Skip to main content
Top
Published in: Diabetologia 2/2017

01-02-2017 | Article

Circulating microRNA levels predict residual beta cell function and glycaemic control in children with type 1 diabetes mellitus

Authors: Nasim Samandari, Aashiq H. Mirza, Lotte B. Nielsen, Simranjeet Kaur, Philip Hougaard, Siri Fredheim, Henrik B. Mortensen, Flemming Pociot

Published in: Diabetologia | Issue 2/2017

Login to get access

Abstract

Aims/hypothesis

We aimed to identify circulating microRNA (miRNA) that predicts clinical progression in a cohort of 123 children with new-onset type 1 diabetes mellitus.

Methods

Plasma samples were prospectively obtained at 1, 3, 6, 12 and 60 months after diagnosis from a subset of 40 children from the Danish Remission Phase Cohort, and profiled for miRNAs. At the same time points, meal-stimulated C-peptide and HbA1c levels were measured and insulin-dose adjusted HbA1c (IDAA1c) calculated. miRNAs that at 3 months after diagnosis predicted residual beta cell function and glycaemic control in this subgroup were further validated in the remaining cohort (n = 83). Statistical analysis of miRNA prediction for disease progression was performed by multiple linear regression analysis adjusted for age and sex.

Results

In the discovery analysis, six miRNAs (hsa-miR-24-3p, hsa-miR-146a-5p, hsa-miR-194-5p, hsa-miR-197-3p, hsa-miR-301a-3p and hsa-miR-375) at 3 months correlated with residual beta cell function 6–12 months after diagnosis. Stimulated C-peptide at 12 months was predicted by hsa-miR-197-3p at 3 months (p = 0.034). A doubling of this miRNA level corresponded to a sixfold higher stimulated C-peptide level. In addition, a doubling of hsa-miR-24-3p and hsa-miR-146a-5p levels at 3 months corresponded to a 4.2% (p < 0.014) and 3.5% (p < 0.022) lower IDAA1c value at 12 months. Analysis of the remaining cohort confirmed the initial finding for hsa-miR-197-3p (p = 0.018). The target genes for the six miRNAs revealed significant enrichment for pathways related to gonadotropin-releasing hormone receptor and angiogenesis pathways.

