Skip to main content
Top
Published in: Journal of Hematology & Oncology 1/2019

Open Access 01-12-2019 | Acute Myeloid Leukemia | Review

Recent drug approvals for acute myeloid leukemia

Authors: Catherine Lai, Kimberley Doucette, Kelly Norsworthy

Published in: Journal of Hematology & Oncology | Issue 1/2019

Login to get access

Abstract

Acute myeloid leukemia (AML) is the most common form of acute leukemia in adults, with an incidence that increases with age, and a generally poor prognosis. The disease is clinically and genetically heterogeneous, and recent advances have improved our understanding of the cytogenetic abnormalities and molecular mutations, aiding in prognostication and risk stratification. Until recently, however, therapeutic options were mostly limited to cytotoxic chemotherapy. Since 2017, there has been an explosion of newly approved treatment options both nationally and internationally, with the majority of new drugs targeting specific gene mutations and/or pivotal cell survival pathways. In this review article, we will discuss these new agents approved for the treatment of AML within the last 2 years, and will outline the mechanistic features and clinical trials that led to their approvals.
Literature
1.
go back to reference Surveillance, E., and End Results (SEER) Program (www.seer.cancer.gov) SEER*Stat Database: incidence—SEER 9 Regs Research Data, Nov 2017 Sub (1973–2015) <Katrina/Rita Population Adjustment> − Linked To County Attributes - Total U.S., 1969–2016 Counties, National Cancer Institute, DCCPS, Surveillance Research Program, released April 2018, based on the November 2017 submission. Surveillance, E., and End Results (SEER) Program (www.​seer.​cancer.​gov) SEER*Stat Database: incidence—SEER 9 Regs Research Data, Nov 2017 Sub (1973–2015) <Katrina/Rita Population Adjustment> − Linked To County Attributes - Total U.S., 1969–2016 Counties, National Cancer Institute, DCCPS, Surveillance Research Program, released April 2018, based on the November 2017 submission.
2.
go back to reference Dohner H, Weisdorf DJ, Bloomfield CD. Acute myeloid leukemia. N Engl J Med. 2015;373(12):1136–52.CrossRef Dohner H, Weisdorf DJ, Bloomfield CD. Acute myeloid leukemia. N Engl J Med. 2015;373(12):1136–52.CrossRef
3.
go back to reference Deschler B, et al. Treatment decision-making for older patients with high-risk myelodysplastic syndrome or acute myeloid leukemia: problems and approaches. Haematologica. 2006;91(11):1513–22.PubMed Deschler B, et al. Treatment decision-making for older patients with high-risk myelodysplastic syndrome or acute myeloid leukemia: problems and approaches. Haematologica. 2006;91(11):1513–22.PubMed
4.
go back to reference Burnett A, Wetzler M, Lowenberg B. Therapeutic advances in acute myeloid leukemia. J Clin Oncol. 2011;29(5):487–94.CrossRef Burnett A, Wetzler M, Lowenberg B. Therapeutic advances in acute myeloid leukemia. J Clin Oncol. 2011;29(5):487–94.CrossRef
5.
go back to reference Lichtman MA. A historical perspective on the development of the cytarabine (7days) and daunorubicin (3days) treatment regimen for acute myelogenous leukemia: 2013 the 40th anniversary of 7+3. Blood Cells Mol Dis. 2013;50(2):119–30.CrossRef Lichtman MA. A historical perspective on the development of the cytarabine (7days) and daunorubicin (3days) treatment regimen for acute myelogenous leukemia: 2013 the 40th anniversary of 7+3. Blood Cells Mol Dis. 2013;50(2):119–30.CrossRef
6.
go back to reference Lowenberg B, et al. Cytarabine dose for acute myeloid leukemia. N Engl J Med. 2011;364(11):1027–36.CrossRef Lowenberg B, et al. Cytarabine dose for acute myeloid leukemia. N Engl J Med. 2011;364(11):1027–36.CrossRef
7.
go back to reference Burnett AK, et al. A randomized comparison of daunorubicin 90 mg/m2 vs 60 mg/m2 in AML induction: results from the UK NCRI AML17 trial in 1206 patients. Blood. 2015;125(25):3878–85.CrossRef Burnett AK, et al. A randomized comparison of daunorubicin 90 mg/m2 vs 60 mg/m2 in AML induction: results from the UK NCRI AML17 trial in 1206 patients. Blood. 2015;125(25):3878–85.CrossRef
8.
go back to reference Karp JE, et al. In vivo cell growth and pharmacologic determinants of clinical response in acute myelogenous leukemia. Blood. 1989;73(1):24–30.PubMed Karp JE, et al. In vivo cell growth and pharmacologic determinants of clinical response in acute myelogenous leukemia. Blood. 1989;73(1):24–30.PubMed
9.
go back to reference Norsworthy KJ, et al. Timed sequential therapy for acute myelogenous leukemia: results of a retrospective study of 301 patients and review of the literature. Leuk Res. 2017;61:25–32.CrossRef Norsworthy KJ, et al. Timed sequential therapy for acute myelogenous leukemia: results of a retrospective study of 301 patients and review of the literature. Leuk Res. 2017;61:25–32.CrossRef
10.
