Sakai S, Saito H, Ishii M (2013) Sphingosine-1-phosphate-mediated osteoclast precursor monocyte migration is a critical point of control in antibone-resorptive action of active vitamin D. Proc Natl Acad Sci U S A 110(17):7009–7013. doi:10.​1073/​pnas.​1218799110 PubMedCentralPubMedCrossRef
59.
go back to reference Komano Y, Nanki T, Hayashida K, Taniguchi K, Miyasaka N (2006) Identification of a human peripheral blood monocyte subset that differentiates into osteoclasts. Arthritis Res Therapy 8(5):R152. doi:10.1186/ar2046 CrossRef Komano Y, Nanki T, Hayashida K, Taniguchi K, Miyasaka N (2006) Identification of a human peripheral blood monocyte subset that differentiates into osteoclasts. Arthritis Res Therapy 8(5):R152. doi:10.​1186/​ar2046 CrossRef
60.
go back to reference Chiu YG, Shao T, Feng C, Mensah KA, Thullen M, Schwarz EM, Ritchlin CT (2010) CD16 (FcRgammaIII) as a potential marker of osteoclast precursors in psoriatic arthritis. Arthritis Res Therapy 12(1):R14. doi:10.1186/ar2915 CrossRef Chiu YG, Shao T, Feng C, Mensah KA, Thullen M, Schwarz EM, Ritchlin CT (2010) CD16 (FcRgammaIII) as a potential marker of osteoclast precursors in psoriatic arthritis. Arthritis Res Therapy 12(1):R14. doi:10.​1186/​ar2915 CrossRef
61.
go back to reference Lari R, Kitchener PD, Hamilton JA (2009) The proliferative human monocyte subpopulation contains osteoclast precursors. Arthritis Res Therapy 11(1):R23. doi:10.1186/ar2616 CrossRef Lari R, Kitchener PD, Hamilton JA (2009) The proliferative human monocyte subpopulation contains osteoclast precursors. Arthritis Res Therapy 11(1):R23. doi:10.​1186/​ar2616 CrossRef
62.
go back to reference Jacome-Galarza CE, Lee SK, Lorenzo JA, Aguila HL (2013) Identification, characterization, and isolation of a common progenitor for osteoclasts, macrophages, and dendritic cells from murine bone marrow and periphery. J Bone Miner Res 28(5):1203–1213. doi:10.1002/jbmr.1822 PubMedCentralPubMedCrossRef Jacome-Galarza CE, Lee SK, Lorenzo JA, Aguila HL (2013) Identification, characterization, and isolation of a common progenitor for osteoclasts, macrophages, and dendritic cells from murine bone marrow and periphery. J Bone Miner Res 28(5):1203–1213. doi:10.​1002/​jbmr.​1822 PubMedCentralPubMedCrossRef
63.
go back to reference Atkins GJ, Bouralexis S, Haynes DR, Graves SE, Geary SM, Evdokiou A, Zannettino AC, Hay S, Findlay DM (2001) Osteoprotegerin inhibits osteoclast formation and bone resorbing activity in giant cell tumors of bone. Bone 28(4):370–377PubMedCrossRef Atkins GJ, Bouralexis S, Haynes DR, Graves SE, Geary SM, Evdokiou A, Zannettino AC, Hay S, Findlay DM (2001) Osteoprotegerin inhibits osteoclast formation and bone resorbing activity in giant cell tumors of bone. Bone 28(4):370–377PubMedCrossRef
64.
go back to reference Udagawa N, Takahashi N, Yasuda H, Mizuno A, Itoh K, Ueno Y, Shinki T, Gillespie MT, Martin TJ, Higashio K, Suda T (2000) Osteoprotegerin produced by osteoblasts is an important regulator in osteoclast development and function. Endocrinology 141(9):3478–3484. doi:10.1210/endo.141.9.7634 PubMed Udagawa N, Takahashi N, Yasuda H, Mizuno A, Itoh K, Ueno Y, Shinki T, Gillespie MT, Martin TJ, Higashio K, Suda T (2000) Osteoprotegerin produced by osteoblasts is an important regulator in osteoclast development and function. Endocrinology 141(9):3478–3484. doi:10.​1210/​endo.​141.​9.​7634 PubMed
65.
go back to reference Atkins GJ, Kostakis P, Vincent C, Farrugia AN, Houchins JP, Findlay DM, Evdokiou A, Zannettino AC (2006) RANK expression as a cell surface marker of human osteoclast precursors in peripheral blood, bone marrow, and giant cell tumors of bone. J Bone Miner Res 21(9):1339–1349. doi:10.1359/jbmr.060604 PubMedCrossRef Atkins GJ, Kostakis P, Vincent C, Farrugia AN, Houchins JP, Findlay DM, Evdokiou A, Zannettino AC (2006) RANK expression as a cell surface marker of human osteoclast precursors in peripheral blood, bone marrow, and giant cell tumors of bone. J Bone Miner Res 21(9):1339–1349. doi:10.​1359/​jbmr.​060604 PubMedCrossRef
66.