Conclusions/interpretation

The miRNA hsa-miR-197-3p at 3 months was the strongest predictor of residual beta cell function 1 year after diagnosis in children with type 1 diabetes mellitus.
Appendix
Available only for authorised users
Literature
3.
go back to reference Lai EC (2002) Micro RNAs are complementary to 3′ UTR sequence motifs that mediate negative post-transcriptional regulation. Nat Genet 30:363–364CrossRefPubMed Lai EC (2002) Micro RNAs are complementary to 3′ UTR sequence motifs that mediate negative post-transcriptional regulation. Nat Genet 30:363–364CrossRefPubMed
5.
go back to reference Rottiers V, Najafi-Shoushtari SH, Kristo F et al (2011) MicroRNAs in metabolism and metabolic diseases. Cold Spring Harb Symp Quant Biol 76:225–233CrossRefPubMed Rottiers V, Najafi-Shoushtari SH, Kristo F et al (2011) MicroRNAs in metabolism and metabolic diseases. Cold Spring Harb Symp Quant Biol 76:225–233CrossRefPubMed
7.
go back to reference Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654–659CrossRefPubMed Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654–659CrossRefPubMed
8.
9.
go back to reference Mathis D, Vence L, Benoist C (2001) beta-Cell death during progression to diabetes. Nature 414:792–798CrossRefPubMed Mathis D, Vence L, Benoist C (2001) beta-Cell death during progression to diabetes. Nature 414:792–798CrossRefPubMed
10.
go back to reference Storling J, Overgaard AJ, Brorsson CA et al (2013) Do post-translational beta cell protein modifications trigger type 1 diabetes? Diabetologia 56:2347–2354CrossRefPubMed Storling J, Overgaard AJ, Brorsson CA et al (2013) Do post-translational beta cell protein modifications trigger type 1 diabetes? Diabetologia 56:2347–2354CrossRefPubMed
11.
go back to reference Melendez-Ramirez LY, Richards RJ, Cefalu WT (2010) Complications of type 1 diabetes. Endocrinol Metab Clin North Am 39:625–640CrossRefPubMed Melendez-Ramirez LY, Richards RJ, Cefalu WT (2010) Complications of type 1 diabetes. Endocrinol Metab Clin North Am 39:625–640CrossRefPubMed
12.
go back to reference Collares CV, Evangelista AF, Xavier DJ et al (2013) Identifying common and specific microRNAs expressed in peripheral blood mononuclear cell of type 1, type 2, and gestational diabetes mellitus patients. BMC Res Notes 6:491CrossRefPubMedPubMedCentral Collares CV, Evangelista AF, Xavier DJ et al (2013) Identifying common and specific microRNAs expressed in peripheral blood mononuclear cell of type 1, type 2, and gestational diabetes mellitus patients. BMC Res Notes 6:491CrossRefPubMedPubMedCentral
13.
go back to reference Nielsen LB, Wang C, Sorensen K et al (2012) Circulating levels of microRNA from children with newly diagnosed type 1 diabetes and healthy controls: evidence that miR-25 associates to residual beta-cell function and glycaemic control during disease progression. Exp Diabetes Res 2012:896362PubMedPubMedCentral Nielsen LB, Wang C, Sorensen K et al (2012) Circulating levels of microRNA from children with newly diagnosed type 1 diabetes and healthy controls: evidence that miR-25 associates to residual beta-cell function and glycaemic control during disease progression. Exp Diabetes Res 2012:896362PubMedPubMedCentral
14.
go back to reference Osmai M, Osmai Y, Bang-Berthelsen CH et al (2016) MicroRNAs as regulators of beta-cell function and dysfunction. Diabetes Metab Res Rev 32:334–349CrossRefPubMed Osmai M, Osmai Y, Bang-Berthelsen CH et al (2016) MicroRNAs as regulators of beta-cell function and dysfunction. Diabetes Metab Res Rev 32:334–349CrossRefPubMed
15.
go back to reference Takahashi P, Xavier DJ, Evangelista AF et al (2014) MicroRNA expression profiling and functional annotation analysis of their targets in patients with type 1 diabetes mellitus. Gene 539:213–223CrossRefPubMed Takahashi P, Xavier DJ, Evangelista AF et al (2014) MicroRNA expression profiling and functional annotation analysis of their targets in patients with type 1 diabetes mellitus. Gene 539:213–223CrossRefPubMed
16.
17.
go back to reference Osipova J, Fischer DC, Dangwal S et al (2014) Diabetes-associated microRNAs in pediatric patients with type 1 diabetes mellitus: a cross-sectional cohort study. J Clin Endocrinol Metab 99:E1661–E1665CrossRefPubMed Osipova J, Fischer DC, Dangwal S et al (2014) Diabetes-associated microRNAs in pediatric patients with type 1 diabetes mellitus: a cross-sectional cohort study. J Clin Endocrinol Metab 99:E1661–E1665CrossRefPubMed
18.
