Skip to main content
Top
Published in: European Journal of Medical Research 1/2024

Open Access 01-12-2024 | Chronic Myeloid Leukemia | Review

Homoharringtonine: updated insights into its efficacy in hematological malignancies, diverse cancers and other biomedical applications

Authors: Somanjana Khatua, Sudeshna Nandi, Anish Nag, Surjit Sen, Nilanjan Chakraborty, Arghya Naskar, Eda Sönmez Gürer, Daniela Calina, Krishnendu Acharya, Javad Sharifi-Rad

Published in: European Journal of Medical Research | Issue 1/2024

Login to get access

Abstract

HHT has emerged as a notable compound in the realm of cancer treatment, particularly for hematological malignancies. Its multifaceted pharmacological properties extend beyond traditional applications, warranting an extensive review of its mechanisms and efficacy. This review aims to synthesize comprehensive insights into the efficacy of HHT in treating hematological malignancies, diverse cancers, and other biomedical applications. It focuses on elucidating the molecular mechanisms, therapeutic potential, and broader applications of HHT. A comprehensive search for peer-reviewed papers was conducted across various academic databases, including ScienceDirect, Web of Science, Scopus, American Chemical Society, Google Scholar, PubMed/MedLine, and Wiley. The review highlights HHT's diverse mechanisms of action, ranging from its role in leukemia treatment to its emerging applications in managing other cancers and various biomedical conditions. It underscores HHT's influence on cellular processes, its efficacy in clinical settings, and its potential to alter pathological pathways. HHT demonstrates significant promise in treating various hematological malignancies and cancers, offering a multifaceted approach to disease management. Its ability to impact various physiological pathways opens new avenues for therapeutic applications. This review provides a consolidated foundation for future research and clinical applications of HHT in diverse medical fields.
Literature
2.
go back to reference Keykhaei M, Masinaei M, Mohammadi E, Azadnajafabad S, Rezaei N, Saeedi Moghaddam S, Rezaei N, Nasserinejad M, Abbasi-Kangevari M, Malekpour M-R, Ghamari S-H, Haghshenas R, Koliji K, Kompani F, Farzadfar F. A global, regional, and national survey on burden and Quality of Care Index (QCI) of hematologic malignancies; global burden of disease systematic analysis 1990–2017. Exp Hematol Oncol. 2021;10(1):11. https://doi.org/10.1186/s40164-021-00198-2.CrossRefPubMedPubMedCentral Keykhaei M, Masinaei M, Mohammadi E, Azadnajafabad S, Rezaei N, Saeedi Moghaddam S, Rezaei N, Nasserinejad M, Abbasi-Kangevari M, Malekpour M-R, Ghamari S-H, Haghshenas R, Koliji K, Kompani F, Farzadfar F. A global, regional, and national survey on burden and Quality of Care Index (QCI) of hematologic malignancies; global burden of disease systematic analysis 1990–2017. Exp Hematol Oncol. 2021;10(1):11. https://​doi.​org/​10.​1186/​s40164-021-00198-2.CrossRefPubMedPubMedCentral
4.
go back to reference Vetrie D, Helgason GV, Copland M. The leukaemia stem cell: similarities, differences and clinical prospects in CML and AML. Nat Rev Cancer. 2020;20(3):158–73.PubMedCrossRef Vetrie D, Helgason GV, Copland M. The leukaemia stem cell: similarities, differences and clinical prospects in CML and AML. Nat Rev Cancer. 2020;20(3):158–73.PubMedCrossRef
6.
go back to reference Hu Y, Li Q, Hou M, Peng J, Yang X, Xu S. Magnitude and temporal trend of the chronic myeloid leukemia: on the basis of the global burden of disease study 2019. JCO Glob Oncol. 2021;7:1429–41.PubMedCrossRef Hu Y, Li Q, Hou M, Peng J, Yang X, Xu S. Magnitude and temporal trend of the chronic myeloid leukemia: on the basis of the global burden of disease study 2019. JCO Glob Oncol. 2021;7:1429–41.PubMedCrossRef
7.
go back to reference Wu J, Wei B, Shi Y, Lu X, Ding Y, Wang C, Li Y. Homoharringtonine enhances the effect of imatinib on chronic myelogenous leukemia cells by downregulating ZFX. Mol Med Rep. 2019;20(4):3233–9.PubMedPubMedCentral Wu J, Wei B, Shi Y, Lu X, Ding Y, Wang C, Li Y. Homoharringtonine enhances the effect of imatinib on chronic myelogenous leukemia cells by downregulating ZFX. Mol Med Rep. 2019;20(4):3233–9.PubMedPubMedCentral
8.
go back to reference Stone RM, Donohue KA, Stock W, Hars V, Linker CA, Shea T, DeAngelo DJ, Marcucci G, Bloomfield CD, Larson RA. A phase II study of continuous infusion homoharringtonine and cytarabine in newly diagnosed patients with chronic myeloid leukemia: CALGB study 19804. Cancer Chemother Pharmacol. 2009;63(5):859–64.PubMedCrossRef Stone RM, Donohue KA, Stock W, Hars V, Linker CA, Shea T, DeAngelo DJ, Marcucci G, Bloomfield CD, Larson RA. A phase II study of continuous infusion homoharringtonine and cytarabine in newly diagnosed patients with chronic myeloid leukemia: CALGB study 19804. Cancer Chemother Pharmacol. 2009;63(5):859–64.PubMedCrossRef
10.
go back to reference Mi R, Zhao J, Chen L, Wei X, Liu J. Efficacy and safety of homoharringtonine for the treatment of acute myeloid leukemia: a meta-analysis. Clin Lymphoma Myeloma Leuk. 2021;21(10):e752–67.PubMedCrossRef Mi R, Zhao J, Chen L, Wei X, Liu J. Efficacy and safety of homoharringtonine for the treatment of acute myeloid leukemia: a meta-analysis. Clin Lymphoma Myeloma Leuk. 2021;21(10):e752–67.PubMedCrossRef
11.
go back to reference Wang L-b, Wang D-n, Wu L-g, Cao J, Tian J-h, Liu R, Ma R, Yu J-j, Wang J, Huang Q. Homoharringtonine inhibited breast cancer cells growth via miR-18a-3p/AKT/mTOR signaling pathway. Int J Biol Sci. 2021;17(4):995.PubMedPubMedCentralCrossRef Wang L-b, Wang D-n, Wu L-g, Cao J, Tian J-h, Liu R, Ma R, Yu J-j, Wang J, Huang Q. Homoharringtonine inhibited breast cancer cells growth via miR-18a-3p/AKT/mTOR signaling pathway. Int J Biol Sci. 2021;17(4):995.PubMedPubMedCentralCrossRef
12.
go back to reference Quintás-Cardama A, Kantarjian H, Cortes J. Homoharringtonine, omacetaxine mepesuccinate, and chronic myeloid leukemia circa 2009. Cancer. 2009;115(23):5382–93.PubMedCrossRef Quintás-Cardama A, Kantarjian H, Cortes J. Homoharringtonine, omacetaxine mepesuccinate, and chronic myeloid leukemia circa 2009. Cancer. 2009;115(23):5382–93.PubMedCrossRef
13.
go back to reference Dong H-J, Wang Z-H, Meng W, Li C-C, Hu Y-X, Zhou L, Wang X-J. The natural compound homoharringtonine presents broad antiviral activity in vitro and in vivo. Viruses. 2018;10(11):601.PubMedPubMedCentralCrossRef Dong H-J, Wang Z-H, Meng W, Li C-C, Hu Y-X, Zhou L, Wang X-J. The natural compound homoharringtonine presents broad antiviral activity in vitro and in vivo. Viruses. 2018;10(11):601.PubMedPubMedCentralCrossRef
14.
go back to reference Kantarjian HM, O’Brien S, Cortes J. Homoharringtonine/omacetaxine mepesuccinate: the long and winding road to food and drug administration approval. Clin Lymphoma Myeloma Leuk. 2013;13(5):530–3.PubMedPubMedCentralCrossRef Kantarjian HM, O’Brien S, Cortes J. Homoharringtonine/omacetaxine mepesuccinate: the long and winding road to food and drug administration approval. Clin Lymphoma Myeloma Leuk. 2013;13(5):530–3.PubMedPubMedCentralCrossRef
16.
go back to reference Tang J-f, Li G-l, Zhang T, Du Y-m, Huang S-y, Ran J-h, Li J, Chen D-l. Homoharringtonine inhibits melanoma cells proliferation in vitro and vivo by inducing DNA damage, apoptosis, and G2/M cell cycle arrest. Arch Biochem Biophys. 2021;700:108774.PubMedCrossRef Tang J-f, Li G-l, Zhang T, Du Y-m, Huang S-y, Ran J-h, Li J, Chen D-l. Homoharringtonine inhibits melanoma cells proliferation in vitro and vivo by inducing DNA damage, apoptosis, and G2/M cell cycle arrest. Arch Biochem Biophys. 2021;700:108774.PubMedCrossRef
17.
go back to reference Guo S, Bai X, Shi S, Deng Y, Kang X, An H. TMEM16A, a homoharringtonine receptor, as a potential endogenic target for lung cancer treatment. Int J Mol Sci. 2021;22(20):10930.PubMedPubMedCentralCrossRef Guo S, Bai X, Shi S, Deng Y, Kang X, An H. TMEM16A, a homoharringtonine receptor, as a potential endogenic target for lung cancer treatment. Int J Mol Sci. 2021;22(20):10930.PubMedPubMedCentralCrossRef
18.
go back to reference Plett R, Mellor P, Kendall S, Hammond SA, Boulet A, Plaza K, Vizeacoumar FS, Vizeacoumar FJ, Anderson DH. Homoharringtonine demonstrates a cytotoxic effect against triple-negative breast cancer cell lines and acts synergistically with paclitaxel. Sci Rep. 2022;12(1):1–16.CrossRef Plett R, Mellor P, Kendall S, Hammond SA, Boulet A, Plaza K, Vizeacoumar FS, Vizeacoumar FJ, Anderson DH. Homoharringtonine demonstrates a cytotoxic effect against triple-negative breast cancer cell lines and acts synergistically with paclitaxel. Sci Rep. 2022;12(1):1–16.CrossRef
19.