go back to reference Geller RB, et al. A two-step timed sequential treatment for acute myelocytic leukemia. Blood. 1989;74(5):1499–506.PubMed Geller RB, et al. A two-step timed sequential treatment for acute myelocytic leukemia. Blood. 1989;74(5):1499–506.PubMed
11.
go back to reference Herzig RH, et al. High-dose cytosine arabinoside therapy for refractory leukemia. Blood. 1983;62(2):361–9.PubMed Herzig RH, et al. High-dose cytosine arabinoside therapy for refractory leukemia. Blood. 1983;62(2):361–9.PubMed
12.
go back to reference Jen EY, et al. FDA approval: Gemtuzumab Ozogamicin for the treatment of adults with newly diagnosed CD33-positive acute myeloid leukemia. Clin Cancer Res. 2018;24(14):3242–6.CrossRef Jen EY, et al. FDA approval: Gemtuzumab Ozogamicin for the treatment of adults with newly diagnosed CD33-positive acute myeloid leukemia. Clin Cancer Res. 2018;24(14):3242–6.CrossRef
13.
go back to reference Kindler T, Lipka DB, Fischer T. FLT3 as a therapeutic target in AML: still challenging after all these years. Blood. 2010;116(24):5089–102.CrossRef Kindler T, Lipka DB, Fischer T. FLT3 as a therapeutic target in AML: still challenging after all these years. Blood. 2010;116(24):5089–102.CrossRef
14.
go back to reference Kelly LM, et al. FLT3 internal tandem duplication mutations associated with human acute myeloid leukemias induce myeloproliferative disease in a murine bone marrow transplant model. Blood. 2002;99(1):310–8.CrossRef Kelly LM, et al. FLT3 internal tandem duplication mutations associated with human acute myeloid leukemias induce myeloproliferative disease in a murine bone marrow transplant model. Blood. 2002;99(1):310–8.CrossRef
15.
go back to reference Kottaridis PD, et al. The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials. Blood. 2001;98(6):1752–9.CrossRef Kottaridis PD, et al. The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials. Blood. 2001;98(6):1752–9.CrossRef
16.
go back to reference Whitman SP, et al. Absence of the wild-type allele predicts poor prognosis in adult de novo acute myeloid leukemia with normal cytogenetics and the internal tandem duplication of FLT3: a cancer and leukemia group B study. Cancer Res. 2001;61(19):7233–9.PubMed Whitman SP, et al. Absence of the wild-type allele predicts poor prognosis in adult de novo acute myeloid leukemia with normal cytogenetics and the internal tandem duplication of FLT3: a cancer and leukemia group B study. Cancer Res. 2001;61(19):7233–9.PubMed
17.
go back to reference Thiede C, et al. Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis. Blood. 2002;99(12):4326–35.CrossRef Thiede C, et al. Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis. Blood. 2002;99(12):4326–35.CrossRef
18.
go back to reference Stone RM, et al. Midostaurin plus chemotherapy for acute myeloid leukemia with a FLT3 mutation. N Engl J Med. 2017;377(5):454–64.CrossRef Stone RM, et al. Midostaurin plus chemotherapy for acute myeloid leukemia with a FLT3 mutation. N Engl J Med. 2017;377(5):454–64.CrossRef
19.
go back to reference Stone RM, et al. Patients with acute myeloid leukemia and an activating mutation in FLT3 respond to a small-molecule FLT3 tyrosine kinase inhibitor, PKC412. Blood. 2005;105(1):54–60.CrossRef Stone RM, et al. Patients with acute myeloid leukemia and an activating mutation in FLT3 respond to a small-molecule FLT3 tyrosine kinase inhibitor, PKC412. Blood. 2005;105(1):54–60.CrossRef
20.
go back to reference Knapper S, et al. A phase 2 trial of the FLT3 inhibitor lestaurtinib (CEP701) as first-line treatment for older patients with acute myeloid leukemia not considered fit for intensive chemotherapy. Blood. 2006;108(10):3262–70.CrossRef Knapper S, et al. A phase 2 trial of the FLT3 inhibitor lestaurtinib (CEP701) as first-line treatment for older patients with acute myeloid leukemia not considered fit for intensive chemotherapy. Blood. 2006;108(10):3262–70.CrossRef
21.
go back to reference Fischer T, et al. Phase IIB trial of oral Midostaurin (PKC412), the FMS-like tyrosine kinase 3 receptor (FLT3) and multi-targeted kinase inhibitor, in patients with acute myeloid leukemia and high-risk myelodysplastic syndrome with either wild-type or mutated FLT3. J Clin Oncol. 2010;28(28):4339–45.CrossRef Fischer T, et al. Phase IIB trial of oral Midostaurin (PKC412), the FMS-like tyrosine kinase 3 receptor (FLT3) and multi-targeted kinase inhibitor, in patients with acute myeloid leukemia and high-risk myelodysplastic syndrome with either wild-type or mutated FLT3. J Clin Oncol. 2010;28(28):4339–45.CrossRef
22.