go back to reference Kim N, Kadono Y, Takami M, Lee J, Lee SH, Okada F, Kim JH, Kobayashi T, Odgren PR, Nakano H, Yeh WC, Lee SK, Lorenzo JA, Choi Y (2005) Osteoclast differentiation independent of the TRANCE-RANK-TRAF6 axis. J Experiment Med 202(5):589–595. doi:10.1084/jem.20050978 CrossRef Kim N, Kadono Y, Takami M, Lee J, Lee SH, Okada F, Kim JH, Kobayashi T, Odgren PR, Nakano H, Yeh WC, Lee SK, Lorenzo JA, Choi Y (2005) Osteoclast differentiation independent of the TRANCE-RANK-TRAF6 axis. J Experiment Med 202(5):589–595. doi:10.​1084/​jem.​20050978 CrossRef
68.
go back to reference Arai F, Miyamoto T, Ohneda O, Inada T, Sudo T, Brasel K, Miyata T, Anderson DM, Suda T (1999) Commitment and differentiation of osteoclast precursor cells by the sequential expression of c-Fms and receptor activator of nuclear factor kappaB (RANK) receptors. J Experiment Med 190(12):1741–1754CrossRef Arai F, Miyamoto T, Ohneda O, Inada T, Sudo T, Brasel K, Miyata T, Anderson DM, Suda T (1999) Commitment and differentiation of osteoclast precursor cells by the sequential expression of c-Fms and receptor activator of nuclear factor kappaB (RANK) receptors. J Experiment Med 190(12):1741–1754CrossRef
69.
go back to reference Wong BR, Rho J, Arron J, Robinson E, Orlinick J, Chao M, Kalachikov S, Cayani E, Bartlett FS 3rd, Frankel WN, Lee SY, Choi Y (1997) TRANCE is a novel ligand of the tumor necrosis factor receptor family that activates c-Jun N-terminal kinase in T cells. J Biol Chem 272(40):25190–25194PubMedCrossRef Wong BR, Rho J, Arron J, Robinson E, Orlinick J, Chao M, Kalachikov S, Cayani E, Bartlett FS 3rd, Frankel WN, Lee SY, Choi Y (1997) TRANCE is a novel ligand of the tumor necrosis factor receptor family that activates c-Jun N-terminal kinase in T cells. J Biol Chem 272(40):25190–25194PubMedCrossRef
70.
go back to reference Dai XM, Ryan GR, Hapel AJ, Dominguez MG, Russell RG, Kapp S, Sylvestre V, Stanley ER (2002) Targeted disruption of the mouse colony-stimulating factor 1 receptor gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primitive progenitor cell frequencies, and reproductive defects. Blood 99(1):111–120PubMedCrossRef Dai XM, Ryan GR, Hapel AJ, Dominguez MG, Russell RG, Kapp S, Sylvestre V, Stanley ER (2002) Targeted disruption of the mouse colony-stimulating factor 1 receptor gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primitive progenitor cell frequencies, and reproductive defects. Blood 99(1):111–120PubMedCrossRef
71.
go back to reference Yoshida H, Hayashi S, Kunisada T, Ogawa M, Nishikawa S, Okamura H, Sudo T, Shultz LD, Nishikawa S (1990) The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature 345(6274):442–444. doi:10.1038/345442a0 PubMedCrossRef Yoshida H, Hayashi S, Kunisada T, Ogawa M, Nishikawa S, Okamura H, Sudo T, Shultz LD, Nishikawa S (1990) The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature 345(6274):442–444. doi:10.​1038/​345442a0 PubMedCrossRef
72.
go back to reference Weir EC, Lowik CW, Paliwal I, Insogna KL (1996) Colony stimulating factor-1 plays a role in osteoclast formation and function in bone resorption induced by parathyroid hormone and parathyroid hormone-related protein. J Bone Miner Res 11(10):1474–1481. doi:10.1002/jbmr.5650111014 PubMedCrossRef Weir EC, Lowik CW, Paliwal I, Insogna KL (1996) Colony stimulating factor-1 plays a role in osteoclast formation and function in bone resorption induced by parathyroid hormone and parathyroid hormone-related protein. J Bone Miner Res 11(10):1474–1481. doi:10.​1002/​jbmr.​5650111014 PubMedCrossRef
73.