go back to reference Jiang X, Wu Q, Zhang C, Wang M. Homoharringtonine inhibits Alzheimer’s disease progression by reducing neuroinflammation via STAT3 signaling in APP/PS1 mice. Neurodegener Dis. 2021;21(3–4):93–102.PubMedCrossRef Jiang X, Wu Q, Zhang C, Wang M. Homoharringtonine inhibits Alzheimer’s disease progression by reducing neuroinflammation via STAT3 signaling in APP/PS1 mice. Neurodegener Dis. 2021;21(3–4):93–102.PubMedCrossRef
20.
go back to reference Li X, Wang S, Dai J, Yan L, Zhao S, Wang J, Sun Y. Homoharringtonine prevents surgery-induced epidural fibrosis through endoplasmic reticulum stress signaling pathway. Eur J Pharmacol. 2017;815:437–45.PubMedCrossRef Li X, Wang S, Dai J, Yan L, Zhao S, Wang J, Sun Y. Homoharringtonine prevents surgery-induced epidural fibrosis through endoplasmic reticulum stress signaling pathway. Eur J Pharmacol. 2017;815:437–45.PubMedCrossRef
21.
go back to reference Lü S, Wang J. Homoharringtonine and omacetaxine for myeloid hematological malignancies. J Hematol Oncol. 2014;7(1):1–10.CrossRef Lü S, Wang J. Homoharringtonine and omacetaxine for myeloid hematological malignancies. J Hematol Oncol. 2014;7(1):1–10.CrossRef
24.
go back to reference Hao DC, Xiao PG, Huang B, Ge GB, Yang L. Interspecific relationships and origins of Taxaceae and Cephalotaxaceae revealed by partitioned Bayesian analyses of chloroplast and nuclear DNA sequences. Plant Syst Evol. 2008;276(1):89–104.CrossRef Hao DC, Xiao PG, Huang B, Ge GB, Yang L. Interspecific relationships and origins of Taxaceae and Cephalotaxaceae revealed by partitioned Bayesian analyses of chloroplast and nuclear DNA sequences. Plant Syst Evol. 2008;276(1):89–104.CrossRef
25.
go back to reference Novotny L, Al-Tannak N, Hunakova L. Protein synthesis inhibitors of natural origin for CML therapy: semisynthetic homoharringtonine (Omacetaxine mepesuccinate). Neoplasma. 2016;63(4):495–503.PubMedCrossRef Novotny L, Al-Tannak N, Hunakova L. Protein synthesis inhibitors of natural origin for CML therapy: semisynthetic homoharringtonine (Omacetaxine mepesuccinate). Neoplasma. 2016;63(4):495–503.PubMedCrossRef
26.
go back to reference Vidaković M. Conifers: morphology and variation. Grafičko Zavod Hrvatske. 1991. Vidaković M. Conifers: morphology and variation. Grafičko Zavod Hrvatske. 1991.
27.
go back to reference Tripp KE. Cephalotaxus: the plum yews. Arnoldia. 1995;55(1):24–39. Tripp KE. Cephalotaxus: the plum yews. Arnoldia. 1995;55(1):24–39.
28.
go back to reference Silba J (1986) Encyclopaedia coniferae. In: Phytologia memoirs. Vol VIII. Corvallis: Moldenke and Moldenke, Silba J (1986) Encyclopaedia coniferae. In: Phytologia memoirs. Vol VIII. Corvallis: Moldenke and Moldenke,
29.
go back to reference Kantarjian HM, Talpaz M, Santini V, Murgo A, Cheson B, O’Brien SM. Homoharringtonine: history, current research, and future directions. Cancer. 2001;92(6):1591–605.PubMedCrossRef Kantarjian HM, Talpaz M, Santini V, Murgo A, Cheson B, O’Brien SM. Homoharringtonine: history, current research, and future directions. Cancer. 2001;92(6):1591–605.PubMedCrossRef
30.
go back to reference Powell R, Weisleder D, Smith C Jr, Wolff I. Structure of cephalotaxine and related alkaloids. Tetrahedron Lett. 1969;10(46):4081–4.CrossRef Powell R, Weisleder D, Smith C Jr, Wolff I. Structure of cephalotaxine and related alkaloids. Tetrahedron Lett. 1969;10(46):4081–4.CrossRef
31.
go back to reference Dai W-J, Dai H-F, Wu J, Liu J, Mei W-L. A new 5-acyl-2-methylpyrrole from the endophytic fungus S20 of Cephalotaxus hainanensis. Nat Prod Commun. 2009;4(11):1934578X0900401110. Dai W-J, Dai H-F, Wu J, Liu J, Mei W-L. A new 5-acyl-2-methylpyrrole from the endophytic fungus S20 of Cephalotaxus hainanensis. Nat Prod Commun. 2009;4(11):1934578X0900401110.
32.
go back to reference Saithong P, Panthavee W, Stonsaovapak S, Li C. Isolation and primary identification of endophytic fungi from Cephalotaxus mannii trees. Maejo Int J Sci Technol. 2010;4(3):446–53. Saithong P, Panthavee W, Stonsaovapak S, Li C. Isolation and primary identification of endophytic fungi from Cephalotaxus mannii trees. Maejo Int J Sci Technol. 2010;4(3):446–53.
33.
go back to reference Sakai T, Okumura C, Futamura M, Noda N, Nagae A, Kitamoto C, Kamiya M, Mori Y. Gold (I)-catalyzed cyclization–3-aza-cope–mannich cascade and its application to the synthesis of cephalotaxine. Org Lett. 2021;23(11):4391–5.PubMedCrossRef Sakai T, Okumura C, Futamura M, Noda N, Nagae A, Kitamoto C, Kamiya M, Mori Y. Gold (I)-catalyzed cyclization–3-aza-cope–mannich cascade and its application to the synthesis of cephalotaxine. Org Lett. 2021;23(11):4391–5.PubMedCrossRef
34.
go back to reference Lu X, Chen G, Hua H, Dai H, Mei W, Xu Y, Pei Y. Aromatic compounds from endophytic fungus Colletotrichum sp. L10 of Cephalotaxus hainanensis Li. Fitoterapia. 2012;83(4):737–41.PubMedCrossRef Lu X, Chen G, Hua H, Dai H, Mei W, Xu Y, Pei Y. Aromatic compounds from endophytic fungus Colletotrichum sp. L10 of Cephalotaxus hainanensis Li. Fitoterapia. 2012;83(4):737–41.PubMedCrossRef
35.
go back to reference Xue H, Lu C, Liang L, Shen Y. Secondary metabolites of Aspergillus sp. CM9a, an endophytic fungus of Cephalotaxus mannii. Rec Nat Prod. 2012;6(1):28–34. Xue H, Lu C, Liang L, Shen Y. Secondary metabolites of Aspergillus sp. CM9a, an endophytic fungus of Cephalotaxus mannii. Rec Nat Prod. 2012;6(1):28–34.
36.
go back to reference Hu X, Li W, Yuan M, Li C, Liu S, Jiang C, Wu Y, Cai K, Liu Y. Homoharringtonine production by endophytic fungus isolated from Cephalotaxus hainanensis Li. World J Microbiol Biotechnol. 2016;32(7):1–9.PubMedCrossRef Hu X, Li W, Yuan M, Li C, Liu S, Jiang C, Wu Y, Cai K, Liu Y. Homoharringtonine production by endophytic fungus isolated from Cephalotaxus hainanensis Li. World J Microbiol Biotechnol. 2016;32(7):1–9.PubMedCrossRef
37.
38.
go back to reference Kim B-S, Kim J-H. Characterization of solvent induced crystalline and amorphous homoharringtonine. Korean J Chem Eng. 2009;26(4):1090–3.CrossRef Kim B-S, Kim J-H. Characterization of solvent induced crystalline and amorphous homoharringtonine. Korean J Chem Eng. 2009;26(4):1090–3.CrossRef
39.
go back to reference Gu X, Chen Y, Lou Y, Zheng J. Separation and characterization of forced degradation products in homoharringtonine injection by UHPLC-Q-TOF-MS. J Pharm Biomed Anal. 2019;176:112801.PubMedCrossRef Gu X, Chen Y, Lou Y, Zheng J. Separation and characterization of forced degradation products in homoharringtonine injection by UHPLC-Q-TOF-MS. J Pharm Biomed Anal. 2019;176:112801.PubMedCrossRef
40.
go back to reference Choi YH, Yoo K-P, Kim J. HPLC-electrospray ionization-MS-MS analysis of Cephalotaxus harringtonia leaves and enhancement of the extraction efficiency of alkaloids therein by SFE. J Chromatogr Sci. 2003;41(2):67–72.PubMedCrossRef Choi YH, Yoo K-P, Kim J. HPLC-electrospray ionization-MS-MS analysis of Cephalotaxus harringtonia leaves and enhancement of the extraction efficiency of alkaloids therein by SFE. J Chromatogr Sci. 2003;41(2):67–72.PubMedCrossRef
41.
go back to reference Nett RS, Guan X, Smith K, Faust AM, Sattely ES, Fischer CR. D2O labeling to measure active biosynthesis of natural products in medicinal plants. AIChE J. 2018;64(12):4319–30.PubMedPubMedCentralCrossRef Nett RS, Guan X, Smith K, Faust AM, Sattely ES, Fischer CR. D2O labeling to measure active biosynthesis of natural products in medicinal plants. AIChE J. 2018;64(12):4319–30.PubMedPubMedCentralCrossRef
42.
go back to reference Parry RJ, Chang MN, Schwab JM, Foxman B. Biosynthesis of the Cephalotaxus alkaloids: investigations of the early and late stages of cephalotaxine biosynthesis. J Am Chem Soc. 1980;102(3):1099–111.CrossRef Parry RJ, Chang MN, Schwab JM, Foxman B. Biosynthesis of the Cephalotaxus alkaloids: investigations of the early and late stages of cephalotaxine biosynthesis. J Am Chem Soc. 1980;102(3):1099–111.CrossRef
43.
go back to reference Semmelhack M, Chong B, Jones L. Total synthesis of Cephalotaxus alkaloids. J Am Chem Soc. 1972;94(24):8629–30.PubMedCrossRef Semmelhack M, Chong B, Jones L. Total synthesis of Cephalotaxus alkaloids. J Am Chem Soc. 1972;94(24):8629–30.PubMedCrossRef
44.
go back to reference Weinreb SM, Auerbach J. Total synthesis of the Cephalotaxus alkaloids: cephalotaxine, cephalotaxinone, and demethylcephalotaxinone. J Am Chem Soc. 1975;97(9):2503–6.CrossRef Weinreb SM, Auerbach J. Total synthesis of the Cephalotaxus alkaloids: cephalotaxine, cephalotaxinone, and demethylcephalotaxinone. J Am Chem Soc. 1975;97(9):2503–6.CrossRef
45.