go back to reference DeAngelo DJ, et al. Phase 1 clinical results with tandutinib (MLN518), a novel FLT3 antagonist, in patients with acute myelogenous leukemia or high-risk myelodysplastic syndrome: safety, pharmacokinetics, and pharmacodynamics. Blood. 2006;108(12):3674–81.CrossRef DeAngelo DJ, et al. Phase 1 clinical results with tandutinib (MLN518), a novel FLT3 antagonist, in patients with acute myelogenous leukemia or high-risk myelodysplastic syndrome: safety, pharmacokinetics, and pharmacodynamics. Blood. 2006;108(12):3674–81.CrossRef
23.
go back to reference Fiedler W, et al. A phase 1 study of SU11248 in the treatment of patients with refractory or resistant acute myeloid leukemia (AML) or not amenable to conventional therapy for the disease. Blood. 2005;105(3):986–93.CrossRef Fiedler W, et al. A phase 1 study of SU11248 in the treatment of patients with refractory or resistant acute myeloid leukemia (AML) or not amenable to conventional therapy for the disease. Blood. 2005;105(3):986–93.CrossRef
24.
go back to reference Zhang W, et al. Mutant FLT3: a direct target of sorafenib in acute myelogenous leukemia. J Natl Cancer Inst. 2008;100(3):184–98.CrossRef Zhang W, et al. Mutant FLT3: a direct target of sorafenib in acute myelogenous leukemia. J Natl Cancer Inst. 2008;100(3):184–98.CrossRef
25.
go back to reference Smith BD, et al. Single-agent CEP-701, a novel FLT3 inhibitor, shows biologic and clinical activity in patients with relapsed or refractory acute myeloid leukemia. Blood. 2004;103(10):3669–76.CrossRef Smith BD, et al. Single-agent CEP-701, a novel FLT3 inhibitor, shows biologic and clinical activity in patients with relapsed or refractory acute myeloid leukemia. Blood. 2004;103(10):3669–76.CrossRef
26.
go back to reference Cortes JE, et al. Phase I study of quizartinib administered daily to patients with relapsed or refractory acute myeloid leukemia irrespective of FMS-like tyrosine kinase 3-internal tandem duplication status. J Clin Oncol. 2013;31(29):3681–7.CrossRef Cortes JE, et al. Phase I study of quizartinib administered daily to patients with relapsed or refractory acute myeloid leukemia irrespective of FMS-like tyrosine kinase 3-internal tandem duplication status. J Clin Oncol. 2013;31(29):3681–7.CrossRef
27.
go back to reference Perl AE, et al. Selective inhibition of FLT3 by gilteritinib in relapsed or refractory acute myeloid leukaemia: a multicentre, first-in-human, open-label, phase 1-2 study. Lancet Oncol. 2017;18(8):1061–75.CrossRef Perl AE, et al. Selective inhibition of FLT3 by gilteritinib in relapsed or refractory acute myeloid leukaemia: a multicentre, first-in-human, open-label, phase 1-2 study. Lancet Oncol. 2017;18(8):1061–75.CrossRef
29.
go back to reference Weisberg E, et al. Inhibition of mutant FLT3 receptors in leukemia cells by the small molecule tyrosine kinase inhibitor PKC412. Cancer Cell. 2002;1(5):433–43.CrossRef Weisberg E, et al. Inhibition of mutant FLT3 receptors in leukemia cells by the small molecule tyrosine kinase inhibitor PKC412. Cancer Cell. 2002;1(5):433–43.CrossRef
30.
go back to reference Ikegami Y, Yano S, Nakao K. Antitumor effect of CGP41251, a new selective protein kinase C inhibitor, on human non-small cell lung cancer cells. Jpn J Pharmacol. 1996;70(1):65–72.CrossRef Ikegami Y, Yano S, Nakao K. Antitumor effect of CGP41251, a new selective protein kinase C inhibitor, on human non-small cell lung cancer cells. Jpn J Pharmacol. 1996;70(1):65–72.CrossRef
31.
go back to reference Levis M, et al. Plasma inhibitory activity (PIA): a pharmacodynamic assay reveals insights into the basis for cytotoxic response to FLT3 inhibitors. Blood. 2006;108(10):3477–83.CrossRef Levis M, et al. Plasma inhibitory activity (PIA): a pharmacodynamic assay reveals insights into the basis for cytotoxic response to FLT3 inhibitors. Blood. 2006;108(10):3477–83.CrossRef
32.
go back to reference Stone RM, et al. Phase IB study of the FLT3 kinase inhibitor midostaurin with chemotherapy in younger newly diagnosed adult patients with acute myeloid leukemia. Leukemia. 2012;26(9):2061–8.CrossRef Stone RM, et al. Phase IB study of the FLT3 kinase inhibitor midostaurin with chemotherapy in younger newly diagnosed adult patients with acute myeloid leukemia. Leukemia. 2012;26(9):2061–8.CrossRef
33.
go back to reference Levis MJ, et al. Development of a novel next-generation sequencing (NGS)-based assay for measurable residual disease (MRD) in &lt;em&gt;FLT3&lt;/em&gt;-ITD AML and its potential clinical application in patients treated with chemotherapy plus FLT3 inhibitors. Blood. 2018;132(Suppl 1):1459. Levis MJ, et al. Development of a novel next-generation sequencing (NGS)-based assay for measurable residual disease (MRD) in &lt;em&gt;FLT3&lt;/em&gt;-ITD AML and its potential clinical application in patients treated with chemotherapy plus FLT3 inhibitors. Blood. 2018;132(Suppl 1):1459.