74.
go back to reference Rambaldi A, Young DC, Griffin JD (1987) Expression of the M-CSF (CSF-1) gene by human monocytes. Blood 69(5):1409–1413PubMed Rambaldi A, Young DC, Griffin JD (1987) Expression of the M-CSF (CSF-1) gene by human monocytes. Blood 69(5):1409–1413PubMed
75.
go back to reference Lader CS, Flanagan AM (1998) Prostaglandin E2, interleukin 1alpha, and tumor necrosis factor-alpha increase human osteoclast formation and bone resorption in vitro. Endocrinology 139(7):3157–3164. doi:10.1210/endo.139.7.6085 PubMed Lader CS, Flanagan AM (1998) Prostaglandin E2, interleukin 1alpha, and tumor necrosis factor-alpha increase human osteoclast formation and bone resorption in vitro. Endocrinology 139(7):3157–3164. doi:10.​1210/​endo.​139.​7.​6085 PubMed
76.
go back to reference Fuller K, Murphy C, Kirstein B, Fox SW, Chambers TJ (2002) TNFalpha potently activates osteoclasts, through a direct action independent of and strongly synergistic with RANKL. Endocrinology 143(3):1108–1118. doi:10.1210/endo.143.3.8701 PubMed Fuller K, Murphy C, Kirstein B, Fox SW, Chambers TJ (2002) TNFalpha potently activates osteoclasts, through a direct action independent of and strongly synergistic with RANKL. Endocrinology 143(3):1108–1118. doi:10.​1210/​endo.​143.​3.​8701 PubMed
77.
go back to reference Hofbauer LC, Lacey DL, Dunstan CR, Spelsberg TC, Riggs BL, Khosla S (1999) Interleukin-1beta and tumor necrosis factor-alpha, but not interleukin-6, stimulate osteoprotegerin ligand gene expression in human osteoblastic cells. Bone 25(3):255–259PubMedCrossRef Hofbauer LC, Lacey DL, Dunstan CR, Spelsberg TC, Riggs BL, Khosla S (1999) Interleukin-1beta and tumor necrosis factor-alpha, but not interleukin-6, stimulate osteoprotegerin ligand gene expression in human osteoblastic cells. Bone 25(3):255–259PubMedCrossRef
78.
go back to reference Kobayashi K, Takahashi N, Jimi E, Udagawa N, Takami M, Kotake S, Nakagawa N, Kinosaki M, Yamaguchi K, Shima N, Yasuda H, Morinaga T, Higashio K, Martin TJ, Suda T (2000) Tumor necrosis factor alpha stimulates osteoclast differentiation by a mechanism independent of the ODF/RANKL-RANK interaction. J Experiment Med 191(2):275–286CrossRef Kobayashi K, Takahashi N, Jimi E, Udagawa N, Takami M, Kotake S, Nakagawa N, Kinosaki M, Yamaguchi K, Shima N, Yasuda H, Morinaga T, Higashio K, Martin TJ, Suda T (2000) Tumor necrosis factor alpha stimulates osteoclast differentiation by a mechanism independent of the ODF/RANKL-RANK interaction. J Experiment Med 191(2):275–286CrossRef
79.
go back to reference Azuma Y, Kaji K, Katogi R, Takeshita S, Kudo A (2000) Tumor necrosis factor-alpha induces differentiation of and bone resorption by osteoclasts. J Biol Chem 275(7):4858–4864PubMedCrossRef Azuma Y, Kaji K, Katogi R, Takeshita S, Kudo A (2000) Tumor necrosis factor-alpha induces differentiation of and bone resorption by osteoclasts. J Biol Chem 275(7):4858–4864PubMedCrossRef
81.
go back to reference Kindle L, Rothe L, Kriss M, Osdoby P, Collin-Osdoby P (2006) Human microvascular endothelial cell activation by IL-1 and TNF-alpha stimulates the adhesion and transendothelial migration of circulating human CD14+ monocytes that develop with RANKL into functional osteoclasts. J Bone Miner Res 21(2):193–206. doi:10.1359/JBMR.051027 PubMedCrossRef Kindle L, Rothe L, Kriss M, Osdoby P, Collin-Osdoby P (2006) Human microvascular endothelial cell activation by IL-1 and TNF-alpha stimulates the adhesion and transendothelial migration of circulating human CD14+ monocytes that develop with RANKL into functional osteoclasts. J Bone Miner Res 21(2):193–206. doi:10.​1359/​JBMR.​051027 PubMedCrossRef
82.
go back to reference Uy HL, Dallas M, Calland JW, Boyce BF, Mundy GR, Roodman GD (1995) Use of an in vivo model to determine the effects of interleukin-1 on cells at different stages in the osteoclast lineage. J Bone Miner Res 10(2):295–301. doi:10.1002/jbmr.5650100217 PubMedCrossRef Uy HL, Dallas M, Calland JW, Boyce BF, Mundy GR, Roodman GD (1995) Use of an in vivo model to determine the effects of interleukin-1 on cells at different stages in the osteoclast lineage. J Bone Miner Res 10(2):295–301. doi:10.​1002/​jbmr.​5650100217 PubMedCrossRef
83.