go back to reference Gouthami P, Chegondi R, Chandrasekhar S. Formal total synthesis of (±)-cephalotaxine and congeners via aryne insertion reaction. Org Lett. 2016;18(9):2044–6.PubMedCrossRef Gouthami P, Chegondi R, Chandrasekhar S. Formal total synthesis of (±)-cephalotaxine and congeners via aryne insertion reaction. Org Lett. 2016;18(9):2044–6.PubMedCrossRef
46.
go back to reference Ju X, Beaudry CM. Total synthesis of (−)-cephalotaxine and (−)-homoharringtonine via furan oxidation-transannular mannich cyclization. Angew Chem. 2019;131(20):6824–7.CrossRef Ju X, Beaudry CM. Total synthesis of (−)-cephalotaxine and (−)-homoharringtonine via furan oxidation-transannular mannich cyclization. Angew Chem. 2019;131(20):6824–7.CrossRef
47.
go back to reference Dang F-F, Wang C-C, Han F, Zhang Z-W. Synthesis of the ester side chains of homoharringtonine and harringtonine using lactones as building blocks. Synth Commun. 2021;51(2):317–23.CrossRef Dang F-F, Wang C-C, Han F, Zhang Z-W. Synthesis of the ester side chains of homoharringtonine and harringtonine using lactones as building blocks. Synth Commun. 2021;51(2):317–23.CrossRef
48.
go back to reference Hiranuma S, Hudlicky T. Synthesis of homoharringtonine and its derivative by partial esterification of cephalotaxine. Tetrahedron Lett. 1982;23(34):3431–4.CrossRef Hiranuma S, Hudlicky T. Synthesis of homoharringtonine and its derivative by partial esterification of cephalotaxine. Tetrahedron Lett. 1982;23(34):3431–4.CrossRef
49.
go back to reference Esmieu WR, Worden SM, Catterick D, Wilson C, Hayes CJ. A formal synthesis of (-)-cephalotaxine. Org Lett. 2008;10(14):3045–8.PubMedCrossRef Esmieu WR, Worden SM, Catterick D, Wilson C, Hayes CJ. A formal synthesis of (-)-cephalotaxine. Org Lett. 2008;10(14):3045–8.PubMedCrossRef
50.
go back to reference Jeon H, Chung Y, Kim S. Proline ester enolate claisen rearrangement and formal total synthesis of (−)-cephalotaxine. J Org Chem. 2019;84(12):8080–9.PubMedCrossRef Jeon H, Chung Y, Kim S. Proline ester enolate claisen rearrangement and formal total synthesis of (−)-cephalotaxine. J Org Chem. 2019;84(12):8080–9.PubMedCrossRef
51.
go back to reference Yang C, Zhang H, Chen M, Wang S, Qian R, Zhang L, Huang X, Wang J, Liu Z, Qin W. A survey of optimal strategy for signature-based drug repositioning and an application to liver cancer. Elife. 2022;11: e71880.PubMedPubMedCentralCrossRef Yang C, Zhang H, Chen M, Wang S, Qian R, Zhang L, Huang X, Wang J, Liu Z, Qin W. A survey of optimal strategy for signature-based drug repositioning and an application to liver cancer. Elife. 2022;11: e71880.PubMedPubMedCentralCrossRef
52.
go back to reference Levy V, Zohar S, Bardin C, Vekhoff A, Chaoui D, Rio B, Legrand O, Sentenac S, Rousselot P, Raffoux E. A phase I dose-finding and pharmacokinetic study of subcutaneous semisynthetic homoharringtonine (ssHHT) in patients with advanced acute myeloid leukaemia. Br J Cancer. 2006;95(3):253–9.PubMedPubMedCentralCrossRef Levy V, Zohar S, Bardin C, Vekhoff A, Chaoui D, Rio B, Legrand O, Sentenac S, Rousselot P, Raffoux E. A phase I dose-finding and pharmacokinetic study of subcutaneous semisynthetic homoharringtonine (ssHHT) in patients with advanced acute myeloid leukaemia. Br J Cancer. 2006;95(3):253–9.PubMedPubMedCentralCrossRef
53.
go back to reference Khazir J, Mir BA, Pilcher L, Riley DL. Role of plants in anticancer drug discovery. Phytochem Lett. 2014;7:173–81.CrossRef Khazir J, Mir BA, Pilcher L, Riley DL. Role of plants in anticancer drug discovery. Phytochem Lett. 2014;7:173–81.CrossRef
54.
go back to reference Darwiche N, El-Banna S, Gali-Muhtasib H. Cell cycle modulatory and apoptotic effects of plant-derived anticancer drugs in clinical use or development. Expert Opin Drug Discov. 2007;2(3):361–79.PubMedCrossRef Darwiche N, El-Banna S, Gali-Muhtasib H. Cell cycle modulatory and apoptotic effects of plant-derived anticancer drugs in clinical use or development. Expert Opin Drug Discov. 2007;2(3):361–79.PubMedCrossRef
55.
go back to reference Wetzler M, Segal D. Omacetaxine as an anticancer therapeutic: what is old is new again. Curr Pharm Des. 2011;17(1):59–64.PubMedCrossRef Wetzler M, Segal D. Omacetaxine as an anticancer therapeutic: what is old is new again. Curr Pharm Des. 2011;17(1):59–64.PubMedCrossRef
56.
go back to reference Zhang T, Shen S, Zhu Z, Lu S, Yin X, Zheng J, Jin J. Homoharringtonine binds to and increases myosin-9 in myeloid leukaemia. Br J Pharmacol. 2016;173(1):212–21.PubMedCrossRef Zhang T, Shen S, Zhu Z, Lu S, Yin X, Zheng J, Jin J. Homoharringtonine binds to and increases myosin-9 in myeloid leukaemia. Br J Pharmacol. 2016;173(1):212–21.PubMedCrossRef
57.
go back to reference Muralidharan A, Scott JJX, Joseph LD, Jeyabalan S. Effect of homoharringtonine as a combined regimen for acute myeloid leukemia. J Pharmacol Pharmacother. 2021;12(3):110–4.CrossRef Muralidharan A, Scott JJX, Joseph LD, Jeyabalan S. Effect of homoharringtonine as a combined regimen for acute myeloid leukemia. J Pharmacol Pharmacother. 2021;12(3):110–4.CrossRef
58.
go back to reference Zhang Y, Li N, Chang Z, Wang H, Pei H, Zhang D, Zhang Q, Huang J, Guo Y, Zhao Y. The metabolic signature of AML cells treated with homoharringtonine. Front Oncol. 2022;12:931527.PubMedPubMedCentralCrossRef Zhang Y, Li N, Chang Z, Wang H, Pei H, Zhang D, Zhang Q, Huang J, Guo Y, Zhao Y. The metabolic signature of AML cells treated with homoharringtonine. Front Oncol. 2022;12:931527.PubMedPubMedCentralCrossRef
59.
go back to reference DiNardo CD, Wei AH. How I treat acute myeloid leukemia in the era of new drugs. Blood. 2020;135(2):85–96.PubMedCrossRef DiNardo CD, Wei AH. How I treat acute myeloid leukemia in the era of new drugs. Blood. 2020;135(2):85–96.PubMedCrossRef
61.
go back to reference Zhang W, Lu Y, Zhen T, Chen X, Zhang M, Liu P, Weng X, Chen B, Wang Y. Homoharringtonine synergy with oridonin in treatment of t (8; 21) acute myeloid leukemia. Front Med. 2019;13(3):388–97.PubMedCrossRef Zhang W, Lu Y, Zhen T, Chen X, Zhang M, Liu P, Weng X, Chen B, Wang Y. Homoharringtonine synergy with oridonin in treatment of t (8; 21) acute myeloid leukemia. Front Med. 2019;13(3):388–97.PubMedCrossRef
62.
go back to reference Lai C, Doucette K, Norsworthy K. Recent drug approvals for acute myeloid leukemia. J Hematol Oncol. 2019;12(1):1–20.CrossRef Lai C, Doucette K, Norsworthy K. Recent drug approvals for acute myeloid leukemia. J Hematol Oncol. 2019;12(1):1–20.CrossRef
63.
go back to reference Watanabe D, Nogami A, Okada K, Akiyama H, Umezawa Y, Miura O. FLT3-ITD activates RSK1 to enhance proliferation and survival of AML cells by activating mTORC1 and eIF4B cooperatively with PIM or PI3K and by inhibiting bad and BIM. Cancers. 2019;11(12):1827.PubMedPubMedCentralCrossRef Watanabe D, Nogami A, Okada K, Akiyama H, Umezawa Y, Miura O. FLT3-ITD activates RSK1 to enhance proliferation and survival of AML cells by activating mTORC1 and eIF4B cooperatively with PIM or PI3K and by inhibiting bad and BIM. Cancers. 2019;11(12):1827.PubMedPubMedCentralCrossRef
64.
go back to reference Ofran Y, Tallman MS, Rowe JM. How I treat acute myeloid leukemia presenting with preexisting comorbidities. Blood J Am Soc Hematol. 2016;128(4):488–96. Ofran Y, Tallman MS, Rowe JM. How I treat acute myeloid leukemia presenting with preexisting comorbidities. Blood J Am Soc Hematol. 2016;128(4):488–96.
65.
go back to reference Kantarjian H, Kadia T, DiNardo C, Daver N, Borthakur G, Jabbour E, Garcia-Manero G, Konopleva M, Ravandi F. Acute myeloid leukemia: current progress and future directions. Blood Cancer J. 2021;11(2):1–25.CrossRef Kantarjian H, Kadia T, DiNardo C, Daver N, Borthakur G, Jabbour E, Garcia-Manero G, Konopleva M, Ravandi F. Acute myeloid leukemia: current progress and future directions. Blood Cancer J. 2021;11(2):1–25.CrossRef
66.
go back to reference Bohlander SK. A new kid on the block for acute myeloid leukemia treatment? Homoharringtonine interferes with key pathways in acute myeloid leukemia cells. Haematologica. 2020;105(1):7.PubMedPubMedCentralCrossRef Bohlander SK. A new kid on the block for acute myeloid leukemia treatment? Homoharringtonine interferes with key pathways in acute myeloid leukemia cells. Haematologica. 2020;105(1):7.PubMedPubMedCentralCrossRef
67.
go back to reference Zhou J-Y, Chen D-L, Shen Z-S, Koeffler HP. Effect of homoharringtonine on proliferation and differentiation of human leukemic cells in vitro. Can Res. 1990;50(7):2031–5. Zhou J-Y, Chen D-L, Shen Z-S, Koeffler HP. Effect of homoharringtonine on proliferation and differentiation of human leukemic cells in vitro. Can Res. 1990;50(7):2031–5.