35.
go back to reference Lancet JE, et al. Final results of a phase III randomized trial of CPX-351 versus 7+3 in older patients with newly diagnosed high risk (secondary) AML. J Clin Oncol. 2016;34:7000–15_suppl.CrossRef Lancet JE, et al. Final results of a phase III randomized trial of CPX-351 versus 7+3 in older patients with newly diagnosed high risk (secondary) AML. J Clin Oncol. 2016;34:7000–15_suppl.CrossRef
37.
go back to reference Stein EM, et al. Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia. Blood. 2017;130(6):722–31.CrossRef Stein EM, et al. Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia. Blood. 2017;130(6):722–31.CrossRef
39.
go back to reference Bross PF, et al. Approval summary: gemtuzumab ozogamicin in relapsed acute myeloid leukemia. Clin Cancer Res. 2001;7(6):1490–6. Bross PF, et al. Approval summary: gemtuzumab ozogamicin in relapsed acute myeloid leukemia. Clin Cancer Res. 2001;7(6):1490–6.
40.
go back to reference Norsworthy KJ, et al. FDA approval summary: Mylotarg for treatment of patients with relapsed or refractory CD33-positive acute myeloid leukemia. Oncologist. 2018;23(9):1103–8.CrossRef Norsworthy KJ, et al. FDA approval summary: Mylotarg for treatment of patients with relapsed or refractory CD33-positive acute myeloid leukemia. Oncologist. 2018;23(9):1103–8.CrossRef
49.
go back to reference Perl AE, et al. Final results of the Chrysalis trial: a first-in-human phase 1/2 dose-escalation, dose-expansion study of Gilteritinib (ASP2215) in patients with relapsed/refractory acute myeloid leukemia (R/R AML). Blood. 2016;128(22):1069. Perl AE, et al. Final results of the Chrysalis trial: a first-in-human phase 1/2 dose-escalation, dose-expansion study of Gilteritinib (ASP2215) in patients with relapsed/refractory acute myeloid leukemia (R/R AML). Blood. 2016;128(22):1069.
50.
go back to reference Perl A, Giovanni M, Jorge C, Andreas N, Berman E, Stefania P, Pau M, Baer Maria R, Larson Richard A, Celalettin U, Francesco F, Antonio DS, Robert S, Rebecca O, Margaret K, Fabio C, Wen-Chien C, Nikolai P, Christian R, Hisayuki Y, Naoko H, Sung-Soo Y, Je-Hwan L, Timothy P, Fathi Amir T, Chaofeng L, Xuan L, Erkut B, Levis Mark J. Gilteritinib significantly prolongs overall survival in patients with FLT3-mutated (FLT3mut+) relapsed/refractory (R/R) acute myeloid leukemia (AML): Results from the Phase III ADMIRAL trial. Atlanta, GA: AACR: Proceedings of the 110th Annual Meeting of the American Association for Cancer Research; 2019. March 29–April 3. Session CTPL04(CT184 ) Perl A, Giovanni M, Jorge C, Andreas N, Berman E, Stefania P, Pau M, Baer Maria R, Larson Richard A, Celalettin U, Francesco F, Antonio DS, Robert S, Rebecca O, Margaret K, Fabio C, Wen-Chien C, Nikolai P, Christian R, Hisayuki Y, Naoko H, Sung-Soo Y, Je-Hwan L, Timothy P, Fathi Amir T, Chaofeng L, Xuan L, Erkut B, Levis Mark J. Gilteritinib significantly prolongs overall survival in patients with FLT3-mutated (FLT3mut+) relapsed/refractory (R/R) acute myeloid leukemia (AML): Results from the Phase III ADMIRAL trial. Atlanta, GA: AACR: Proceedings of the 110th Annual Meeting of the American Association for Cancer Research; 2019. March 29–April 3. Session CTPL04(CT184 )
51.
go back to reference Sexauer A, et al. Terminal myeloid differentiation in vivo is induced by FLT3 inhibition in FLT3/ITD AML. Blood. 2012;120(20):4205–14.CrossRef Sexauer A, et al. Terminal myeloid differentiation in vivo is induced by FLT3 inhibition in FLT3/ITD AML. Blood. 2012;120(20):4205–14.CrossRef
52.