go back to reference Jimi E, Nakamura I, Duong LT, Ikebe T, Takahashi N, Rodan GA, Suda T (1999) Interleukin 1 induces multinucleation and bone-resorbing activity of osteoclasts in the absence of osteoblasts/stromal cells. Exp Cell Res 247(1):84–93. doi:10.1006/excr.1998.4320 PubMedCrossRef Jimi E, Nakamura I, Duong LT, Ikebe T, Takahashi N, Rodan GA, Suda T (1999) Interleukin 1 induces multinucleation and bone-resorbing activity of osteoclasts in the absence of osteoblasts/stromal cells. Exp Cell Res 247(1):84–93. doi:10.​1006/​excr.​1998.​4320 PubMedCrossRef
85.
go back to reference Horowitz MC, Lorenzo J (1996) Local regulators of bone: IL-1, TNF, and lymphotoxin, interferon gamma, IL-8, IL-10, IL-4, the LIF/IL-6 family and additional cytokines. In: Bilezikian LR J, Rodan G (eds) Principals of bone biology. Academic, San Diego Horowitz MC, Lorenzo J (1996) Local regulators of bone: IL-1, TNF, and lymphotoxin, interferon gamma, IL-8, IL-10, IL-4, the LIF/IL-6 family and additional cytokines. In: Bilezikian LR J, Rodan G (eds) Principals of bone biology. Academic, San Diego
86.
go back to reference Mormann M, Thederan M, Nackchbandi I, Giese T, Wagner C, Hansch GM (2008) Lipopolysaccharides (LPS) induce the differentiation of human monocytes to osteoclasts in a tumour necrosis factor (TNF) alpha-dependent manner: a link between infection and pathological bone resorption. Mol Immunol 45(12):3330–3337. doi:10.1016/j.molimm.2008.04.022 PubMedCrossRef Mormann M, Thederan M, Nackchbandi I, Giese T, Wagner C, Hansch GM (2008) Lipopolysaccharides (LPS) induce the differentiation of human monocytes to osteoclasts in a tumour necrosis factor (TNF) alpha-dependent manner: a link between infection and pathological bone resorption. Mol Immunol 45(12):3330–3337. doi:10.​1016/​j.​molimm.​2008.​04.​022 PubMedCrossRef
87.
go back to reference Seta N, Okazaki Y, Kuwana M (2008) Human circulating monocytes can express receptor activator of nuclear factor-kappaB ligand and differentiate into functional osteoclasts without exogenous stimulation. Immunol Cell Biol 86(5):453–459. doi:10.1038/icb.2008.4 PubMedCrossRef Seta N, Okazaki Y, Kuwana M (2008) Human circulating monocytes can express receptor activator of nuclear factor-kappaB ligand and differentiate into functional osteoclasts without exogenous stimulation. Immunol Cell Biol 86(5):453–459. doi:10.​1038/​icb.​2008.​4 PubMedCrossRef
88.
89.
go back to reference Pacifici R, Rifas L, Teitelbaum S, Slatopolsky E, McCracken R, Bergfeld M, Lee W, Avioli LV, Peck WA (1987) Spontaneous release of interleukin 1 from human blood monocytes reflects bone formation in idiopathic osteoporosis. Proc Natl Acad Sci U S A 84(13):4616–4620PubMedCentralPubMedCrossRef Pacifici R, Rifas L, Teitelbaum S, Slatopolsky E, McCracken R, Bergfeld M, Lee W, Avioli LV, Peck WA (1987) Spontaneous release of interleukin 1 from human blood monocytes reflects bone formation in idiopathic osteoporosis. Proc Natl Acad Sci U S A 84(13):4616–4620PubMedCentralPubMedCrossRef
90.
go back to reference Pacifici R, Rifas L, McCracken R, Vered I, McMurtry C, Avioli LV, Peck WA (1989) Ovarian steroid treatment blocks a postmenopausal increase in blood monocyte interleukin 1 release. Proc Natl Acad Sci U S A 86(7):2398–2402PubMedCentralPubMedCrossRef Pacifici R, Rifas L, McCracken R, Vered I, McMurtry C, Avioli LV, Peck WA (1989) Ovarian steroid treatment blocks a postmenopausal increase in blood monocyte interleukin 1 release. Proc Natl Acad Sci U S A 86(7):2398–2402PubMedCentralPubMedCrossRef
91.
94.
go back to reference Schurman L, Sedlinsky C, Mangano A, Sen L, Leiderman S, Fernandez G, Theas S, Damilano S, Gurfinkel M, Seilicovich A (2001) Estrogenic status influences nitric oxide-regulated TNF-alpha release from human peripheral blood monocytes. Experiment Clin Endocrinol Diabetes : Off J, German Soc Endocrinol [and] German Diabetes Assoc 109(6):340–344. doi:10.1055/s-2001-17401 CrossRef Schurman L, Sedlinsky C, Mangano A, Sen L, Leiderman S, Fernandez G, Theas S, Damilano S, Gurfinkel M, Seilicovich A (2001) Estrogenic status influences nitric oxide-regulated TNF-alpha release from human peripheral blood monocytes. Experiment Clin Endocrinol Diabetes : Off J, German Soc Endocrinol [and] German Diabetes Assoc 109(6):340–344. doi:10.​1055/​s-2001-17401 CrossRef
96.