68.
go back to reference He J, Li L, Zhu J, Zhao Y, Wu W, Zheng Y, Zheng G, Zheng W, Zhu X, Huang H. Homoharringtonine in combination with cytarabine and etoposide for induction therapy in patients with de novo acute myelogenous leukemia. Blood. 2013;122(21):5006.CrossRef He J, Li L, Zhu J, Zhao Y, Wu W, Zheng Y, Zheng G, Zheng W, Zhu X, Huang H. Homoharringtonine in combination with cytarabine and etoposide for induction therapy in patients with de novo acute myelogenous leukemia. Blood. 2013;122(21):5006.CrossRef
69.
go back to reference Tang R, Faussat A-M, Majdak P, Marzac C, Dubrulle S, Marjanovic Z, Legrand O, Marie J-P. Semisynthetic homoharringtonine induces apoptosis via inhibition of protein synthesis and triggers rapid myeloid cell leukemia-1 down-regulation in myeloid leukemia cells. Mol Cancer Ther. 2006;5(3):723–31.PubMedCrossRef Tang R, Faussat A-M, Majdak P, Marzac C, Dubrulle S, Marjanovic Z, Legrand O, Marie J-P. Semisynthetic homoharringtonine induces apoptosis via inhibition of protein synthesis and triggers rapid myeloid cell leukemia-1 down-regulation in myeloid leukemia cells. Mol Cancer Ther. 2006;5(3):723–31.PubMedCrossRef
70.
go back to reference Yuan F, Li D, Li G, Cheng C, Wei X. Synergistic efficacy of homoharringtonine and venetoclax on acute myeloid leukemia cells and the underlying mechanisms. Ann Transl Med. 2022;10(8):490.PubMedPubMedCentralCrossRef Yuan F, Li D, Li G, Cheng C, Wei X. Synergistic efficacy of homoharringtonine and venetoclax on acute myeloid leukemia cells and the underlying mechanisms. Ann Transl Med. 2022;10(8):490.PubMedPubMedCentralCrossRef
71.
go back to reference Wang L, You L-S, Ni W-M, Ma Q-L, Tong Y, Mao L-P, Qian J-J, Jin J. β-Catenin and AKT are promising targets for combination therapy in acute myeloid leukemia. Leuk Res. 2013;37(10):1329–40.PubMedCrossRef Wang L, You L-S, Ni W-M, Ma Q-L, Tong Y, Mao L-P, Qian J-J, Jin J. β-Catenin and AKT are promising targets for combination therapy in acute myeloid leukemia. Leuk Res. 2013;37(10):1329–40.PubMedCrossRef
72.
go back to reference Cao J, Feng H, Ding NN, Qy Wu, Chen C, Niu MS, Chen W, Qiu TT, Zhu HH, Xu KL. Homoharringtonine combined with aclarubicin and cytarabine synergistically induces apoptosis in t (8; 21) leukemia cells and triggers caspase-3-mediated cleavage of the AML1-ETO oncoprotein. Cancer Med. 2016;5(11):3205–13.PubMedPubMedCentralCrossRef Cao J, Feng H, Ding NN, Qy Wu, Chen C, Niu MS, Chen W, Qiu TT, Zhu HH, Xu KL. Homoharringtonine combined with aclarubicin and cytarabine synergistically induces apoptosis in t (8; 21) leukemia cells and triggers caspase-3-mediated cleavage of the AML1-ETO oncoprotein. Cancer Med. 2016;5(11):3205–13.PubMedPubMedCentralCrossRef
73.
go back to reference Zhang J, Geng H, Liu L, Zhang H. Synergistic cytotoxicity of homoharringtonine and etoposide in acute myeloid leukemia cells involves disrupted antioxidant defense. Cancer Manag Res. 2019;11:1023.PubMedPubMedCentralCrossRef Zhang J, Geng H, Liu L, Zhang H. Synergistic cytotoxicity of homoharringtonine and etoposide in acute myeloid leukemia cells involves disrupted antioxidant defense. Cancer Manag Res. 2019;11:1023.PubMedPubMedCentralCrossRef
74.
go back to reference Wu Z, Zhuang H, Yu Q, Zhang X, Jiang X, Lu X, Xu Y, Yang L, Wu B, Ma A. Homoharringtonine combined with the heat shock protein 90 inhibitor IPI504 in the treatment of FLT3-ITD acute myeloid leukemia. Transl Oncol. 2019;12(6):801–9.PubMedPubMedCentralCrossRef Wu Z, Zhuang H, Yu Q, Zhang X, Jiang X, Lu X, Xu Y, Yang L, Wu B, Ma A. Homoharringtonine combined with the heat shock protein 90 inhibitor IPI504 in the treatment of FLT3-ITD acute myeloid leukemia. Transl Oncol. 2019;12(6):801–9.PubMedPubMedCentralCrossRef
75.
go back to reference Li X, Yin X, Wang H, Huang J, Yu M, Ma Z, Li C, Zhou Y, Yan X, Huang S. The combination effect of homoharringtonine and ibrutinib on FLT3-ITD mutant acute myeloid leukemia. Oncotarget. 2017;8(8):12764.PubMedPubMedCentralCrossRef Li X, Yin X, Wang H, Huang J, Yu M, Ma Z, Li C, Zhou Y, Yan X, Huang S. The combination effect of homoharringtonine and ibrutinib on FLT3-ITD mutant acute myeloid leukemia. Oncotarget. 2017;8(8):12764.PubMedPubMedCentralCrossRef
76.
go back to reference Wang F, Huang J, Guo T, Zheng Y, Zhang L, Zhang D, Wang F, Naren D, Cui Y, Liu X. Homoharringtonine synergizes with quizartinib in FLT3-ITD acute myeloid leukemia by targeting FLT3-AKT-c-Myc pathway. Biochem Pharmacol. 2021;188:114538.PubMedCrossRef Wang F, Huang J, Guo T, Zheng Y, Zhang L, Zhang D, Wang F, Naren D, Cui Y, Liu X. Homoharringtonine synergizes with quizartinib in FLT3-ITD acute myeloid leukemia by targeting FLT3-AKT-c-Myc pathway. Biochem Pharmacol. 2021;188:114538.PubMedCrossRef
78.
go back to reference Klanova M, Andera L, Brazina J, Svadlenka J, Benesova S, Soukup J, Prukova D, Vejmelkova D, Jaksa R, Helman K. Targeting of BCL2 family proteins with ABT-199 and homoharringtonine reveals BCL2-and MCL1-dependent subgroups of diffuse large B-cell lymphoma targeting of BCL2 proteins in diffuse large B-cell lymphoma. Clin Cancer Res. 2016;22(5):1138–49.PubMedCrossRef Klanova M, Andera L, Brazina J, Svadlenka J, Benesova S, Soukup J, Prukova D, Vejmelkova D, Jaksa R, Helman K. Targeting of BCL2 family proteins with ABT-199 and homoharringtonine reveals BCL2-and MCL1-dependent subgroups of diffuse large B-cell lymphoma targeting of BCL2 proteins in diffuse large B-cell lymphoma. Clin Cancer Res. 2016;22(5):1138–49.PubMedCrossRef
79.
go back to reference Yu G, Xu N, Huang F, Fan Z, Liu H, Shi P, Zhou H, Wang Z, Zhang Y, Liu Q. Combination of homoharringtonine with venetoclax and azacitidine excerts better treatment response in relapsed/refractory acute myeloid leukemia. Blood. 2020;136:26–7.CrossRef Yu G, Xu N, Huang F, Fan Z, Liu H, Shi P, Zhou H, Wang Z, Zhang Y, Liu Q. Combination of homoharringtonine with venetoclax and azacitidine excerts better treatment response in relapsed/refractory acute myeloid leukemia. Blood. 2020;136:26–7.CrossRef
80.
go back to reference Yu W, Mao L, Qian J, Qian W, Meng H, Mai W, Tong H, Tong Y, Jin J. Homoharringtonine in combination with cytarabine and aclarubicin in the treatment of refractory/relapsed acute myeloid leukemia: a single-center experience. Ann Hematol. 2013;92(8):1091–100.PubMedCrossRef Yu W, Mao L, Qian J, Qian W, Meng H, Mai W, Tong H, Tong Y, Jin J. Homoharringtonine in combination with cytarabine and aclarubicin in the treatment of refractory/relapsed acute myeloid leukemia: a single-center experience. Ann Hematol. 2013;92(8):1091–100.PubMedCrossRef
81.
go back to reference Jin J, Wang J-X, Chen F-F, Wu D-P, Hu J, Zhou J-F, Hu J-D, Wang J-M, Li J-Y, Huang X-J. Homoharringtonine-based induction regimens for patients with de-novo acute myeloid leukaemia: a multicentre, open-label, randomised, controlled phase 3 trial. Lancet Oncol. 2013;14(7):599–608.PubMedCrossRef Jin J, Wang J-X, Chen F-F, Wu D-P, Hu J, Zhou J-F, Hu J-D, Wang J-M, Li J-Y, Huang X-J. Homoharringtonine-based induction regimens for patients with de-novo acute myeloid leukaemia: a multicentre, open-label, randomised, controlled phase 3 trial. Lancet Oncol. 2013;14(7):599–608.PubMedCrossRef
82.
go back to reference Zhu H-H, Jiang H, Jiang Q, Jia J-S, Qin Y-Z, Huang X-J. Homoharringtonine, aclarubicin and cytarabine (HAA) regimen as the first course of induction therapy is highly effective for acute myeloid leukemia with t (8; 21). Leuk Res. 2016;44:40–4.PubMedCrossRef Zhu H-H, Jiang H, Jiang Q, Jia J-S, Qin Y-Z, Huang X-J. Homoharringtonine, aclarubicin and cytarabine (HAA) regimen as the first course of induction therapy is highly effective for acute myeloid leukemia with t (8; 21). Leuk Res. 2016;44:40–4.PubMedCrossRef
83.