go back to reference Fathi AT, et al. FLT3 inhibitor-induced neutrophilic dermatosis. Blood. 2013;122(2):239–42.CrossRef Fathi AT, et al. FLT3 inhibitor-induced neutrophilic dermatosis. Blood. 2013;122(2):239–42.CrossRef
53.
go back to reference Varadarajan N, et al. FLT3 inhibitor-associated neutrophilic dermatoses. JAMA Dermatol. 2016;152(4):480–2.CrossRef Varadarajan N, et al. FLT3 inhibitor-associated neutrophilic dermatoses. JAMA Dermatol. 2016;152(4):480–2.CrossRef
54.
go back to reference Patel KP, et al. Acute myeloid leukemia with IDH1 or IDH2 mutation: frequency and clinicopathologic features. Am J Clin Pathol. 2011;135(1):35–45.CrossRef Patel KP, et al. Acute myeloid leukemia with IDH1 or IDH2 mutation: frequency and clinicopathologic features. Am J Clin Pathol. 2011;135(1):35–45.CrossRef
55.
go back to reference Ward PS, et al. The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell. 2010;17(3):225–34.CrossRef Ward PS, et al. The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell. 2010;17(3):225–34.CrossRef
56.
go back to reference Yang H, et al. IDH1 and IDH2 mutations in tumorigenesis: mechanistic insights and clinical perspectives. Clin Cancer Res. 2012;18(20):5562–71.CrossRef Yang H, et al. IDH1 and IDH2 mutations in tumorigenesis: mechanistic insights and clinical perspectives. Clin Cancer Res. 2012;18(20):5562–71.CrossRef
57.
go back to reference Stein EM, et al. Molecular remission and response patterns in patients with mutant-IDH2 acute myeloid leukemia treated with enasidenib. Blood. 2019;133(7):676–87.CrossRef Stein EM, et al. Molecular remission and response patterns in patients with mutant-IDH2 acute myeloid leukemia treated with enasidenib. Blood. 2019;133(7):676–87.CrossRef
59.
go back to reference Norsworthy KJ, M Flora, Ward Ashley F, Przepiorka Donna, Deisseroth Albert B, Farrell Ann T, Pazdur Richard, Incidence of Differentiation Syndrome with Ivosidenib (IVO) and Enasidenib (ENA) for Treatment of Patients with Relapsed or Refractory (R/R) Isocitrate Dehydrogenase (IDH)1- or IDH2-Mutated Acute Myeloid Leukemia (AML): A Systematic Analysis By the U.S. Food and Drug Administration (FDA). ASH Annual Meeting, 2018. Session 615: Oral Presentation. Norsworthy KJ, M Flora, Ward Ashley F, Przepiorka Donna, Deisseroth Albert B, Farrell Ann T, Pazdur Richard, Incidence of Differentiation Syndrome with Ivosidenib (IVO) and Enasidenib (ENA) for Treatment of Patients with Relapsed or Refractory (R/R) Isocitrate Dehydrogenase (IDH)1- or IDH2-Mutated Acute Myeloid Leukemia (AML): A Systematic Analysis By the U.S. Food and Drug Administration (FDA). ASH Annual Meeting, 2018. Session 615: Oral Presentation.
62.
go back to reference Norsworthy KJ, et al. FDA approval summary: Ivosidenib for relapsed or refractory acute myeloid leukemia with an isocitrate dehydrogenase-1 mutation. Clin Cancer Res. 2019; p. clincanres.3749.2018 Norsworthy KJ, et al. FDA approval summary: Ivosidenib for relapsed or refractory acute myeloid leukemia with an isocitrate dehydrogenase-1 mutation. Clin Cancer Res. 2019; p. clincanres.3749.2018
63.
go back to reference DiNardo CD, et al. Durable remissions with Ivosidenib in IDH1-mutated relapsed or refractory AML. N Engl J Med. 2018;378(25):2386–98.CrossRef DiNardo CD, et al. Durable remissions with Ivosidenib in IDH1-mutated relapsed or refractory AML. N Engl J Med. 2018;378(25):2386–98.CrossRef
65.
go back to reference Dinardo CD, et al. Mutant IDH1 inhibitor ivosidenib (IVO; AG-120) in combination with azacitidine (AZA) for newly diagnosed acute myeloid leukemia (ND AML). J Clin Oncol. 2019;37(15_suppl):7011. Dinardo CD, et al. Mutant IDH1 inhibitor ivosidenib (IVO; AG-120) in combination with azacitidine (AZA) for newly diagnosed acute myeloid leukemia (ND AML). J Clin Oncol. 2019;37(15_suppl):7011.