go back to reference Lea CK, Sarma U, Flanagan AM (1999) Macrophage colony stimulating-factor transcripts are differentially regulated in rat bone-marrow by gender hormones. Endocrinology 140(1):273–279. doi:10.1210/endo.140.1.6451 PubMed Lea CK, Sarma U, Flanagan AM (1999) Macrophage colony stimulating-factor transcripts are differentially regulated in rat bone-marrow by gender hormones. Endocrinology 140(1):273–279. doi:10.​1210/​endo.​140.​1.​6451 PubMed
98.
go back to reference Nakamura T, Imai Y, Matsumoto T, Sato S, Takeuchi K, Igarashi K, Harada Y, Azuma Y, Krust A, Yamamoto Y, Nishina H, Takeda S, Takayanagi H, Metzger D, Kanno J, Takaoka K, Martin TJ, Chambon P, Kato S (2007) Estrogen prevents bone loss via estrogen receptor alpha and induction of Fas ligand in osteoclasts. Cell 130(5):811–823. doi:10.1016/j.cell.2007.07.025 PubMedCrossRef Nakamura T, Imai Y, Matsumoto T, Sato S, Takeuchi K, Igarashi K, Harada Y, Azuma Y, Krust A, Yamamoto Y, Nishina H, Takeda S, Takayanagi H, Metzger D, Kanno J, Takaoka K, Martin TJ, Chambon P, Kato S (2007) Estrogen prevents bone loss via estrogen receptor alpha and induction of Fas ligand in osteoclasts. Cell 130(5):811–823. doi:10.​1016/​j.​cell.​2007.​07.​025 PubMedCrossRef
99.
go back to reference Michael H, Harkonen PL, Vaananen HK, Hentunen TA (2005) Estrogen and testosterone use different cellular pathways to inhibit osteoclastogenesis and bone resorption. J Bone Miner Res 20(12):2224–2232. doi:10.1359/JBMR.050803 PubMedCrossRef Michael H, Harkonen PL, Vaananen HK, Hentunen TA (2005) Estrogen and testosterone use different cellular pathways to inhibit osteoclastogenesis and bone resorption. J Bone Miner Res 20(12):2224–2232. doi:10.​1359/​JBMR.​050803 PubMedCrossRef
100.
go back to reference Jevon M, Hirayama T, Brown MA, Wass JA, Sabokbar A, Ostelere S, Athenasou NA (2003) Osteoclast formation from circulating precursors in osteoporosis. Scand J Rheumatol 32(2):95–100PubMedCrossRef Jevon M, Hirayama T, Brown MA, Wass JA, Sabokbar A, Ostelere S, Athenasou NA (2003) Osteoclast formation from circulating precursors in osteoporosis. Scand J Rheumatol 32(2):95–100PubMedCrossRef
101.
go back to reference Reddy SV, Menaa C, Singer FR, Demulder A, Roodman GD (1999) Cell biology of Paget’s disease. J Bone Miner Res 14(Suppl 2):3–8PubMedCrossRef Reddy SV, Menaa C, Singer FR, Demulder A, Roodman GD (1999) Cell biology of Paget’s disease. J Bone Miner Res 14(Suppl 2):3–8PubMedCrossRef
102.
go back to reference Neale SD, Smith R, Wass JA, Athanasou NA (2000) Osteoclast differentiation from circulating mononuclear precursors in Paget’s disease is hypersensitive to 1,25-dihydroxyvitamin D(3) and RANKL. Bone 27(3):409–416PubMedCrossRef Neale SD, Smith R, Wass JA, Athanasou NA (2000) Osteoclast differentiation from circulating mononuclear precursors in Paget’s disease is hypersensitive to 1,25-dihydroxyvitamin D(3) and RANKL. Bone 27(3):409–416PubMedCrossRef
104.
go back to reference Baumhauer JF, O’Keefe RJ, Schon LC, Pinzur MS (2006) Cytokine-induced osteoclastic bone resorption in Charcot arthropathy: an immunohistochemical study. Foot Ankle Int / Am Orthopaedic Foot Ankle Soc Swiss Foot Ankle Soc 27(10):797–800 Baumhauer JF, O’Keefe RJ, Schon LC, Pinzur MS (2006) Cytokine-induced osteoclastic bone resorption in Charcot arthropathy: an immunohistochemical study. Foot Ankle Int / Am Orthopaedic Foot Ankle Soc Swiss Foot Ankle Soc 27(10):797–800
105.