go back to reference Li Y, Zhang B, Liu M, Zhang X, Shi D, Guo L, Duan J, Zhou X, Zhu H, Zhang Q. Further study of influence of Panax notoginseng on intestinal absorption characteristics of triptolide and tripterine in rats with Tripterygium wilfordii. Pharmacogn Mag. 2018;14(53):95.PubMedPubMedCentralCrossRef Li Y, Zhang B, Liu M, Zhang X, Shi D, Guo L, Duan J, Zhou X, Zhu H, Zhang Q. Further study of influence of Panax notoginseng on intestinal absorption characteristics of triptolide and tripterine in rats with Tripterygium wilfordii. Pharmacogn Mag. 2018;14(53):95.PubMedPubMedCentralCrossRef
84.
go back to reference Kabat GC, Wu JW, Moore SC, Morton LM, Park Y, Hollenbeck AR, Rohan TE. Lifestyle and dietary factors in relation to risk of chronic myeloid leukemia in the NIH-AARP diet and health study risk factors for chronic myeloid leukemia. Cancer Epidemiol Biomark Prev. 2013;22(5):848–54.CrossRef Kabat GC, Wu JW, Moore SC, Morton LM, Park Y, Hollenbeck AR, Rohan TE. Lifestyle and dietary factors in relation to risk of chronic myeloid leukemia in the NIH-AARP diet and health study risk factors for chronic myeloid leukemia. Cancer Epidemiol Biomark Prev. 2013;22(5):848–54.CrossRef
85.
go back to reference Strom SS, Yamamura Y, Kantarijian HM, Cortes-Franco JE. Obesity, weight gain, and risk of chronic myeloid leukemia. Cancer Epidemiol Biomark Prev. 2009;18(5):1501–6.CrossRef Strom SS, Yamamura Y, Kantarijian HM, Cortes-Franco JE. Obesity, weight gain, and risk of chronic myeloid leukemia. Cancer Epidemiol Biomark Prev. 2009;18(5):1501–6.CrossRef
86.
go back to reference Thompson PA, Kantarjian HM. Cortes JE Diagnosis and treatment of chronic myeloid leukemia in 2015. Mayo Clin Proc. 2015;10:1440–54.CrossRef Thompson PA, Kantarjian HM. Cortes JE Diagnosis and treatment of chronic myeloid leukemia in 2015. Mayo Clin Proc. 2015;10:1440–54.CrossRef
87.
go back to reference Kujawski LA, Talpaz M. The role of interferon-alpha in the treatment of chronic myeloid leukemia. Cytokine Growth Factor Rev. 2007;18(5–6):459–71.PubMedCrossRef Kujawski LA, Talpaz M. The role of interferon-alpha in the treatment of chronic myeloid leukemia. Cytokine Growth Factor Rev. 2007;18(5–6):459–71.PubMedCrossRef
88.
go back to reference Rosshandler Y, Shen AQ, Cortes J, Khoury HJ. Omacetaxine mepesuccinate for chronic myeloid leukemia. Expert Rev Hematol. 2016;9(5):419–24.PubMedCrossRef Rosshandler Y, Shen AQ, Cortes J, Khoury HJ. Omacetaxine mepesuccinate for chronic myeloid leukemia. Expert Rev Hematol. 2016;9(5):419–24.PubMedCrossRef
89.
go back to reference Cortes J, Lipton JH, Rea D, Digumarti R, Chuah C, Nanda N, Benichou A-C, Craig AR, Michallet M, Nicolini FE. Phase 2 study of subcutaneous omacetaxine mepesuccinate after TKI failure in patients with chronic-phase CML with T315I mutation. Blood J Am Soc Hematol. 2012;120(13):2573–80. Cortes J, Lipton JH, Rea D, Digumarti R, Chuah C, Nanda N, Benichou A-C, Craig AR, Michallet M, Nicolini FE. Phase 2 study of subcutaneous omacetaxine mepesuccinate after TKI failure in patients with chronic-phase CML with T315I mutation. Blood J Am Soc Hematol. 2012;120(13):2573–80.
90.
go back to reference Rossari F, Minutolo F, Orciuolo E. Past, present, and future of Bcr-Abl inhibitors: from chemical development to clinical efficacy. J Hematol Oncol. 2018;11(1):1–14.CrossRef Rossari F, Minutolo F, Orciuolo E. Past, present, and future of Bcr-Abl inhibitors: from chemical development to clinical efficacy. J Hematol Oncol. 2018;11(1):1–14.CrossRef
91.
go back to reference Cortes J, Digumarti R, Parikh P, Wetzler M, Lipton J, Hochhaus A, Craig A, Benichou AC, Nicolini F, Kantarjian H. Phase 2 study of subcutaneous omacetaxine mepesuccinate for chronic-phase chronic myeloid leukemia patients resistant to or intolerant of tyrosine kinase inhibitors. Am J Hematol. 2013;88(5):350–4.PubMedPubMedCentralCrossRef Cortes J, Digumarti R, Parikh P, Wetzler M, Lipton J, Hochhaus A, Craig A, Benichou AC, Nicolini F, Kantarjian H. Phase 2 study of subcutaneous omacetaxine mepesuccinate for chronic-phase chronic myeloid leukemia patients resistant to or intolerant of tyrosine kinase inhibitors. Am J Hematol. 2013;88(5):350–4.PubMedPubMedCentralCrossRef
92.
go back to reference Granatowicz A, Piatek CI, Moschiano E, El-Hemaidi I, Armitage JD, Akhtari M. An overview and update of chronic myeloid leukemia for primary care physicians. Korean J Fam Med. 2015;36(5):197.PubMedPubMedCentralCrossRef Granatowicz A, Piatek CI, Moschiano E, El-Hemaidi I, Armitage JD, Akhtari M. An overview and update of chronic myeloid leukemia for primary care physicians. Korean J Fam Med. 2015;36(5):197.PubMedPubMedCentralCrossRef
93.
go back to reference Maiti A, Cortes J, Ferrajoli A, Estrov Z, Borthakur G, Garcia-Manero G, Jabbour E, Ravandi F, O’Brien S, Kantarjian H. Phase II trial of homoharringtonine with imatinib in chronic, accelerated, and blast phase chronic myeloid leukemia. Leuk Lymphoma. 2017;58(9):2240–2.PubMedCentralCrossRef Maiti A, Cortes J, Ferrajoli A, Estrov Z, Borthakur G, Garcia-Manero G, Jabbour E, Ravandi F, O’Brien S, Kantarjian H. Phase II trial of homoharringtonine with imatinib in chronic, accelerated, and blast phase chronic myeloid leukemia. Leuk Lymphoma. 2017;58(9):2240–2.PubMedCentralCrossRef
95.
go back to reference Visani G, Russo D, Ottaviani E, Tosi P, Damiani D, Michelutti A, Manfroi S, Baccarani M, Tura S. Effects of homoharringtonine alone and in combination with alpha interferon and cytosine arabinoside on ‘in vitro’growth and induction of apoptosis in chronic myeloid leukemia and normal hematopoietic progenitors. Leukemia. 1997;11(5):624–8.PubMedCrossRef Visani G, Russo D, Ottaviani E, Tosi P, Damiani D, Michelutti A, Manfroi S, Baccarani M, Tura S. Effects of homoharringtonine alone and in combination with alpha interferon and cytosine arabinoside on ‘in vitro’growth and induction of apoptosis in chronic myeloid leukemia and normal hematopoietic progenitors. Leukemia. 1997;11(5):624–8.PubMedCrossRef
96.
go back to reference Okabe S, Tauchi T, Tanaka Y, Katagiri S, Kitahara T, Ohyashiki K. Activity of omacetaxine mepesuccinate against ponatinib-resistant BCR-ABL-positive cells. Blood. 2013;122(17):3086–8.PubMedCrossRef Okabe S, Tauchi T, Tanaka Y, Katagiri S, Kitahara T, Ohyashiki K. Activity of omacetaxine mepesuccinate against ponatinib-resistant BCR-ABL-positive cells. Blood. 2013;122(17):3086–8.PubMedCrossRef
97.
go back to reference Chen Y, Hu Y, Michaels S, Segal D, Brown D, Li S. Inhibitory effects of omacetaxine on leukemic stem cells and BCR-ABL-induced chronic myeloid leukemia and acute lymphoblastic leukemia in mice. Leukemia. 2009;23(8):1446–54.PubMedPubMedCentralCrossRef Chen Y, Hu Y, Michaels S, Segal D, Brown D, Li S. Inhibitory effects of omacetaxine on leukemic stem cells and BCR-ABL-induced chronic myeloid leukemia and acute lymphoblastic leukemia in mice. Leukemia. 2009;23(8):1446–54.PubMedPubMedCentralCrossRef
98.
go back to reference Li Y-F, Liu X, Liu D-S, Din B-H, Zhu J-B. The effect of homoharringtonine in patients with chronic myeloid leukemia who have failed or responded suboptimally to imatinib therapy. Leuk Lymphoma. 2009;50(11):1889–91.PubMedCrossRef Li Y-F, Liu X, Liu D-S, Din B-H, Zhu J-B. The effect of homoharringtonine in patients with chronic myeloid leukemia who have failed or responded suboptimally to imatinib therapy. Leuk Lymphoma. 2009;50(11):1889–91.PubMedCrossRef
99.
go back to reference Chen R, Gandhi V, Plunkett W. A sequential blockade strategy for the design of combination therapies to overcome oncogene addiction in chronic myelogenous leukemia. Can Res. 2006;66(22):10959–66.CrossRef Chen R, Gandhi V, Plunkett W. A sequential blockade strategy for the design of combination therapies to overcome oncogene addiction in chronic myelogenous leukemia. Can Res. 2006;66(22):10959–66.CrossRef
100.
go back to reference Nguyen T, Parker R, Zhang Y, Hawkins E, Kmieciak M, Craun W, Grant S. Homoharringtonine interacts synergistically with bortezomib in NHL cells through MCL-1 and NOXA-dependent mechanisms. BMC Cancer. 2018;18(1):1–11.CrossRef Nguyen T, Parker R, Zhang Y, Hawkins E, Kmieciak M, Craun W, Grant S. Homoharringtonine interacts synergistically with bortezomib in NHL cells through MCL-1 and NOXA-dependent mechanisms. BMC Cancer. 2018;18(1):1–11.CrossRef
101.
go back to reference Xie C, Tang A-P. Combined effect of Bortezomib and Homoharringtonine on K562 cells and their mechanisms. Zhongguo shi yan xue ye xue za zhi. 2018;26(2):395–400.PubMed Xie C, Tang A-P. Combined effect of Bortezomib and Homoharringtonine on K562 cells and their mechanisms. Zhongguo shi yan xue ye xue za zhi. 2018;26(2):395–400.PubMed
103.
go back to reference O’Brien S, Kantarjian H, Koller C, Feldman E, Beran M, Andreeff M, Giralt S, Cheson B, Keating M, Freireich E. Sequential homoharringtonine and interferon-α in the treatment of early chronic phase chronic myelogenous leukemia. Blood J Am Soc Hematol. 1999;93(12):4149–53. O’Brien S, Kantarjian H, Koller C, Feldman E, Beran M, Andreeff M, Giralt S, Cheson B, Keating M, Freireich E. Sequential homoharringtonine and interferon-α in the treatment of early chronic phase chronic myelogenous leukemia. Blood J Am Soc Hematol. 1999;93(12):4149–53.