go back to reference Rajasekar P, O’Neill CL, Eeles L, Stitt AW, Medina RJ (2015) Epigenetic changes in endothelial progenitors as a possible cellular basis for glycemic memory in diabetic vascular complications. J Diabetes Res 2015:436879CrossRefPubMedPubMedCentral Rajasekar P, O’Neill CL, Eeles L, Stitt AW, Medina RJ (2015) Epigenetic changes in endothelial progenitors as a possible cellular basis for glycemic memory in diabetic vascular complications. J Diabetes Res 2015:436879CrossRefPubMedPubMedCentral
19.
go back to reference Santovito D, De Nardis V, Marcantonio P et al (2014) Plasma exosome microRNA profiling unravels a new potential modulator of adiponectin pathway in diabetes: effect of glycemic control. J Clin Endocrinol Metab 99:E1681–E1685CrossRefPubMed Santovito D, De Nardis V, Marcantonio P et al (2014) Plasma exosome microRNA profiling unravels a new potential modulator of adiponectin pathway in diabetes: effect of glycemic control. J Clin Endocrinol Metab 99:E1681–E1685CrossRefPubMed
20.
go back to reference Andersen ML, Rasmussen MA, Porksen S et al (2013) Complex multi-block analysis identifies new immunologic and genetic disease progression patterns associated with the residual beta-cell function 1 year after diagnosis of type 1 diabetes. PLoS One 8, e64632CrossRefPubMedPubMedCentral Andersen ML, Rasmussen MA, Porksen S et al (2013) Complex multi-block analysis identifies new immunologic and genetic disease progression patterns associated with the residual beta-cell function 1 year after diagnosis of type 1 diabetes. PLoS One 8, e64632CrossRefPubMedPubMedCentral
21.
go back to reference Fredheim S, Andersen ML, Porksen S et al (2015) The influence of glucagon on postprandial hyperglycaemia in children 5 years after onset of type 1 diabetes. Diabetologia 58:828–834CrossRefPubMed Fredheim S, Andersen ML, Porksen S et al (2015) The influence of glucagon on postprandial hyperglycaemia in children 5 years after onset of type 1 diabetes. Diabetologia 58:828–834CrossRefPubMed
22.
go back to reference Mortensen HB, Hougaard P, Swift P et al (2009) New definition for the partial remission period in children and adolescents with type 1 diabetes. Diabetes Care 32:1384–1390CrossRefPubMedPubMedCentral Mortensen HB, Hougaard P, Swift P et al (2009) New definition for the partial remission period in children and adolescents with type 1 diabetes. Diabetes Care 32:1384–1390CrossRefPubMedPubMedCentral
23.
go back to reference Mortensen HB, Swift PG, Holl RW et al (2010) Multinational study in children and adolescents with newly diagnosed type 1 diabetes: association of age, ketoacidosis, HLA status, and autoantibodies on residual beta-cell function and glycemic control 12 months after diagnosis. Pediatr Diabetes 11:218–226CrossRefPubMed Mortensen HB, Swift PG, Holl RW et al (2010) Multinational study in children and adolescents with newly diagnosed type 1 diabetes: association of age, ketoacidosis, HLA status, and autoantibodies on residual beta-cell function and glycemic control 12 months after diagnosis. Pediatr Diabetes 11:218–226CrossRefPubMed
24.
25.
go back to reference Blondal T, Jensby Nielsen S, Baker A et al (2013) Assessing sample and miRNA profile quality in serum and plasma or other biofluids. Methods 59:S1–S6CrossRefPubMed Blondal T, Jensby Nielsen S, Baker A et al (2013) Assessing sample and miRNA profile quality in serum and plasma or other biofluids. Methods 59:S1–S6CrossRefPubMed
26.
27.
go back to reference Hochberg Y (1988) A sharper Bonferroni procedure for multiple tests of significance. Biometrika 75:800–802CrossRef Hochberg Y (1988) A sharper Bonferroni procedure for multiple tests of significance. Biometrika 75:800–802CrossRef
28.
go back to reference Dweep H, Sticht C, Pandey P, Gretz N (2011) miRWalk–database: prediction of possible miRNA binding sites by “walking” the genes of three genomes. J Biomed Inform 44:839–847CrossRefPubMed Dweep H, Sticht C, Pandey P, Gretz N (2011) miRWalk–database: prediction of possible miRNA binding sites by “walking” the genes of three genomes. J Biomed Inform 44:839–847CrossRefPubMed
29.
go back to reference Chou CH, Chang NW, Shrestha S et al (2016) miRTarBase 2016: updates to the experimentally validated miRNA-target interactions database. Nucleic Acids Res 44:D239–D247CrossRefPubMed Chou CH, Chang NW, Shrestha S et al (2016) miRTarBase 2016: updates to the experimentally validated miRNA-target interactions database. Nucleic Acids Res 44:D239–D247CrossRefPubMed
30.
go back to reference Li JH, Liu S, Zhou H, Qu LH, Yang JH (2014) starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res 42:D92–D97CrossRefPubMed Li JH, Liu S, Zhou H, Qu LH, Yang JH (2014) starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res 42:D92–D97CrossRefPubMed
32.
go back to reference Mi H, Muruganujan A, Casagrande JT, Thomas PD (2013) Large-scale gene function analysis with the PANTHER classification system. Nat Protoc 8:1551–1566CrossRefPubMed Mi H, Muruganujan A, Casagrande JT, Thomas PD (2013) Large-scale gene function analysis with the PANTHER classification system. Nat Protoc 8:1551–1566CrossRefPubMed
33.
go back to reference Zampetaki A, Kiechl S, Drozdov I et al (2010) Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ Res 107:810–817CrossRefPubMed Zampetaki A, Kiechl S, Drozdov I et al (2010) Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ Res 107:810–817CrossRefPubMed
35.
go back to reference Kilbride SM, Farrelly AM, Bonner C et al (2010) AMP-activated protein kinase mediates apoptosis in response to bioenergetic stress through activation of the pro-apoptotic Bcl-2 homology domain-3-only protein BMF. J Biol Chem 285:36199–36206CrossRefPubMedPubMedCentral Kilbride SM, Farrelly AM, Bonner C et al (2010) AMP-activated protein kinase mediates apoptosis in response to bioenergetic stress through activation of the pro-apoptotic Bcl-2 homology domain-3-only protein BMF. J Biol Chem 285:36199–36206CrossRefPubMedPubMedCentral
37.
go back to reference Magni S, Buoli Comani G, Elli L et al (2014) miRNAs affect the expression of innate and adaptive immunity proteins in celiac disease. Am J Gastroenterol 109:1662–1674CrossRefPubMed Magni S, Buoli Comani G, Elli L et al (2014) miRNAs affect the expression of innate and adaptive immunity proteins in celiac disease. Am J Gastroenterol 109:1662–1674CrossRefPubMed
38.
go back to reference Qin Q, Wang X, Yan N et al (2015) Aberrant expression of miRNA and mRNAs in lesioned tissues of Graves’ disease. Cell Physiol Biochem 35:1934–1942CrossRefPubMed Qin Q, Wang X, Yan N et al (2015) Aberrant expression of miRNA and mRNAs in lesioned tissues of Graves’ disease. Cell Physiol Biochem 35:1934–1942CrossRefPubMed
39.
go back to reference Karolina DS, Tavintharan S, Armugam A et al (2012) Circulating miRNA profiles in patients with metabolic syndrome. J Clin Endocrinol Metab 97:E2271–E2276CrossRefPubMed Karolina DS, Tavintharan S, Armugam A et al (2012) Circulating miRNA profiles in patients with metabolic syndrome. J Clin Endocrinol Metab 97:E2271–E2276CrossRefPubMed
40.
go back to reference El Ouaamari A, Baroukh N, Martens GA, Lebrun P, Pipeleers D, van Obberghen E (2008) miR-375 targets 3′-phosphoinositide-dependent protein kinase-1 and regulates glucose-induced biological responses in pancreatic beta-cells. Diabetes 57:2708–2717CrossRefPubMedPubMedCentral El Ouaamari A, Baroukh N, Martens GA, Lebrun P, Pipeleers D, van Obberghen E (2008) miR-375 targets 3′-phosphoinositide-dependent protein kinase-1 and regulates glucose-induced biological responses in pancreatic beta-cells. Diabetes 57:2708–2717CrossRefPubMedPubMedCentral
41.
go back to reference Melkman-Zehavi T, Oren R, Kredo-Russo S et al (2011) miRNAs control insulin content in pancreatic beta-cells via downregulation of transcriptional repressors. EMBO J 30:835–845CrossRefPubMedPubMedCentral Melkman-Zehavi T, Oren R, Kredo-Russo S et al (2011) miRNAs control insulin content in pancreatic beta-cells via downregulation of transcriptional repressors. EMBO J 30:835–845CrossRefPubMedPubMedCentral
42.
43.
go back to reference Norlin S, Ahlgren U, Edlund H (2005) Nuclear factor-{kappa}B activity in {beta}-cells is required for glucose-stimulated insulin secretion. Diabetes 54:125–132CrossRefPubMed Norlin S, Ahlgren U, Edlund H (2005) Nuclear factor-{kappa}B activity in {beta}-cells is required for glucose-stimulated insulin secretion. Diabetes 54:125–132CrossRefPubMed
44.
45.
go back to reference Yu Y, Chai J, Zhang H et al (2014) miR-194 Promotes burn-induced hyperglycemia via attenuating IGF-IR expression. Shock 42:578–584CrossRefPubMed Yu Y, Chai J, Zhang H et al (2014) miR-194 Promotes burn-induced hyperglycemia via attenuating IGF-IR expression. Shock 42:578–584CrossRefPubMed
Metadata
Title
Circulating microRNA levels predict residual beta cell function and glycaemic control in children with type 1 diabetes mellitus
Authors
Nasim Samandari
Aashiq H. Mirza
Lotte B. Nielsen
Simranjeet Kaur
Philip Hougaard
Siri Fredheim
Henrik B. Mortensen
Flemming Pociot
Publication date
01-02-2017
Publisher
Springer Berlin Heidelberg
Published in
Diabetologia / Issue 2/2017
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-016-4156-4

Other articles of this Issue 2/2017

Diabetologia 2/2017 Go to the issue

Up front

Up front

Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.