go back to reference Deng FY, Lei SF, Zhang Y, Zhang YL, Zheng YP, Zhang LS, Pan R, Wang L, Tian Q, Shen H, Zhao M, Lundberg YW, Liu YZ, Papasian CJ, Deng HW (2011) Peripheral blood monocyte-expressed ANXA2 gene is involved in pathogenesis of osteoporosis in humans. Molecular & cellular proteomics : MCP 10 (11):M111 011700. doi:10.1074/mcp.M111.011700 Deng FY, Lei SF, Zhang Y, Zhang YL, Zheng YP, Zhang LS, Pan R, Wang L, Tian Q, Shen H, Zhao M, Lundberg YW, Liu YZ, Papasian CJ, Deng HW (2011) Peripheral blood monocyte-expressed ANXA2 gene is involved in pathogenesis of osteoporosis in humans. Molecular & cellular proteomics : MCP 10 (11):M111 011700. doi:10.​1074/​mcp.​M111.​011700
107.
go back to reference Chen XD, Xiao P, Lei SF, Liu YZ, Guo YF, Deng FY, Tan LJ, Zhu XZ, Chen FR, Recker RR, Deng HW (2010) Gene expression profiling in monocytes and SNP association suggest the importance of the STAT1 gene for osteoporosis in both Chinese and Caucasians. J Bone Miner Res 25(2):339–355. doi:10.1359/jbmr.090724 PubMedCentralPubMedCrossRef Chen XD, Xiao P, Lei SF, Liu YZ, Guo YF, Deng FY, Tan LJ, Zhu XZ, Chen FR, Recker RR, Deng HW (2010) Gene expression profiling in monocytes and SNP association suggest the importance of the STAT1 gene for osteoporosis in both Chinese and Caucasians. J Bone Miner Res 25(2):339–355. doi:10.​1359/​jbmr.​090724 PubMedCentralPubMedCrossRef
108.
go back to reference Farber CR (2010) Identification of a gene module associated with BMD through the integration of network analysis and genome-wide association data. J Bone Miner Res 25(11):2359–2367. doi:10.1002/jbmr.138 PubMedCrossRef Farber CR (2010) Identification of a gene module associated with BMD through the integration of network analysis and genome-wide association data. J Bone Miner Res 25(11):2359–2367. doi:10.​1002/​jbmr.​138 PubMedCrossRef
110.
go back to reference Lei SF, Wu S, Li LM, Deng FY, Xiao SM, Jiang C, Chen Y, Jiang H, Yang F, Tan LJ, Sun X, Zhu XZ, Liu MY, Liu YZ, Chen XD, Deng HW (2009) An in vivo genome wide gene expression study of circulating monocytes suggested GBP1, STAT1 and CXCL10 as novel risk genes for the differentiation of peak bone mass. Bone 44(5):1010–1014. doi:10.1016/j.bone.2008.05.016 PubMedCrossRef Lei SF, Wu S, Li LM, Deng FY, Xiao SM, Jiang C, Chen Y, Jiang H, Yang F, Tan LJ, Sun X, Zhu XZ, Liu MY, Liu YZ, Chen XD, Deng HW (2009) An in vivo genome wide gene expression study of circulating monocytes suggested GBP1, STAT1 and CXCL10 as novel risk genes for the differentiation of peak bone mass. Bone 44(5):1010–1014. doi:10.​1016/​j.​bone.​2008.​05.​016 PubMedCrossRef
111.
112.
go back to reference Otero K, Turnbull IR, Poliani PL, Vermi W, Cerutti E, Aoshi T, Tassi I, Takai T, Stanley SL, Miller M, Shaw AS, Colonna M (2009) Macrophage colony-stimulating factor induces the proliferation and survival of macrophages via a pathway involving DAP12 and beta-catenin. Nat Immunol 10(7):734–743. doi:10.1038/ni.1744 PubMedCentralPubMedCrossRef Otero K, Turnbull IR, Poliani PL, Vermi W, Cerutti E, Aoshi T, Tassi I, Takai T, Stanley SL, Miller M, Shaw AS, Colonna M (2009) Macrophage colony-stimulating factor induces the proliferation and survival of macrophages via a pathway involving DAP12 and beta-catenin. Nat Immunol 10(7):734–743. doi:10.​1038/​ni.​1744 PubMedCentralPubMedCrossRef
114.
go back to reference Fuller K, Owens JM, Jagger CJ, Wilson A, Moss R, Chambers TJ (1993) Macrophage colony-stimulating factor stimulates survival and chemotactic behavior in isolated osteoclasts. J Experiment Med 178(5):1733–1744CrossRef Fuller K, Owens JM, Jagger CJ, Wilson A, Moss R, Chambers TJ (1993) Macrophage colony-stimulating factor stimulates survival and chemotactic behavior in isolated osteoclasts. J Experiment Med 178(5):1733–1744CrossRef
115.
go back to reference Fuller K, Wong B, Fox S, Choi Y, Chambers TJ (1998) TRANCE is necessary and sufficient for osteoblast-mediated activation of bone resorption in osteoclasts. J Experiment Med 188(5):997–1001CrossRef Fuller K, Wong B, Fox S, Choi Y, Chambers TJ (1998) TRANCE is necessary and sufficient for osteoblast-mediated activation of bone resorption in osteoclasts. J Experiment Med 188(5):997–1001CrossRef
116.
go back to reference Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, Elliott R, Colombero A, Elliott G, Scully S, Hsu H, Sullivan J, Hawkins N, Davy E, Capparelli C, Eli A, Qian YX, Kaufman S, Sarosi I, Shalhoub V, Senaldi G, Guo J, Delaney J, Boyle WJ (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93(2):165–176PubMedCrossRef Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, Elliott R, Colombero A, Elliott G, Scully S, Hsu H, Sullivan J, Hawkins N, Davy E, Capparelli C, Eli A, Qian YX, Kaufman S, Sarosi I, Shalhoub V, Senaldi G, Guo J, Delaney J, Boyle WJ (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93(2):165–176PubMedCrossRef
117.
go back to reference Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S, Tomoyasu A, Yano K, Goto M, Murakami A, Tsuda E, Morinaga T, Higashio K, Udagawa N, Takahashi N, Suda T (1998) Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci U S A 95(7):3597–3602PubMedCentralPubMedCrossRef Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S, Tomoyasu A, Yano K, Goto M, Murakami A, Tsuda E, Morinaga T, Higashio K, Udagawa N, Takahashi N, Suda T (1998) Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci U S A 95(7):3597–3602PubMedCentralPubMedCrossRef
119.
go back to reference Yoshitake F, Itoh S, Narita H, Ishihara K, Ebisu S (2008) Interleukin-6 directly inhibits osteoclast differentiation by suppressing receptor activator of NF-kappaB signaling pathways. J Biol Chem 283(17):11535–11540. doi:10.1074/jbc.M607999200 PubMedCrossRef Yoshitake F, Itoh S, Narita H, Ishihara K, Ebisu S (2008) Interleukin-6 directly inhibits osteoclast differentiation by suppressing receptor activator of NF-kappaB signaling pathways. J Biol Chem 283(17):11535–11540. doi:10.​1074/​jbc.​M607999200 PubMedCrossRef
120.
go back to reference Duplomb L, Baud’huin M, Charrier C, Berreur M, Trichet V, Blanchard F, Heymann D (2008) Interleukin-6 inhibits receptor activator of nuclear factor kappaB ligand-induced osteoclastogenesis by diverting cells into the macrophage lineage: key role of Serine727 phosphorylation of signal transducer and activator of transcription 3. Endocrinology 149(7):3688–3697. doi:10.1210/en.2007-1719 PubMedCrossRef Duplomb L, Baud’huin M, Charrier C, Berreur M, Trichet V, Blanchard F, Heymann D (2008) Interleukin-6 inhibits receptor activator of nuclear factor kappaB ligand-induced osteoclastogenesis by diverting cells into the macrophage lineage: key role of Serine727 phosphorylation of signal transducer and activator of transcription 3. Endocrinology 149(7):3688–3697. doi:10.​1210/​en.​2007-1719 PubMedCrossRef
121.
go back to reference Quinn JM, Itoh K, Udagawa N, Hausler K, Yasuda H, Shima N, Mizuno A, Higashio K, Takahashi N, Suda T, Martin TJ, Gillespie MT (2001) Transforming growth factor beta affects osteoclast differentiation via direct and indirect actions. J Bone Miner Res 16(10):1787–1794. doi:10.1359/jbmr.2001.16.10.1787 PubMedCrossRef Quinn JM, Itoh K, Udagawa N, Hausler K, Yasuda H, Shima N, Mizuno A, Higashio K, Takahashi N, Suda T, Martin TJ, Gillespie MT (2001) Transforming growth factor beta affects osteoclast differentiation via direct and indirect actions. J Bone Miner Res 16(10):1787–1794. doi:10.​1359/​jbmr.​2001.​16.​10.​1787 PubMedCrossRef
122.
go back to reference Fuller K, Lean JM, Bayley KE, Wani MR, Chambers TJ (2000) A role for TGFbeta(1) in osteoclast differentiation and survival. J Cell Sci 113(Pt 13):2445–2453PubMed Fuller K, Lean JM, Bayley KE, Wani MR, Chambers TJ (2000) A role for TGFbeta(1) in osteoclast differentiation and survival. J Cell Sci 113(Pt 13):2445–2453PubMed
124.
go back to reference Kohara H, Kitaura H, Fujimura Y, Yoshimatsu M, Morita Y, Eguchi T, Masuyama R, Yoshida N (2011) IFN-gamma directly inhibits TNF-alpha-induced osteoclastogenesis in vitro and in vivo and induces apoptosis mediated by Fas/Fas ligand interactions. Immunol Lett 137(1–2):53–61. doi:10.1016/j.imlet.2011.02.017 PubMedCrossRef Kohara H, Kitaura H, Fujimura Y, Yoshimatsu M, Morita Y, Eguchi T, Masuyama R, Yoshida N (2011) IFN-gamma directly inhibits TNF-alpha-induced osteoclastogenesis in vitro and in vivo and induces apoptosis mediated by Fas/Fas ligand interactions. Immunol Lett 137(1–2):53–61. doi:10.​1016/​j.​imlet.​2011.​02.​017 PubMedCrossRef
126.
go back to reference Nose M, Yamazaki H, Hagino H, Morio Y, Hayashi S, Teshima R (2009) Comparison of osteoclast precursors in peripheral blood mononuclear cells from rheumatoid arthritis and osteoporosis patients. J Bone Miner Metab 27(1):57–65. doi:10.1007/s00774-008-0011-0 PubMedCrossRef Nose M, Yamazaki H, Hagino H, Morio Y, Hayashi S, Teshima R (2009) Comparison of osteoclast precursors in peripheral blood mononuclear cells from rheumatoid arthritis and osteoporosis patients. J Bone Miner Metab 27(1):57–65. doi:10.​1007/​s00774-008-0011-0 PubMedCrossRef
127.
go back to reference Kim SJ, Chen Z, Chamberlain ND, Essani AB, Volin MV, Amin MA, Volkov S, Gravallese EM, Arami S, Swedler W, Lane NE, Mehta A, Sweiss N, Shahrara S (2014) Ligation of TLR5 promotes myeloid cell infiltration and differentiation into mature osteoclasts in rheumatoid arthritis and experimental arthritis. J Immunol 193(8):3902–3913. doi:10.4049/jimmunol.1302998 PubMedPubMedCentralCrossRef Kim SJ, Chen Z, Chamberlain ND, Essani AB, Volin MV, Amin MA, Volkov S, Gravallese EM, Arami S, Swedler W, Lane NE, Mehta A, Sweiss N, Shahrara S (2014) Ligation of TLR5 promotes myeloid cell infiltration and differentiation into mature osteoclasts in rheumatoid arthritis and experimental arthritis. J Immunol 193(8):3902–3913. doi:10.​4049/​jimmunol.​1302998 PubMedPubMedCentralCrossRef
128.
go back to reference Shibuya H, Nakasa T, Adachi N, Nagata Y, Ishikawa M, Deie M, Suzuki O, Ochi M (2013) Overexpression of microRNA-223 in rheumatoid arthritis synovium controls osteoclast differentiation. Modern Rheumatol / Jap Rheumat Assoc 23(4):674–685. doi:10.1007/s10165-012-0710-1 CrossRef Shibuya H, Nakasa T, Adachi N, Nagata Y, Ishikawa M, Deie M, Suzuki O, Ochi M (2013) Overexpression of microRNA-223 in rheumatoid arthritis synovium controls osteoclast differentiation. Modern Rheumatol / Jap Rheumat Assoc 23(4):674–685. doi:10.​1007/​s10165-012-0710-1 CrossRef
129.
go back to reference Kwok SK, Cho ML, Park MK, Oh HJ, Park JS, Her YM, Lee SY, Youn J, Ju JH, Park KS, Kim SI, Kim HY, Park SH (2012) Interleukin-21 promotes osteoclastogenesis in humans with rheumatoid arthritis and in mice with collagen-induced arthritis. Arthritis Rheum 64(3):740–751. doi:10.1002/art.33390 PubMedCrossRef Kwok SK, Cho ML, Park MK, Oh HJ, Park JS, Her YM, Lee SY, Youn J, Ju JH, Park KS, Kim SI, Kim HY, Park SH (2012) Interleukin-21 promotes osteoclastogenesis in humans with rheumatoid arthritis and in mice with collagen-induced arthritis. Arthritis Rheum 64(3):740–751. doi:10.​1002/​art.​33390 PubMedCrossRef
130.
131.
go back to reference Nagy ZB, Gergely P, Donath J, Borgulya G, Csanad M, Poor G (2008) Gene expression profiling in Paget’s disease of bone: upregulation of interferon signaling pathways in pagetic monocytes and lymphocytes. J Bone Miner Res 23(2):253–259. doi:10.1359/jbmr.071021 PubMedCrossRef Nagy ZB, Gergely P, Donath J, Borgulya G, Csanad M, Poor G (2008) Gene expression profiling in Paget’s disease of bone: upregulation of interferon signaling pathways in pagetic monocytes and lymphocytes. J Bone Miner Res 23(2):253–259. doi:10.​1359/​jbmr.​071021 PubMedCrossRef
Metadata
Title
Circulating monocytes: an appropriate model for bone-related study
Authors
Y. Zhou
H.-W. Deng
H. Shen
Publication date
01-11-2015
Publisher
Springer London
Published in
Osteoporosis International / Issue 11/2015
Print ISSN: 0937-941X
Electronic ISSN: 1433-2965
DOI
https://doi.org/10.1007/s00198-015-3250-7

Other articles of this Issue 11/2015

Osteoporosis International 11/2015 Go to the issue