104.
go back to reference O’Brien S, Talpaz M, Cortes J, Shan J, Giles FJ, Faderl S, Thomas D, Garcia-Manero G, Mallard S, Beth Rios M. Simultaneous homoharringtonine and interferon-α in the treatment of patients with chronic-phase chronic myelogenous leukemia. Cancer. 2002;94(7):2024–32.PubMedCrossRef O’Brien S, Talpaz M, Cortes J, Shan J, Giles FJ, Faderl S, Thomas D, Garcia-Manero G, Mallard S, Beth Rios M. Simultaneous homoharringtonine and interferon-α in the treatment of patients with chronic-phase chronic myelogenous leukemia. Cancer. 2002;94(7):2024–32.PubMedCrossRef
105.
go back to reference Kantarjian HM, Talpaz M, Smith TL, Cortes J, Giles FJ, Rios MB, Mallard S, Gajewski J, Murgo A, Cheson B. Homoharringtonine and low-dose cytarabine in the management of late chronic-phase chronic myelogenous leukemia. J Clin Oncol. 2000;18(20):3513–21.PubMedCrossRef Kantarjian HM, Talpaz M, Smith TL, Cortes J, Giles FJ, Rios MB, Mallard S, Gajewski J, Murgo A, Cheson B. Homoharringtonine and low-dose cytarabine in the management of late chronic-phase chronic myelogenous leukemia. J Clin Oncol. 2000;18(20):3513–21.PubMedCrossRef
106.
go back to reference Marin D, Kaeda JS, Andreasson C, Saunders SM, Bua M, Olavarria E, Goldman JM, Apperley JF. Phase I/II trial of adding semisynthetic homoharringtonine in chronic myeloid leukemia patients who have achieved partial or complete cytogenetic response on imatinib. Cancer. 2005;103(9):1850–5.PubMedCrossRef Marin D, Kaeda JS, Andreasson C, Saunders SM, Bua M, Olavarria E, Goldman JM, Apperley JF. Phase I/II trial of adding semisynthetic homoharringtonine in chronic myeloid leukemia patients who have achieved partial or complete cytogenetic response on imatinib. Cancer. 2005;103(9):1850–5.PubMedCrossRef
107.
go back to reference Quintás-Cardama A, Kantarjian H, Garcia-Manero G, O’Brien S, Faderl S, Estrov Z, Giles F, Murgo A, Ladie N, Verstovsek S. Phase I/II study of subcutaneous homoharringtonine in patients with chronic myeloid leukemia who have failed prior therapy. Cancer. 2007;109(2):248–55.PubMedCrossRef Quintás-Cardama A, Kantarjian H, Garcia-Manero G, O’Brien S, Faderl S, Estrov Z, Giles F, Murgo A, Ladie N, Verstovsek S. Phase I/II study of subcutaneous homoharringtonine in patients with chronic myeloid leukemia who have failed prior therapy. Cancer. 2007;109(2):248–55.PubMedCrossRef
108.
go back to reference O’Brien S, Giles F, Talpaz M, Cortes J, Rios MB, Shan J, Thomas D, Andreeff M, Kornblau S, Faderl S. Results of triple therapy with interferon-alpha, cytarabine, and homoharringtonine, and the impact of adding imatinib to the treatment sequence in patients with Philadelphia chromosome–positive chronic myelogenous leukemia in early chronic phase. Cancer Interdiscip Int J Am Cancer Soc. 2003;98(5):888–93. O’Brien S, Giles F, Talpaz M, Cortes J, Rios MB, Shan J, Thomas D, Andreeff M, Kornblau S, Faderl S. Results of triple therapy with interferon-alpha, cytarabine, and homoharringtonine, and the impact of adding imatinib to the treatment sequence in patients with Philadelphia chromosome–positive chronic myelogenous leukemia in early chronic phase. Cancer Interdiscip Int J Am Cancer Soc. 2003;98(5):888–93.
109.
go back to reference Chen R, Guo L, Chen Y, Jiang Y, Wierda WG, Plunkett W. Homoharringtonine reduced Mcl-1 expression and induced apoptosis in chronic lymphocytic leukemia. Blood J Am Soc Hematol. 2011;117(1):156–64. Chen R, Guo L, Chen Y, Jiang Y, Wierda WG, Plunkett W. Homoharringtonine reduced Mcl-1 expression and induced apoptosis in chronic lymphocytic leukemia. Blood J Am Soc Hematol. 2011;117(1):156–64.
110.
go back to reference Jin Y, Lu Z, Cao K, Zhu Y, Chen Q, Zhu F, Qian C, Pan J. The antitumor activity of homoharringtonine against human mast cells harboring the KIT D816V mutation. Mol Cancer Ther. 2010;9(1):211–23.PubMedCrossRef Jin Y, Lu Z, Cao K, Zhu Y, Chen Q, Zhu F, Qian C, Pan J. The antitumor activity of homoharringtonine against human mast cells harboring the KIT D816V mutation. Mol Cancer Ther. 2010;9(1):211–23.PubMedCrossRef
111.
112.
go back to reference Li Y, Zhu J, Ding B. Homoharringtonine is an effective therapy for patients with polycythemia vera or essential thrombocythemia who have failed or were intolerant to hydroxycarbamide or interferon-α therapy. Int J Clin Oncol. 2013;18(5):922–6.PubMedCrossRef Li Y, Zhu J, Ding B. Homoharringtonine is an effective therapy for patients with polycythemia vera or essential thrombocythemia who have failed or were intolerant to hydroxycarbamide or interferon-α therapy. Int J Clin Oncol. 2013;18(5):922–6.PubMedCrossRef
114.
go back to reference Urzì AG, Tropea E, Gattuso G, Spoto G, Marsala G, Calina D, Libra M, Falzone L. Ketogenic diet and breast cancer: recent findings and therapeutic approaches. Nutrients. 2023;15(20):4357.PubMedPubMedCentralCrossRef Urzì AG, Tropea E, Gattuso G, Spoto G, Marsala G, Calina D, Libra M, Falzone L. Ketogenic diet and breast cancer: recent findings and therapeutic approaches. Nutrients. 2023;15(20):4357.PubMedPubMedCentralCrossRef
115.
go back to reference Yakhni M, Briat A, El Guerrab A, Furtado L, Kwiatkowski F, Miot-Noirault E, Cachin F, Penault-Llorca F, Radosevic-Robin N. Homoharringtonine, an approved anti-leukemia drug, suppresses triple negative breast cancer growth through a rapid reduction of anti-apoptotic protein abundance. Am J Cancer Res. 2019;9(5):1043.PubMedPubMedCentral Yakhni M, Briat A, El Guerrab A, Furtado L, Kwiatkowski F, Miot-Noirault E, Cachin F, Penault-Llorca F, Radosevic-Robin N. Homoharringtonine, an approved anti-leukemia drug, suppresses triple negative breast cancer growth through a rapid reduction of anti-apoptotic protein abundance. Am J Cancer Res. 2019;9(5):1043.PubMedPubMedCentral
116.
go back to reference Chen P, Wen X, Wang B, Hou D, Zou H, Yuan Q, Yang H, Xie J, Huang H. PI3K/Akt inhibitor LY294002 potentiates homoharringtonine antimyeloma activity in myeloma cells adhered to stromal cells and in SCID mouse xenograft. Ann Hematol. 2018;97(5):865–75.PubMedCrossRef Chen P, Wen X, Wang B, Hou D, Zou H, Yuan Q, Yang H, Xie J, Huang H. PI3K/Akt inhibitor LY294002 potentiates homoharringtonine antimyeloma activity in myeloma cells adhered to stromal cells and in SCID mouse xenograft. Ann Hematol. 2018;97(5):865–75.PubMedCrossRef
117.
go back to reference Cao W, Liu Y, Zhang R, Zhang B, Wang T, Zhu X, Mei L, Chen H, Zhang H, Ming P. Homoharringtonine induces apoptosis and inhibits STAT3 via IL-6/JAK1/STAT3 signal pathway in Gefitinib-resistant lung cancer cells. Sci Rep. 2015;5(1):1–17.CrossRef Cao W, Liu Y, Zhang R, Zhang B, Wang T, Zhu X, Mei L, Chen H, Zhang H, Ming P. Homoharringtonine induces apoptosis and inhibits STAT3 via IL-6/JAK1/STAT3 signal pathway in Gefitinib-resistant lung cancer cells. Sci Rep. 2015;5(1):1–17.CrossRef
118.
go back to reference Weng T-Y, Wu HF, Li C-Y, Hung Y-H, Chang Y-W, Chen Y-L, Hsu H-P, Chen Y-H, Wang C-Y, Chang J-Y. Homoharringtonine induced immune alteration for an efficient anti-tumor response in mouse models of non-small cell lung adenocarcinoma expressing Kras mutation. Sci Rep. 2018;8(1):1–11.CrossRef Weng T-Y, Wu HF, Li C-Y, Hung Y-H, Chang Y-W, Chen Y-L, Hsu H-P, Chen Y-H, Wang C-Y, Chang J-Y. Homoharringtonine induced immune alteration for an efficient anti-tumor response in mouse models of non-small cell lung adenocarcinoma expressing Kras mutation. Sci Rep. 2018;8(1):1–11.CrossRef
119.
go back to reference Wilkoff LJ, Dulmadge EA, Vasanthakumar G, Donahue JP. Etoposide-resistant human colon and lung adenocarcinoma cell lines exhibit sensitivity to homoharringtonine. Cancer Chemother Pharmacol. 1993;33(2):149–53.PubMedCrossRef Wilkoff LJ, Dulmadge EA, Vasanthakumar G, Donahue JP. Etoposide-resistant human colon and lung adenocarcinoma cell lines exhibit sensitivity to homoharringtonine. Cancer Chemother Pharmacol. 1993;33(2):149–53.PubMedCrossRef
120.
go back to reference Wang H, Wang R, Huang D, Li S, Gao B, Kang Z, Tang B, Xie J, Yan F, Liang R. Homoharringtonine exerts anti-tumor effects in hepatocellular carcinoma through activation of the hippo pathway. Front Pharmacol. 2021;12:592071.PubMedPubMedCentralCrossRef Wang H, Wang R, Huang D, Li S, Gao B, Kang Z, Tang B, Xie J, Yan F, Liang R. Homoharringtonine exerts anti-tumor effects in hepatocellular carcinoma through activation of the hippo pathway. Front Pharmacol. 2021;12:592071.PubMedPubMedCentralCrossRef
121.
go back to reference Zhu M, Gong Z, Wu Q, Su Q, Yang T, Yu R, Xu R, Zhang Y. Homoharringtonine suppresses tumor proliferation and migration by regulating EphB4-mediated β-catenin loss in hepatocellular carcinoma. Cell Death Dis. 2020;11(8):1–13.CrossRef Zhu M, Gong Z, Wu Q, Su Q, Yang T, Yu R, Xu R, Zhang Y. Homoharringtonine suppresses tumor proliferation and migration by regulating EphB4-mediated β-catenin loss in hepatocellular carcinoma. Cell Death Dis. 2020;11(8):1–13.CrossRef
122.
go back to reference Yang Y, Yu Q, Hu L, Dai B, Qi R, Chang Y, Zhang Q, Zhang Z, Li Y, Zhang X. Enantioselective semisynthesis of novel cephalotaxine esters with potent antineoplastic activities against leukemia. Eur J Med Chem. 2022;244:114731.PubMedCrossRef Yang Y, Yu Q, Hu L, Dai B, Qi R, Chang Y, Zhang Q, Zhang Z, Li Y, Zhang X. Enantioselective semisynthesis of novel cephalotaxine esters with potent antineoplastic activities against leukemia. Eur J Med Chem. 2022;244:114731.PubMedCrossRef
123.
go back to reference Shi X, Zhu M, Gong Z, Yang T, Yu R, Wang J, Zhang Y. Homoharringtonine suppresses LoVo cell growth by inhibiting EphB4 and the PI3K/AKT and MAPK/EKR1/2 signaling pathways. Food Chem Toxicol. 2020;136:110960.PubMedCrossRef Shi X, Zhu M, Gong Z, Yang T, Yu R, Wang J, Zhang Y. Homoharringtonine suppresses LoVo cell growth by inhibiting EphB4 and the PI3K/AKT and MAPK/EKR1/2 signaling pathways. Food Chem Toxicol. 2020;136:110960.PubMedCrossRef
124.
go back to reference Qu M, Li J, Yuan L. Uncovering the action mechanism of homoharringtonine against colorectal cancer by using network pharmacology and experimental evaluation. Bioengineered. 2021;12(2):12940–53.PubMedPubMedCentralCrossRef Qu M, Li J, Yuan L. Uncovering the action mechanism of homoharringtonine against colorectal cancer by using network pharmacology and experimental evaluation. Bioengineered. 2021;12(2):12940–53.PubMedPubMedCentralCrossRef
125.
go back to reference Park M, Kwon HJ, Kim SH. Homoharringtonine induces apoptosis in human colorectal carcinoma HCT116 cells via downregulation of Wnt/β-catenin signaling cascade. Bull Korean Chem Soc. 2019;40(2):196–9.CrossRef Park M, Kwon HJ, Kim SH. Homoharringtonine induces apoptosis in human colorectal carcinoma HCT116 cells via downregulation of Wnt/β-catenin signaling cascade. Bull Korean Chem Soc. 2019;40(2):196–9.CrossRef
126.
go back to reference Beranova L, Pombinho AR, Spegarova J, Koc M, Klanova M, Molinsky J, Klener P, Bartunek P, Andera L. The plant alkaloid and anti-leukemia drug homoharringtonine sensitizes resistant human colorectal carcinoma cells to TRAIL-induced apoptosis via multiple mechanisms. Apoptosis. 2013;18(6):739–50.PubMedCrossRef Beranova L, Pombinho AR, Spegarova J, Koc M, Klanova M, Molinsky J, Klener P, Bartunek P, Andera L. The plant alkaloid and anti-leukemia drug homoharringtonine sensitizes resistant human colorectal carcinoma cells to TRAIL-induced apoptosis via multiple mechanisms. Apoptosis. 2013;18(6):739–50.PubMedCrossRef
127.
go back to reference Wu D, Jin Y, Xing Y, Abate MD, Abbasian M, Abbasi-Kangevari M, Abbasi-Kangevari Z, Abd-Allah F, Abdelmasseh M, Abdollahifar MA, Abdulah DM. Global, regional, and national incidence of six major immune-mediated inflammatory diseases: findings from the global burden of disease study 2019. EClinicalMedicine. 2023;64:102193. https://doi.org/10.1016/j.eclinm.2023.102193.CrossRef Wu D, Jin Y, Xing Y, Abate MD, Abbasian M, Abbasi-Kangevari M, Abbasi-Kangevari Z, Abd-Allah F, Abdelmasseh M, Abdollahifar MA, Abdulah DM. Global, regional, and national incidence of six major immune-mediated inflammatory diseases: findings from the global burden of disease study 2019. EClinicalMedicine. 2023;64:102193. https://​doi.​org/​10.​1016/​j.​eclinm.​2023.​102193.CrossRef
128.
go back to reference Kumari R, Negi M, Thakur P, Mahajan H, Raina K, Sharma R, Singh R, Anand V, Ming LC, Goh KW, Calina D, Sharifi-Rad J, Chaudhary A. Saussurea costus (Falc.) Lipsch.: a comprehensive review of its pharmacology, phytochemicals, ethnobotanical uses, and therapeutic potential. Naunyn Schmiedebergs Arch Pharmacol. 2023. https://doi.org/10.1007/s00210-023-02694-0.CrossRefPubMed Kumari R, Negi M, Thakur P, Mahajan H, Raina K, Sharma R, Singh R, Anand V, Ming LC, Goh KW, Calina D, Sharifi-Rad J, Chaudhary A. Saussurea costus (Falc.) Lipsch.: a comprehensive review of its pharmacology, phytochemicals, ethnobotanical uses, and therapeutic potential. Naunyn Schmiedebergs Arch Pharmacol. 2023. https://​doi.​org/​10.​1007/​s00210-023-02694-0.CrossRefPubMed
129.
go back to reference Yuan G, Wahlqvist ML, He G, Yang M, Li D. Natural products and anti-inflammatory activity. Asia Pac J Clin Nutr. 2006;15(2):143–52.PubMed Yuan G, Wahlqvist ML, He G, Yang M, Li D. Natural products and anti-inflammatory activity. Asia Pac J Clin Nutr. 2006;15(2):143–52.PubMed
130.
go back to reference Tagboto S, Townson S. Antiparasitic properties of medicinal plants and other naturally occurring products. Amsterdam: Elsevier; 2001.CrossRef Tagboto S, Townson S. Antiparasitic properties of medicinal plants and other naturally occurring products. Amsterdam: Elsevier; 2001.CrossRef
131.
go back to reference Krstin S, Mohamed T, Wang X, Wink M. How do the alkaloids emetine and homoharringtonine kill trypanosomes? An insight into their molecular modes of action. Phytomedicine. 2016;23(14):1771–7.PubMedCrossRef Krstin S, Mohamed T, Wang X, Wink M. How do the alkaloids emetine and homoharringtonine kill trypanosomes? An insight into their molecular modes of action. Phytomedicine. 2016;23(14):1771–7.PubMedCrossRef
132.
go back to reference Anand R, Gill K, Mahdi A. Therapeutics of Alzheimer’s disease: past, present and future. Neuropharmacology. 2014;76(Pt a):27–50.PubMedCrossRef Anand R, Gill K, Mahdi A. Therapeutics of Alzheimer’s disease: past, present and future. Neuropharmacology. 2014;76(Pt a):27–50.PubMedCrossRef
133.
go back to reference Essa MM, Vijayan RK, Castellano-Gonzalez G, Memon MA, Braidy N, Guillemin GJ. Neuroprotective effect of natural products against Alzheimer’s disease. Neurochem Res. 2012;37(9):1829–42.PubMedCrossRef Essa MM, Vijayan RK, Castellano-Gonzalez G, Memon MA, Braidy N, Guillemin GJ. Neuroprotective effect of natural products against Alzheimer’s disease. Neurochem Res. 2012;37(9):1829–42.PubMedCrossRef
134.
go back to reference Shal B, Ding W, Ali H, Kim YS, Khan S. Anti-neuroinflammatory potential of natural products in attenuation of Alzheimer’s disease. Front Pharmacol. 2018;9:548.PubMedPubMedCentralCrossRef Shal B, Ding W, Ali H, Kim YS, Khan S. Anti-neuroinflammatory potential of natural products in attenuation of Alzheimer’s disease. Front Pharmacol. 2018;9:548.PubMedPubMedCentralCrossRef
135.
go back to reference Korolev IO. Alzheimer’s disease: a clinical and basic science review. Med Stud Res J. 2014;4(1):24–33. Korolev IO. Alzheimer’s disease: a clinical and basic science review. Med Stud Res J. 2014;4(1):24–33.
136.
go back to reference Nettis E, Colanardi M, Ferrannini A, Tursi A. Antihistamines as important tools for regulating inflammation. Curr Med Chem Anti-Inflamm Anti-Allergy Agents. 2005;4(1):81–9.CrossRef Nettis E, Colanardi M, Ferrannini A, Tursi A. Antihistamines as important tools for regulating inflammation. Curr Med Chem Anti-Inflamm Anti-Allergy Agents. 2005;4(1):81–9.CrossRef
137.
go back to reference Brito F, Lima L, Ramos M, Nakamura M, Cavalher-Machado S, Siani A, Henriques M, Sampaio A. Pharmacological study of anti-allergic activity of Syzygium cumini (L.) Skeels. Braz J Med Biol Res. 2007;40:105–15.PubMedCrossRef Brito F, Lima L, Ramos M, Nakamura M, Cavalher-Machado S, Siani A, Henriques M, Sampaio A. Pharmacological study of anti-allergic activity of Syzygium cumini (L.) Skeels. Braz J Med Biol Res. 2007;40:105–15.PubMedCrossRef
138.
go back to reference Bakhotmah BA, Alzahrani HA. Self-reported use of complementary and alternative medicine (CAM) products in topical treatment of diabetic foot disorders by diabetic patients in Jeddah, Western Saudi Arabia. BMC Res Notes. 2010;3(1):1–8.CrossRef Bakhotmah BA, Alzahrani HA. Self-reported use of complementary and alternative medicine (CAM) products in topical treatment of diabetic foot disorders by diabetic patients in Jeddah, Western Saudi Arabia. BMC Res Notes. 2010;3(1):1–8.CrossRef
139.
go back to reference Harvey A. Strategies for discovering drugs from previously unexplored natural products. Drug Discov Today. 2000;5(7):294–300.PubMedCrossRef Harvey A. Strategies for discovering drugs from previously unexplored natural products. Drug Discov Today. 2000;5(7):294–300.PubMedCrossRef
140.
go back to reference Bellik Y, Hammoudi S, Abdellah F, Iguer-Ouada M, Boukraa L. Phytochemicals to prevent inflammation and allergy. Recent Pat Inflamm Allergy Drug Discov. 2012;6:147–58.PubMedCrossRef Bellik Y, Hammoudi S, Abdellah F, Iguer-Ouada M, Boukraa L. Phytochemicals to prevent inflammation and allergy. Recent Pat Inflamm Allergy Drug Discov. 2012;6:147–58.PubMedCrossRef
141.
go back to reference Kim M, Jo H, Kwon Y, Kim Y, Jung HS, Jeoung D. Homoharringtonine inhibits allergic inflammations by regulating NF-κB-miR-183-5p-BTG1 axis. Front Pharmacol. 2020;11:1032.PubMedPubMedCentralCrossRef Kim M, Jo H, Kwon Y, Kim Y, Jung HS, Jeoung D. Homoharringtonine inhibits allergic inflammations by regulating NF-κB-miR-183-5p-BTG1 axis. Front Pharmacol. 2020;11:1032.PubMedPubMedCentralCrossRef
142.
go back to reference Ong KL, Stafford LK, McLaughlin SA, Boyko EJ, Vollset SE, Smith AE, Dalton BE, Duprey J, Cruz JA, Hagins H, Lindstedt PA. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021. Lancet. 2023;402(10397):203–34. https://doi.org/10.1016/s0140-6736(23)01301-6.CrossRef Ong KL, Stafford LK, McLaughlin SA, Boyko EJ, Vollset SE, Smith AE, Dalton BE, Duprey J, Cruz JA, Hagins H, Lindstedt PA. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021. Lancet. 2023;402(10397):203–34. https://​doi.​org/​10.​1016/​s0140-6736(23)01301-6.CrossRef
143.
go back to reference Ye Y, Perez-Polo JR, Aguilar D, Birnbaum Y. The potential effects of anti-diabetic medications on myocardial ischemia–reperfusion injury. Basic Res Cardiol. 2011;106(6):925–52.PubMedCrossRef Ye Y, Perez-Polo JR, Aguilar D, Birnbaum Y. The potential effects of anti-diabetic medications on myocardial ischemia–reperfusion injury. Basic Res Cardiol. 2011;106(6):925–52.PubMedCrossRef
144.
go back to reference Severino P, D'Amato A, Netti L, et al. Myocardial Ischemia and Diabetes Mellitus: Role of Oxidative Stress in the Connection between Cardiac Metabolism and Coronary Blood Flow. J Diabetes Res. 2019:9489826.https://doi.org/10.1155/2019/9489826. Accessed 4 Apr 2019. Severino P, D'Amato A, Netti L, et al. Myocardial Ischemia and Diabetes Mellitus: Role of Oxidative Stress in the Connection between Cardiac Metabolism and Coronary Blood Flow. J Diabetes Res. 2019:9489826.https://​doi.​org/​10.​1155/​2019/​9489826. Accessed 4 Apr 2019.
145.
go back to reference Zhao S, Xia Y, Zhang F, Xiong Z, Li Y, Yan W, Chen X, Wang W, Wang H, Gao E. Nucleostemin dysregulation contributes to ischemic vulnerability of diabetic hearts: role of ribosomal biogenesis. J Mol Cell Cardiol. 2017;108:106–13.PubMedCrossRef Zhao S, Xia Y, Zhang F, Xiong Z, Li Y, Yan W, Chen X, Wang W, Wang H, Gao E. Nucleostemin dysregulation contributes to ischemic vulnerability of diabetic hearts: role of ribosomal biogenesis. J Mol Cell Cardiol. 2017;108:106–13.PubMedCrossRef
146.
go back to reference Locarnini SA, Yuen L. Molecular genesis of drug-resistant and vaccine-escape HBV mutants. Antiviral Ther. 2010;15(3 Pt B):451–61.CrossRef Locarnini SA, Yuen L. Molecular genesis of drug-resistant and vaccine-escape HBV mutants. Antiviral Ther. 2010;15(3 Pt B):451–61.CrossRef
148.
go back to reference Kim J-E, Song Y-J. Anti-varicella-zoster virus activity of cephalotaxine esters in vitro. J Microbiol. 2019;57(1):74–9.PubMedCrossRef Kim J-E, Song Y-J. Anti-varicella-zoster virus activity of cephalotaxine esters in vitro. J Microbiol. 2019;57(1):74–9.PubMedCrossRef
149.
go back to reference Romero MR, Serrano MA, Efferth T, Alvarez M, Marin JJ. Effect of cantharidin, cephalotaxine and homoharringtonine on” in vitro” models of Hepatitis B Virus (HBV) and Bovine Viral Diarrhoea Virus (BVDV) replication. Planta Med. 2007;73(06):552–8.PubMedCrossRef Romero MR, Serrano MA, Efferth T, Alvarez M, Marin JJ. Effect of cantharidin, cephalotaxine and homoharringtonine on” in vitro” models of Hepatitis B Virus (HBV) and Bovine Viral Diarrhoea Virus (BVDV) replication. Planta Med. 2007;73(06):552–8.PubMedCrossRef
150.
go back to reference Andersen PI, Krpina K, Ianevski A, Shtaida N, Jo E, Yang J, Koit S, Tenson T, Hukkanen V, Anthonsen MW. Novel antiviral activities of obatoclax, emetine, niclosamide, brequinar, and homoharringtonine. Viruses. 2019;11(10):964.PubMedPubMedCentralCrossRef Andersen PI, Krpina K, Ianevski A, Shtaida N, Jo E, Yang J, Koit S, Tenson T, Hukkanen V, Anthonsen MW. Novel antiviral activities of obatoclax, emetine, niclosamide, brequinar, and homoharringtonine. Viruses. 2019;11(10):964.PubMedPubMedCentralCrossRef
151.
go back to reference Li C-C, Wang X-J. Three kinds of treatment with Homoharringtonine, Hydroxychloroquine or shRNA and their combination against coronavirus PEDV in vitro. Virol J. 2020;17(1):1–11.CrossRef Li C-C, Wang X-J. Three kinds of treatment with Homoharringtonine, Hydroxychloroquine or shRNA and their combination against coronavirus PEDV in vitro. Virol J. 2020;17(1):1–11.CrossRef
152.
go back to reference Zhang J-W, Wang H, Liu J, Ma L, Hua R-H, Bu Z-G. Generation of a stable GFP-reporter Zika virus system for high-throughput screening of Zika virus inhibitors. Virol Sin. 2021;36(3):476–89.PubMedCrossRef Zhang J-W, Wang H, Liu J, Ma L, Hua R-H, Bu Z-G. Generation of a stable GFP-reporter Zika virus system for high-throughput screening of Zika virus inhibitors. Virol Sin. 2021;36(3):476–89.PubMedCrossRef
153.
go back to reference Alvandi F, Kwitkowski VE, Ko C-W, Rothmann MD, Ricci S, Saber H, Ghosh D, Brown J, Pfeiler E, Chikhale E. US Food and Drug Administration approval summary: omacetaxine mepesuccinate as treatment for chronic myeloid leukemia. Oncologist. 2014;19(1):94–9.PubMedCrossRef Alvandi F, Kwitkowski VE, Ko C-W, Rothmann MD, Ricci S, Saber H, Ghosh D, Brown J, Pfeiler E, Chikhale E. US Food and Drug Administration approval summary: omacetaxine mepesuccinate as treatment for chronic myeloid leukemia. Oncologist. 2014;19(1):94–9.PubMedCrossRef
155.
go back to reference Choy K, Wong AY-L, Kaewpreedee P, Sia SF, Chen D, Hui KPY, Chu DKW, Chan MCW, Cheung PP-H, Huang X, Peiris M, Yen HL. Remdesivir, lopinavir, emetine, and homoharringtonine inhibit SARS-CoV-2 replication in vitro. Antiviral Res. 2020;178:104786.PubMedPubMedCentralCrossRef Choy K, Wong AY-L, Kaewpreedee P, Sia SF, Chen D, Hui KPY, Chu DKW, Chan MCW, Cheung PP-H, Huang X, Peiris M, Yen HL. Remdesivir, lopinavir, emetine, and homoharringtonine inhibit SARS-CoV-2 replication in vitro. Antiviral Res. 2020;178:104786.PubMedPubMedCentralCrossRef
156.
go back to reference Boozari M, Hosseinzadeh H. Natural products for COVID-19 prevention and treatment regarding to previous coronavirus infections and novel studies. Phytother Res. 2021;35(2):864–76.PubMedCrossRef Boozari M, Hosseinzadeh H. Natural products for COVID-19 prevention and treatment regarding to previous coronavirus infections and novel studies. Phytother Res. 2021;35(2):864–76.PubMedCrossRef
Metadata
Title
Homoharringtonine: updated insights into its efficacy in hematological malignancies, diverse cancers and other biomedical applications
Authors
Somanjana Khatua
Sudeshna Nandi
Anish Nag
Surjit Sen
Nilanjan Chakraborty
Arghya Naskar
Eda Sönmez Gürer
Daniela Calina
Krishnendu Acharya
Javad Sharifi-Rad
Publication date
01-12-2024
Publisher
BioMed Central
Published in
European Journal of Medical Research / Issue 1/2024
Electronic ISSN: 2047-783X
DOI
https://doi.org/10.1186/s40001-024-01856-x

Other articles of this Issue 1/2024

European Journal of Medical Research 1/2024 Go to the issue