66.
go back to reference Pan R, et al. Selective BCL-2 inhibition by ABT-199 causes on-target cell death in acute myeloid leukemia. Cancer Discov. 2014;4(3):362–75.CrossRef Pan R, et al. Selective BCL-2 inhibition by ABT-199 causes on-target cell death in acute myeloid leukemia. Cancer Discov. 2014;4(3):362–75.CrossRef
67.
go back to reference Konopleva M, et al. Mechanisms of apoptosis sensitivity and resistance to the BH3 mimetic ABT-737 in acute myeloid leukemia. Cancer Cell. 2006;10(5):375–88.CrossRef Konopleva M, et al. Mechanisms of apoptosis sensitivity and resistance to the BH3 mimetic ABT-737 in acute myeloid leukemia. Cancer Cell. 2006;10(5):375–88.CrossRef
68.
go back to reference Tsao T, et al. Concomitant inhibition of DNA methyltransferase and BCL-2 protein function synergistically induce mitochondrial apoptosis in acute myelogenous leukemia cells. Ann Hematol. 2012;91(12):1861–70.CrossRef Tsao T, et al. Concomitant inhibition of DNA methyltransferase and BCL-2 protein function synergistically induce mitochondrial apoptosis in acute myelogenous leukemia cells. Ann Hematol. 2012;91(12):1861–70.CrossRef
69.
go back to reference Konopleva M, et al. Efficacy and biological correlates of response in a phase II study of Venetoclax monotherapy in patients with acute myelogenous leukemia. Cancer Discov. 2016;6(10):1106–17.CrossRef Konopleva M, et al. Efficacy and biological correlates of response in a phase II study of Venetoclax monotherapy in patients with acute myelogenous leukemia. Cancer Discov. 2016;6(10):1106–17.CrossRef
70.
go back to reference DiNardo CD, et al. Venetoclax combined with decitabine or azacitidine in treatment-naive, elderly patients with acute myeloid leukemia. Blood. 2019;133(1):7–17.CrossRef DiNardo CD, et al. Venetoclax combined with decitabine or azacitidine in treatment-naive, elderly patients with acute myeloid leukemia. Blood. 2019;133(1):7–17.CrossRef
71.
go back to reference Lancet JE, et al. CPX-351 (cytarabine and daunorubicin) liposome for injection versus conventional Cytarabine plus Daunorubicin in older patients with newly diagnosed secondary acute myeloid leukemia. J Clin Oncol. 2018;36(26):2684–92.CrossRef Lancet JE, et al. CPX-351 (cytarabine and daunorubicin) liposome for injection versus conventional Cytarabine plus Daunorubicin in older patients with newly diagnosed secondary acute myeloid leukemia. J Clin Oncol. 2018;36(26):2684–92.CrossRef
72.
go back to reference Lancet JE, et al. Efficacy and safety of CPX-351 versus 7+3 in older adults with secondary acute myeloid leukemia: combined subgroup analysis of phase 2 and phase 3 studies. Blood. 2017;130(Suppl 1):2657. Lancet JE, et al. Efficacy and safety of CPX-351 versus 7+3 in older adults with secondary acute myeloid leukemia: combined subgroup analysis of phase 2 and phase 3 studies. Blood. 2017;130(Suppl 1):2657.
73.
go back to reference Tardi P, et al. In vivo maintenance of synergistic cytarabine:daunorubicin ratios greatly enhances therapeutic efficacy. Leuk Res. 2009;33(1):129–39.CrossRef Tardi P, et al. In vivo maintenance of synergistic cytarabine:daunorubicin ratios greatly enhances therapeutic efficacy. Leuk Res. 2009;33(1):129–39.CrossRef
74.
go back to reference Cortes JE, et al. Glasdegib in combination with cytarabine and daunorubicin in patients with AML or high-risk MDS: phase 2 study results. Am J Hematol. 2018;93(11):1301–10.CrossRef Cortes JE, et al. Glasdegib in combination with cytarabine and daunorubicin in patients with AML or high-risk MDS: phase 2 study results. Am J Hematol. 2018;93(11):1301–10.CrossRef
75.
go back to reference Cortes JE, et al. Randomized comparison of low dose cytarabine with or without glasdegib in patients with newly diagnosed acute myeloid leukemia or high-risk myelodysplastic syndrome. Leukemia. 2018; Cortes JE, et al. Randomized comparison of low dose cytarabine with or without glasdegib in patients with newly diagnosed acute myeloid leukemia or high-risk myelodysplastic syndrome. Leukemia. 2018;
76.
go back to reference Aberger F, et al. Acute myeloid leukemia - strategies and challenges for targeting oncogenic hedgehog/GLI signaling. Cell Commun Signal. 2017;15(1):8.CrossRef Aberger F, et al. Acute myeloid leukemia - strategies and challenges for targeting oncogenic hedgehog/GLI signaling. Cell Commun Signal. 2017;15(1):8.CrossRef
77.
go back to reference Castaigne S, et al. Effect of gemtuzumab ozogamicin on survival of adult patients with de-novo acute myeloid leukaemia (ALFA-0701): a randomised, open-label, phase 3 study. Lancet. 2012;379(9825):1508–16.CrossRef Castaigne S, et al. Effect of gemtuzumab ozogamicin on survival of adult patients with de-novo acute myeloid leukaemia (ALFA-0701): a randomised, open-label, phase 3 study. Lancet. 2012;379(9825):1508–16.CrossRef
78.
go back to reference Wei AH, et al. Venetoclax combined with low-dose Cytarabine for previously untreated patients with acute myeloid leukemia: results from a phase Ib/II study. J Clin Oncol. 2019;37(15):1277–84.CrossRef Wei AH, et al. Venetoclax combined with low-dose Cytarabine for previously untreated patients with acute myeloid leukemia: results from a phase Ib/II study. J Clin Oncol. 2019;37(15):1277–84.CrossRef
79.
go back to reference Wei A, et al. Venetoclax with low-dose Cytarabine induces rapid, deep, and durable responses in previously untreated older adults with AML ineligible for intensive chemotherapy. Blood. 2018;132(Suppl 1):284. Wei A, et al. Venetoclax with low-dose Cytarabine induces rapid, deep, and durable responses in previously untreated older adults with AML ineligible for intensive chemotherapy. Blood. 2018;132(Suppl 1):284.
82.
go back to reference Taksin AL, et al. High efficacy and safety profile of fractionated doses of Mylotarg as induction therapy in patients with relapsed acute myeloblastic leukemia: a prospective study of the alfa group. Leukemia. 2007;21(1):66–71.CrossRef Taksin AL, et al. High efficacy and safety profile of fractionated doses of Mylotarg as induction therapy in patients with relapsed acute myeloblastic leukemia: a prospective study of the alfa group. Leukemia. 2007;21(1):66–71.CrossRef
83.
go back to reference Amadori S, et al. Gemtuzumab Ozogamicin versus best supportive care in older patients with newly diagnosed acute myeloid leukemia unsuitable for intensive chemotherapy: results of the randomized phase III EORTC-GIMEMA AML-19 trial. J Clin Oncol. 2016;34(9):972–9.CrossRef Amadori S, et al. Gemtuzumab Ozogamicin versus best supportive care in older patients with newly diagnosed acute myeloid leukemia unsuitable for intensive chemotherapy: results of the randomized phase III EORTC-GIMEMA AML-19 trial. J Clin Oncol. 2016;34(9):972–9.CrossRef
84.
go back to reference Castaigne S, et al. Final analysis of the ALFA 0701 study. Blood. 2014;124(21):376. Castaigne S, et al. Final analysis of the ALFA 0701 study. Blood. 2014;124(21):376.
87.
go back to reference Wei A, et al. Phase 1/2 study of Venetoclax with low-dose Cytarabine in treatment-naive, elderly patients with acute myeloid leukemia unfit for intensive chemotherapy: 1-year outcomes. Blood. 2017;130(Suppl 1):890. Wei A, et al. Phase 1/2 study of Venetoclax with low-dose Cytarabine in treatment-naive, elderly patients with acute myeloid leukemia unfit for intensive chemotherapy: 1-year outcomes. Blood. 2017;130(Suppl 1):890.
88.
go back to reference Wei, A.S., Stephen A.; Hou Jing-Zhou ; Fiedler, Walter; Lin, Tara L.; Walter, Roland B.; Enjeti, Anoop K. ; Hong, Wan-Jen; Chyla, Brenda; Popovic, Relja; Fakouhi, Kaffa; Xu, Tu; Hayslip, John; Roboz, Gail J, Venetoclax with low-dose Cytarabine induces rapid, deep, and durable responses in previously untreated older adults with AML ineligible for intensive chemotherapy ASH annual meeting: session 615, 2018(Abstract 284). Wei, A.S., Stephen A.; Hou Jing-Zhou ; Fiedler, Walter; Lin, Tara L.; Walter, Roland B.; Enjeti, Anoop K. ; Hong, Wan-Jen; Chyla, Brenda; Popovic, Relja; Fakouhi, Kaffa; Xu, Tu; Hayslip, John; Roboz, Gail J, Venetoclax with low-dose Cytarabine induces rapid, deep, and durable responses in previously untreated older adults with AML ineligible for intensive chemotherapy ASH annual meeting: session 615, 2018(Abstract 284).
90.
go back to reference Krauss AC, et al. FDA approval summary: (Daunorubicin and Cytarabine) liposome for injection for the treatment of adults with high-risk acute myeloid leukemia. Clin Cancer Res. 2019;25(9):2685–90.CrossRef Krauss AC, et al. FDA approval summary: (Daunorubicin and Cytarabine) liposome for injection for the treatment of adults with high-risk acute myeloid leukemia. Clin Cancer Res. 2019;25(9):2685–90.CrossRef
91.
go back to reference Vardiman JW, et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood. 2009;114(5):937–51.CrossRef Vardiman JW, et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood. 2009;114(5):937–51.CrossRef
92.
go back to reference Arber DA, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391–405.CrossRef Arber DA, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391–405.CrossRef
93.
go back to reference Granfeldt Østgård LS, et al. Epidemiology and clinical significance of secondary and therapy-related acute myeloid leukemia: a National Population-Based Cohort Study. J Clin Oncol. 2015;33(31):3641–9.CrossRef Granfeldt Østgård LS, et al. Epidemiology and clinical significance of secondary and therapy-related acute myeloid leukemia: a National Population-Based Cohort Study. J Clin Oncol. 2015;33(31):3641–9.CrossRef
94.
go back to reference Feldman EJ, et al. First-in-man study of CPX-351: a liposomal carrier containing cytarabine and daunorubicin in a fixed 5:1 molar ratio for the treatment of relapsed and refractory acute myeloid leukemia. J Clin Oncol. 2011;29(8):979–85.CrossRef Feldman EJ, et al. First-in-man study of CPX-351: a liposomal carrier containing cytarabine and daunorubicin in a fixed 5:1 molar ratio for the treatment of relapsed and refractory acute myeloid leukemia. J Clin Oncol. 2011;29(8):979–85.CrossRef
95.
go back to reference Lancet JE, et al. Phase 2 trial of CPX-351, a fixed 5:1 molar ratio of cytarabine/daunorubicin, vs cytarabine/daunorubicin in older adults with untreated AML. Blood. 2014;123(21):3239–46.CrossRef Lancet JE, et al. Phase 2 trial of CPX-351, a fixed 5:1 molar ratio of cytarabine/daunorubicin, vs cytarabine/daunorubicin in older adults with untreated AML. Blood. 2014;123(21):3239–46.CrossRef
96.
go back to reference Sievers EL, et al. Efficacy and safety of gemtuzumab ozogamicin in patients with CD33-positive acute myeloid leukemia in first relapse. J Clin Oncol. 2001;19(13):3244–54.CrossRef Sievers EL, et al. Efficacy and safety of gemtuzumab ozogamicin in patients with CD33-positive acute myeloid leukemia in first relapse. J Clin Oncol. 2001;19(13):3244–54.CrossRef
97.
go back to reference Sievers EL, et al. Selective ablation of acute myeloid leukemia using antibody-targeted chemotherapy: a phase I study of an anti-CD33 calicheamicin immunoconjugate. Blood. 1999;93(11):3678–84.PubMed Sievers EL, et al. Selective ablation of acute myeloid leukemia using antibody-targeted chemotherapy: a phase I study of an anti-CD33 calicheamicin immunoconjugate. Blood. 1999;93(11):3678–84.PubMed
98.
go back to reference Petersdorf SH, et al. A phase 3 study of gemtuzumab ozogamicin during induction and postconsolidation therapy in younger patients with acute myeloid leukemia. Blood. 2013;121(24):4854–60.CrossRef Petersdorf SH, et al. A phase 3 study of gemtuzumab ozogamicin during induction and postconsolidation therapy in younger patients with acute myeloid leukemia. Blood. 2013;121(24):4854–60.CrossRef
99.
go back to reference Delaunay J, et al. Addition of gemtuzumab ozogamycin to chemotherapy improves event-free survival but not overall survival of aml patients with intermediate cytogenetics not eligible for allogeneic transplantation. Results of the GOELAMS AML 2006 IR study. Blood. 2011;118(21):79. Delaunay J, et al. Addition of gemtuzumab ozogamycin to chemotherapy improves event-free survival but not overall survival of aml patients with intermediate cytogenetics not eligible for allogeneic transplantation. Results of the GOELAMS AML 2006 IR study. Blood. 2011;118(21):79.
100.
go back to reference Burnett AK, et al. Identification of patients with acute myeloblastic leukemia who benefit from the addition of gemtuzumab ozogamicin: results of the MRC AML15 trial. J Clin Oncol. 2011;29(4):369–77.CrossRef Burnett AK, et al. Identification of patients with acute myeloblastic leukemia who benefit from the addition of gemtuzumab ozogamicin: results of the MRC AML15 trial. J Clin Oncol. 2011;29(4):369–77.CrossRef
101.
go back to reference Burnett AK, et al. Addition of gemtuzumab ozogamicin to induction chemotherapy improves survival in older patients with acute myeloid leukemia. J Clin Oncol. 2012;30(32):3924–31.CrossRef Burnett AK, et al. Addition of gemtuzumab ozogamicin to induction chemotherapy improves survival in older patients with acute myeloid leukemia. J Clin Oncol. 2012;30(32):3924–31.CrossRef
102.
go back to reference Hills RK, et al. Addition of gemtuzumab ozogamicin to induction chemotherapy in adult patients with acute myeloid leukaemia: a meta-analysis of individual patient data from randomised controlled trials. Lancet Oncol. 2014;15(9):986–96.CrossRef Hills RK, et al. Addition of gemtuzumab ozogamicin to induction chemotherapy in adult patients with acute myeloid leukaemia: a meta-analysis of individual patient data from randomised controlled trials. Lancet Oncol. 2014;15(9):986–96.CrossRef
Metadata
Title
Recent drug approvals for acute myeloid leukemia
Authors
Catherine Lai
Kimberley Doucette
Kelly Norsworthy
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Journal of Hematology & Oncology / Issue 1/2019
Electronic ISSN: 1756-8722
DOI
https://doi.org/10.1186/s13045-019-0774-x

Other articles of this Issue 1/2019

Journal of Hematology & Oncology 1/2019 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine