Skip to main content
Top

Open Access 26-03-2024 | Chronic Myeloid Leukemia | review

15 years Ludwig Boltzmann Institute for Hematology and Oncology (LBI HO): achievements and future perspectives

Authors: Peter Valent, M.D., Emir Hadzijusufovic, D.V.M., Irina Sadovnik, Ph.D., Thomas W. Grunt, Ph.D., Barbara Peter, D.V.M., Michael Willmann, D.V.M., Harald Herrmann, M.D., Daniel Ivanov, Ph.D., Gregor Eisenwort, M.D. Ph.D., Heidrun Karlic, Ph.D., Georg Greiner, M.D. Ph.D., Karoline V. Gleixner, M.D. Ph.D., Thomas Rülicke, Ph.D., Maik Dahlhoff, D.V.M., Philipp Staber, M.D. Ph.D., Wolfgang R. Sperr, M.D., Michael Pfeilstöcker, M.D., Thomas Lion, M.D. Ph.D. MSc., Felix Keil, Gregor Hoermann

Published in: memo - Magazine of European Medical Oncology

Login to get access

Summary

Cancer stem cells, also known as leukemic stem cells (LSC) in the context of leukemias, are an emerging topic in translational oncology and hematology. The Ludwig Boltzmann Institute for Hematology and Oncology (LBI HO) was established in 2008 with the aim to translate LSC concepts into clinical practice. Major specific aims of the LBI HO are to identify LSC in various blood cell disorders and to improve anti-leukemic therapies by establishing LSC-targeting and LSC-eradicating approaches with the ultimate aim to translate these concepts into clinical practice. In addition, the LBI HO identified a number of diagnostic and prognostic LSC markers in various blood cell malignancies. Members of the LBI HO have also developed precision medicine tools and personalized medicine approaches around LSC in applied hematology. As a result, diagnosis, prognostication and therapy have improved in the past 10 years. Major disease models are myeloid leukemias and mast cell neoplasms. Finally, the LBI HO consortium launched several projects in the field of open innovation in science where patient-derived initiatives and their input supported the scientific community. Key aims for the future of the LBI HO are to develop LSC-related concepts and strategies further, with the long-term vision to cure more patients with hematologic malignancies.
Literature
1.
go back to reference Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414:105–11.PubMedCrossRef Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414:105–11.PubMedCrossRef
2.
go back to reference Pardal R, Clarke MF, Morrison SJ. Applying the principles of stem-cell biology to cancer. Nat Rev Cancer. 2003;3:895–902.PubMedCrossRef Pardal R, Clarke MF, Morrison SJ. Applying the principles of stem-cell biology to cancer. Nat Rev Cancer. 2003;3:895–902.PubMedCrossRef
3.
4.
go back to reference Nguyen LV, Vanner R, Dirks P, Eaves CJ. Cancer stem cells: an evolving concept. Nat Rev Cancer. 2012;12(2):133–43.PubMedCrossRef Nguyen LV, Vanner R, Dirks P, Eaves CJ. Cancer stem cells: an evolving concept. Nat Rev Cancer. 2012;12(2):133–43.PubMedCrossRef
5.
go back to reference Valent P, Bonnet D, De Maria R, et al. Cancer stem cell definitions and terminology: the devil is in the details. Nat Rev Cancer. 2012;12:767–75.PubMedCrossRef Valent P, Bonnet D, De Maria R, et al. Cancer stem cell definitions and terminology: the devil is in the details. Nat Rev Cancer. 2012;12:767–75.PubMedCrossRef
6.
go back to reference Vetrie D, Helgason GV, Copland M. The leukaemia stem cell: similarities, differences and clinical prospects in CML and AML. Nat Rev Cancer. 2020;20(3):158–73.PubMedCrossRef Vetrie D, Helgason GV, Copland M. The leukaemia stem cell: similarities, differences and clinical prospects in CML and AML. Nat Rev Cancer. 2020;20(3):158–73.PubMedCrossRef
7.
go back to reference Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 1994;367:645–8.PubMedCrossRef Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 1994;367:645–8.PubMedCrossRef
8.
go back to reference Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997;3:730–7.PubMedCrossRef Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997;3:730–7.PubMedCrossRef
9.
go back to reference Hope KJ, Jin L, Dick JE. Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nat Immunol. 2004;5:738–43.PubMedCrossRef Hope KJ, Jin L, Dick JE. Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nat Immunol. 2004;5:738–43.PubMedCrossRef
10.
go back to reference Long NA, Golla U, Sharma A, Claxton DF. Acute myeloid leukemia stem cells: origin, characteristics, and clinical implications. Stem Cell Rev Rep. 2022;18(4):1211–26.PubMedPubMedCentralCrossRef Long NA, Golla U, Sharma A, Claxton DF. Acute myeloid leukemia stem cells: origin, characteristics, and clinical implications. Stem Cell Rev Rep. 2022;18(4):1211–26.PubMedPubMedCentralCrossRef
11.
go back to reference Kavalerchik E, Goff D, Jamieson CH. Chronic myeloid leukemia stem cells. J Clin Oncol. 2008;26:2911–5.PubMedCrossRef Kavalerchik E, Goff D, Jamieson CH. Chronic myeloid leukemia stem cells. J Clin Oncol. 2008;26:2911–5.PubMedCrossRef
12.
go back to reference Copland M. Chronic myelogenous leukemia stem cells: What’s new? Curr Hematol Malig Rep. 2009;4:66–73.PubMedCrossRef Copland M. Chronic myelogenous leukemia stem cells: What’s new? Curr Hematol Malig Rep. 2009;4:66–73.PubMedCrossRef
13.
go back to reference Sloma I, Jiang X, Eaves AC, Eaves CJ. Insights into the stem cells of chronic myeloid leukemia. Leukemia. 2010;24(11):1823–33.PubMedCrossRef Sloma I, Jiang X, Eaves AC, Eaves CJ. Insights into the stem cells of chronic myeloid leukemia. Leukemia. 2010;24(11):1823–33.PubMedCrossRef
14.
go back to reference Shehata M, Hubmann R, Hilgarth M, et al. Partial characterization and in vitro expansion of putative CLL precursor/stem cells which are dependent on bone marrow microenvironment for survival. Blood. 2010;116(21):2433 (abstract). Shehata M, Hubmann R, Hilgarth M, et al. Partial characterization and in vitro expansion of putative CLL precursor/stem cells which are dependent on bone marrow microenvironment for survival. Blood. 2010;116(21):2433 (abstract).
15.
go back to reference Kikushige Y, Ishikawa F, Miyamoto T, et al. Self-renewing hematopoietic stem cell is the primary target in pathogenesis of human chronic lymphocytic leukemia. Cancer Cell. 2011;20:246–59.PubMedCrossRef Kikushige Y, Ishikawa F, Miyamoto T, et al. Self-renewing hematopoietic stem cell is the primary target in pathogenesis of human chronic lymphocytic leukemia. Cancer Cell. 2011;20:246–59.PubMedCrossRef
16.
go back to reference Cobaleda C, Gutiérrez-Cianca N, et al. A primitive hematopoietic cell is the target for the leukemic transformation in human Philadelphia-positive acute lymphoblastic leukemia. Blood. 2000;95:1007–13.PubMedCrossRef Cobaleda C, Gutiérrez-Cianca N, et al. A primitive hematopoietic cell is the target for the leukemic transformation in human Philadelphia-positive acute lymphoblastic leukemia. Blood. 2000;95:1007–13.PubMedCrossRef
17.
go back to reference Kong Y, Yoshida S, Saito Y. et al. CD34+ CD38+CD19+ as well as CD34+ CD38-CD19+ cells are leukemia-initiating cells with self-renewal capacity in human B‑precursor ALL. Leukemia. 2008;22:1207–13.PubMedCrossRef Kong Y, Yoshida S, Saito Y. et al. CD34+ CD38+CD19+ as well as CD34+ CD38-CD19+ cells are leukemia-initiating cells with self-renewal capacity in human B‑precursor ALL. Leukemia. 2008;22:1207–13.PubMedCrossRef
18.
go back to reference le Viseur C, Hotfilder M, Bomken S, et al. In childhood acute lymphoblastic leukemia, blasts at different stages of immunophenotypic maturation have stem cell properties. Cancer Cell. 2008;14:47–58.PubMedPubMedCentralCrossRef le Viseur C, Hotfilder M, Bomken S, et al. In childhood acute lymphoblastic leukemia, blasts at different stages of immunophenotypic maturation have stem cell properties. Cancer Cell. 2008;14:47–58.PubMedPubMedCentralCrossRef
19.
go back to reference Blatt K, Menzl I, Eisenwort G, et al. Phenotyping and target expression profiling of CD34+/CD38− and CD34+/CD38+ stem- and progenitor cells in acute lymphoblastic leukemia. Neoplasia. 2018;20(6):632–42.PubMedPubMedCentralCrossRef Blatt K, Menzl I, Eisenwort G, et al. Phenotyping and target expression profiling of CD34+/CD38− and CD34+/CD38+ stem- and progenitor cells in acute lymphoblastic leukemia. Neoplasia. 2018;20(6):632–42.PubMedPubMedCentralCrossRef
20.
go back to reference Zhang Y, He L, Selimoglu-Buet D, et al. Engraftment of chronic myelomonocytic leukemia cells in immunocompromised mice supports disease dependency on cytokines. Blood Adv. 2017;1(14):972–9.PubMedPubMedCentralCrossRef Zhang Y, He L, Selimoglu-Buet D, et al. Engraftment of chronic myelomonocytic leukemia cells in immunocompromised mice supports disease dependency on cytokines. Blood Adv. 2017;1(14):972–9.PubMedPubMedCentralCrossRef
21.
go back to reference Eisenwort G, Sadovnik I, Schwaab J, et al. Identification of a leukemia-initiating stem cell in human mast cell leukemia. Leukemia. 2019;33(11):2673–84.PubMedPubMedCentralCrossRef Eisenwort G, Sadovnik I, Schwaab J, et al. Identification of a leukemia-initiating stem cell in human mast cell leukemia. Leukemia. 2019;33(11):2673–84.PubMedPubMedCentralCrossRef
22.
go back to reference Eisenwort G, Sadovnik I, Keller A, et al. Phenotypic characterization of leukemia-initiating stem cells in chronic myelomonocytic leukemia. Leukemia. 2021;35(11):3176–87.PubMedPubMedCentralCrossRef Eisenwort G, Sadovnik I, Keller A, et al. Phenotypic characterization of leukemia-initiating stem cells in chronic myelomonocytic leukemia. Leukemia. 2021;35(11):3176–87.PubMedPubMedCentralCrossRef
23.
24.
go back to reference Johnsen HE, Bøgsted M, Schmitz A, et al. The myeloma stem cell concept, revisited: from phenomenology to operational terms. Haematologica. 2016;101(12):1451–9.PubMedPubMedCentralCrossRef Johnsen HE, Bøgsted M, Schmitz A, et al. The myeloma stem cell concept, revisited: from phenomenology to operational terms. Haematologica. 2016;101(12):1451–9.PubMedPubMedCentralCrossRef
25.
go back to reference Ricci-Vitiani L, Lombardi DG, Pilozzi E, et al. Identification and expansion of human colon-cancer-initiating cells. Nature. 2007;445:111–5.PubMedCrossRef Ricci-Vitiani L, Lombardi DG, Pilozzi E, et al. Identification and expansion of human colon-cancer-initiating cells. Nature. 2007;445:111–5.PubMedCrossRef
26.
go back to reference O’Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature. 2007;445:106–10.PubMedCrossRef O’Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature. 2007;445:106–10.PubMedCrossRef
27.
go back to reference Singh SK, Clarke ID, Terasaki M, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res. 2003;63:5821–8.PubMed Singh SK, Clarke ID, Terasaki M, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res. 2003;63:5821–8.PubMed
28.
go back to reference Prince ME, Sivanandan R, Kaczorowski A, et al. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci (usa). 2007;104:973–8.PubMedCrossRef Prince ME, Sivanandan R, Kaczorowski A, et al. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci (usa). 2007;104:973–8.PubMedCrossRef
30.
go back to reference Zabierowski SE, Herlyn M. Melanoma stem cells: the dark seed of melanoma. J Clin Oncol. 2008;26:2890–4.PubMedCrossRef Zabierowski SE, Herlyn M. Melanoma stem cells: the dark seed of melanoma. J Clin Oncol. 2008;26:2890–4.PubMedCrossRef
31.
32.
go back to reference Roesch A, Fukunaga-Kalabis M, Schmidt EC, et al. A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth. Cell. 2010;141:583–94.PubMedPubMedCentralCrossRef Roesch A, Fukunaga-Kalabis M, Schmidt EC, et al. A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth. Cell. 2010;141:583–94.PubMedPubMedCentralCrossRef
33.
go back to reference Jamieson CH, Ailles LE, Dylla SJ, Muijtjens M, Jones C, Zehnder JL, Gotlib J, Li K, Manz MG, Keating A, Sawyers CL, Weissman IL. Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med. 2004;351:657–67.PubMedCrossRef Jamieson CH, Ailles LE, Dylla SJ, Muijtjens M, Jones C, Zehnder JL, Gotlib J, Li K, Manz MG, Keating A, Sawyers CL, Weissman IL. Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med. 2004;351:657–67.PubMedCrossRef
35.
go back to reference Taussig DC, Miraki-Moud F, Anjos-Afonso F, et al. Anti-CD38 antibody-mediated clearance of human repopulating cells masks the heterogeneity of leukemia-initiating cells. Blood. 2008;112:568–75.PubMedCrossRef Taussig DC, Miraki-Moud F, Anjos-Afonso F, et al. Anti-CD38 antibody-mediated clearance of human repopulating cells masks the heterogeneity of leukemia-initiating cells. Blood. 2008;112:568–75.PubMedCrossRef
36.
go back to reference Quintana E, Shackleton M, Foster HR, et al. Phenotypic heterogeneity among tumorigenic melanoma cells from patients that is reversible and not hierarchically organized. Cancer Cell. 2010;18:510–23.PubMedPubMedCentralCrossRef Quintana E, Shackleton M, Foster HR, et al. Phenotypic heterogeneity among tumorigenic melanoma cells from patients that is reversible and not hierarchically organized. Cancer Cell. 2010;18:510–23.PubMedPubMedCentralCrossRef
37.
go back to reference Goardon N, Marchi E, Atzberger A, et al. Coexistence of LMPP-like and GMP-like leukemia stem cells in acute myeloid leukemia. Cancer Cell. 2011;19:138–52.PubMedCrossRef Goardon N, Marchi E, Atzberger A, et al. Coexistence of LMPP-like and GMP-like leukemia stem cells in acute myeloid leukemia. Cancer Cell. 2011;19:138–52.PubMedCrossRef
38.
go back to reference Al-Hajj M, Becker MW, Wicha M, Weissman I, Clarke MF. Therapeutic implications of cancer stem cells. Curr Opin Genet Dev. 2004;14:43–7.PubMedCrossRef Al-Hajj M, Becker MW, Wicha M, Weissman I, Clarke MF. Therapeutic implications of cancer stem cells. Curr Opin Genet Dev. 2004;14:43–7.PubMedCrossRef
39.
go back to reference Guzman ML, Jordan CT. Considerations for targeting malignant stem cells in leukemia. Cancer Control. 2004;11:97–104.PubMedCrossRef Guzman ML, Jordan CT. Considerations for targeting malignant stem cells in leukemia. Cancer Control. 2004;11:97–104.PubMedCrossRef
40.
go back to reference Schulenburg A, Ulrich-Pur H, Thurnher D, et al. Neoplastic stem cells: a novel therapeutic target in clinical oncology. Cancer. 2006;107:2512–20.PubMedCrossRef Schulenburg A, Ulrich-Pur H, Thurnher D, et al. Neoplastic stem cells: a novel therapeutic target in clinical oncology. Cancer. 2006;107:2512–20.PubMedCrossRef
41.
go back to reference Trumpp A, Wiestler OD. Mechanisms of Disease: cancer stem cells-targeting the evil twin. Nat Clin Pract Oncol. 2008;5:337–47.PubMedCrossRef Trumpp A, Wiestler OD. Mechanisms of Disease: cancer stem cells-targeting the evil twin. Nat Clin Pract Oncol. 2008;5:337–47.PubMedCrossRef
42.
go back to reference Helgason GV, Young GA, Holyoake TL. Targeting chronic myeloid leukemia stem cells. Curr Hematol Malig Rep. 2010;5:81–7.PubMedCrossRef Helgason GV, Young GA, Holyoake TL. Targeting chronic myeloid leukemia stem cells. Curr Hematol Malig Rep. 2010;5:81–7.PubMedCrossRef
43.
go back to reference Valent P. Targeting of leukemia-initiating cells to develop curative drug therapies: straightforward but nontrivial concept. Curr Cancer Drug Targets. 2011;11:56–71.PubMedCrossRef Valent P. Targeting of leukemia-initiating cells to develop curative drug therapies: straightforward but nontrivial concept. Curr Cancer Drug Targets. 2011;11:56–71.PubMedCrossRef
44.
go back to reference McCubrey JA, Steelman LS, Abrams SL, et al. Targeting the cancer initiating cell: the ultimate target for cancer therapy. Curr Pharm Des. 2012;18:1784–95.PubMedCrossRef McCubrey JA, Steelman LS, Abrams SL, et al. Targeting the cancer initiating cell: the ultimate target for cancer therapy. Curr Pharm Des. 2012;18:1784–95.PubMedCrossRef
45.
go back to reference Valent P, Bauer K, Sadovnik I, et al. Cell-based and antibody-mediated immunotherapies directed against leukemic stem cells in acute myeloid leukemia: perspectives and open issues. Stem Cells Transl Med. 2020;9(11):1331–43.PubMedPubMedCentralCrossRef Valent P, Bauer K, Sadovnik I, et al. Cell-based and antibody-mediated immunotherapies directed against leukemic stem cells in acute myeloid leukemia: perspectives and open issues. Stem Cells Transl Med. 2020;9(11):1331–43.PubMedPubMedCentralCrossRef
46.
go back to reference Valent P, Hadzijusufovic E, Grunt T, et al. Ludwig Boltzmann Cluster Oncology (LBC ONC): first 10 years and future perspectives. Wien Klin Wochenschr. 2018;130(17–18:517–29.CrossRef Valent P, Hadzijusufovic E, Grunt T, et al. Ludwig Boltzmann Cluster Oncology (LBC ONC): first 10 years and future perspectives. Wien Klin Wochenschr. 2018;130(17–18:517–29.CrossRef
47.
go back to reference Valent P, Sadovnik I, Peter B, et al. Vienna Cancer Stem Cell Club (VCSCC): 20 year jubilee and future perspectives. Expert Rev Hematol. 2023;16(9):659–70.PubMedCrossRef Valent P, Sadovnik I, Peter B, et al. Vienna Cancer Stem Cell Club (VCSCC): 20 year jubilee and future perspectives. Expert Rev Hematol. 2023;16(9):659–70.PubMedCrossRef
48.
go back to reference Herrmann H, Sadovnik I, Eisenwort G, et al. Delineation of target expression profiles in CD34+/CD38− and CD34+/CD38+ stem and progenitor cells in AML and CML. Blood Adv. 2020;4(20):5118–32.PubMedPubMedCentralCrossRef Herrmann H, Sadovnik I, Eisenwort G, et al. Delineation of target expression profiles in CD34+/CD38− and CD34+/CD38+ stem and progenitor cells in AML and CML. Blood Adv. 2020;4(20):5118–32.PubMedPubMedCentralCrossRef
49.
go back to reference Hadzijusufovic E, Albrecht-Schgoer K, Huber K, et al. Nilotinib-induced vasculopathy: identification of vascular endothelial cells as a primary target site. Leukemia. 2017;31(11):2388–97.PubMedPubMedCentralCrossRef Hadzijusufovic E, Albrecht-Schgoer K, Huber K, et al. Nilotinib-induced vasculopathy: identification of vascular endothelial cells as a primary target site. Leukemia. 2017;31(11):2388–97.PubMedPubMedCentralCrossRef
50.
go back to reference Sadovnik I, Hoelbl-Kovacic A, Herrmann H, et al. Identification of CD25 as STAT5-dependent growth regulator of leukemic stem cells in Ph+ CML. Clin Cancer Res. 2016;22:2051–61.PubMedCrossRef Sadovnik I, Hoelbl-Kovacic A, Herrmann H, et al. Identification of CD25 as STAT5-dependent growth regulator of leukemic stem cells in Ph+ CML. Clin Cancer Res. 2016;22:2051–61.PubMedCrossRef
51.
go back to reference Herrmann H, Sadovnik I, Cerny-Reiterer S, et al. Dipeptidylpeptidase IV (CD26) defines leukemic stem cells (LSC) in chronic myeloid leukemia. Blood. 2014;123:3951–62.PubMedCrossRef Herrmann H, Sadovnik I, Cerny-Reiterer S, et al. Dipeptidylpeptidase IV (CD26) defines leukemic stem cells (LSC) in chronic myeloid leukemia. Blood. 2014;123:3951–62.PubMedCrossRef
52.
go back to reference Milosevic Feenstra JD, Jäger R, et al. PD-L1 overexpression correlates with JAK 2-V617F mutational burden and is associated with 9p uniparental disomy in myeloproliferative neoplasms. Am J Hematol. 2022;97(4):390–400.PubMedPubMedCentralCrossRef Milosevic Feenstra JD, Jäger R, et al. PD-L1 overexpression correlates with JAK 2-V617F mutational burden and is associated with 9p uniparental disomy in myeloproliferative neoplasms. Am J Hematol. 2022;97(4):390–400.PubMedPubMedCentralCrossRef
53.
go back to reference Ivanov D, Milosevic Feenstra JD, et al. Phenotypic characterization of disease-initiating stem cells in JAK 2- or CALR-mutated myeloproliferative neoplasms. Am J Hematol. 2023;98(5):770–83.PubMedPubMedCentralCrossRef Ivanov D, Milosevic Feenstra JD, et al. Phenotypic characterization of disease-initiating stem cells in JAK 2- or CALR-mutated myeloproliferative neoplasms. Am J Hematol. 2023;98(5):770–83.PubMedPubMedCentralCrossRef
54.
go back to reference Valent P, Sadovnik I, Eisenwort G, et al. Immunotherapy-based targeting and elimination of leukemic stem cells in AML and CML. Int J Mol Sci. 2019;20(17):4233.PubMedPubMedCentralCrossRef Valent P, Sadovnik I, Eisenwort G, et al. Immunotherapy-based targeting and elimination of leukemic stem cells in AML and CML. Int J Mol Sci. 2019;20(17):4233.PubMedPubMedCentralCrossRef
55.
56.
go back to reference Schulenburg A, Blatt K, Cerny-Reiterer S, et al. Cancer stem cells in basic science and in translational oncology: can we translate into clinical application? J Hematol Oncol. 2015;8:16.PubMedPubMedCentralCrossRef Schulenburg A, Blatt K, Cerny-Reiterer S, et al. Cancer stem cells in basic science and in translational oncology: can we translate into clinical application? J Hematol Oncol. 2015;8:16.PubMedPubMedCentralCrossRef
57.
go back to reference Zhou HS, Carter BZ, Andreeff M. Bone marrow niche-mediated survival of leukemia stem cells in acute myeloid leukemia: Yin and Yang. Cancer Biol Med. 2016;13:248–59.PubMedPubMedCentralCrossRef Zhou HS, Carter BZ, Andreeff M. Bone marrow niche-mediated survival of leukemia stem cells in acute myeloid leukemia: Yin and Yang. Cancer Biol Med. 2016;13:248–59.PubMedPubMedCentralCrossRef
58.
go back to reference Peter B, Eisenwort G, Sadovnik I, et al. BRD4 degradation blocks expression of MYC and multiple forms of stem cell resistance in Ph+ chronic myeloid leukemia. Am J Hematol. 2022;97(9):1215–25.PubMedPubMedCentralCrossRef Peter B, Eisenwort G, Sadovnik I, et al. BRD4 degradation blocks expression of MYC and multiple forms of stem cell resistance in Ph+ chronic myeloid leukemia. Am J Hematol. 2022;97(9):1215–25.PubMedPubMedCentralCrossRef
59.
go back to reference Filik Y, Bauer K, Hadzijusufovic E, et al. PI3-kinase inhibition as a strategy to suppress the leukemic stem cell niche in Ph+ chronic myeloid leukemia. Am J Cancer Res. 2021;11(12):6042–59.PubMedPubMedCentral Filik Y, Bauer K, Hadzijusufovic E, et al. PI3-kinase inhibition as a strategy to suppress the leukemic stem cell niche in Ph+ chronic myeloid leukemia. Am J Cancer Res. 2021;11(12):6042–59.PubMedPubMedCentral
60.
go back to reference Zuber J, Shi J, Wang E, et al. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature. 2011;478(7370):524–8.PubMedPubMedCentralCrossRef Zuber J, Shi J, Wang E, et al. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature. 2011;478(7370):524–8.PubMedPubMedCentralCrossRef
61.
go back to reference Herrmann H, Blatt K, Shi J, et al. Small-molecule inhibition of BRD4 as a new potent approach to eliminate leukemic stem- and progenitor cells in acute myeloid leukemia AML. Oncotarget. 2012;3(12):1588–99.PubMedPubMedCentralCrossRef Herrmann H, Blatt K, Shi J, et al. Small-molecule inhibition of BRD4 as a new potent approach to eliminate leukemic stem- and progenitor cells in acute myeloid leukemia AML. Oncotarget. 2012;3(12):1588–99.PubMedPubMedCentralCrossRef
62.
go back to reference Rathert P, Roth M, Neumann T, et al. Transcriptional plasticity promotes primary and acquired resistance to BET inhibition. Nature. 2015;525(7570):543–7.PubMedPubMedCentralCrossRef Rathert P, Roth M, Neumann T, et al. Transcriptional plasticity promotes primary and acquired resistance to BET inhibition. Nature. 2015;525(7570):543–7.PubMedPubMedCentralCrossRef
63.
go back to reference Gleixner KV, Mayerhofer M, Aichberger KJ, et al. PKC412 inhibits in vitro growth of neoplastic human mast cells expressing the D816V-mutated variant of KIT: comparison with AMN107, imatinib, and cladribine (2CdA) and evaluation of cooperative drug effects. Blood. 2006;107(2):752–9.PubMedCrossRef Gleixner KV, Mayerhofer M, Aichberger KJ, et al. PKC412 inhibits in vitro growth of neoplastic human mast cells expressing the D816V-mutated variant of KIT: comparison with AMN107, imatinib, and cladribine (2CdA) and evaluation of cooperative drug effects. Blood. 2006;107(2):752–9.PubMedCrossRef
64.
go back to reference Ma Y, Zeng S, Metcalfe DD, et al. The c‑KIT mutation causing human mastocytosis is resistant to STI571 and other KIT kinase inhibitors; kinases with enzymatic site mutations show different inhibitor sensitivity profiles than wild-type kinases and those with regulatory-type mutations. Blood. 2002;99(5):1741–4.PubMedCrossRef Ma Y, Zeng S, Metcalfe DD, et al. The c‑KIT mutation causing human mastocytosis is resistant to STI571 and other KIT kinase inhibitors; kinases with enzymatic site mutations show different inhibitor sensitivity profiles than wild-type kinases and those with regulatory-type mutations. Blood. 2002;99(5):1741–4.PubMedCrossRef
65.
go back to reference Valent P, Akin C, Hartmann K. Midostaurin: a magic bullet that blocks mast cell expansion and activation. Ann Oncol. 2017;28(10):2367–76.PubMedCrossRef Valent P, Akin C, Hartmann K. Midostaurin: a magic bullet that blocks mast cell expansion and activation. Ann Oncol. 2017;28(10):2367–76.PubMedCrossRef
66.
go back to reference Krauth MT, Mirkina I, Herrmann H, Baumgartner C, Kneidinger M, Midostaurin VP. (PKC412) inhibits immunoglobulin E-dependent activation and mediator release in human blood basophils and mast cells. Clin Exp Allergy. 2009;39:1711–20.PubMedCrossRef Krauth MT, Mirkina I, Herrmann H, Baumgartner C, Kneidinger M, Midostaurin VP. (PKC412) inhibits immunoglobulin E-dependent activation and mediator release in human blood basophils and mast cells. Clin Exp Allergy. 2009;39:1711–20.PubMedCrossRef
67.
go back to reference Peter B, Winter GE, Blatt K, et al. Target interaction profiling of midostaurin and its metabolites in neoplastic mast cells predicts distinct effects on activation and growth. Leukemia. 2016;30:464–72.PubMedCrossRef Peter B, Winter GE, Blatt K, et al. Target interaction profiling of midostaurin and its metabolites in neoplastic mast cells predicts distinct effects on activation and growth. Leukemia. 2016;30:464–72.PubMedCrossRef
68.
go back to reference Gotlib J, Kluin-Nelemans HC, George TI, Akin C, Sotlar K, Hermine O, et al. Efficacy and safety of Midostaurin in advanced systemic mastocytosis. N Engl J Med. 2016;374:2530–41.PubMedCrossRef Gotlib J, Kluin-Nelemans HC, George TI, Akin C, Sotlar K, Hermine O, et al. Efficacy and safety of Midostaurin in advanced systemic mastocytosis. N Engl J Med. 2016;374:2530–41.PubMedCrossRef
69.
go back to reference Degenfeld-Schonburg L, Gamperl S, Stefanzl G, et al. Antineoplastic efficacy profiles of avapritinib and nintedanib in KIT D816V+ systemic mastocytosis: a preclinical study. Am J Cancer Res. 2023;13(2):355–78.PubMedPubMedCentral Degenfeld-Schonburg L, Gamperl S, Stefanzl G, et al. Antineoplastic efficacy profiles of avapritinib and nintedanib in KIT D816V+ systemic mastocytosis: a preclinical study. Am J Cancer Res. 2023;13(2):355–78.PubMedPubMedCentral
70.
go back to reference Griswold IJ, MacPartlin M, Bumm T, et al. Kinase domain mutants of Bcr-Abl exhibit altered transformation potency, kinase activity, and substrate utilization, irrespective of sensitivity to imatinib. Mol Cell Biol. 2006;26(16):6082–93.PubMedPubMedCentralCrossRef Griswold IJ, MacPartlin M, Bumm T, et al. Kinase domain mutants of Bcr-Abl exhibit altered transformation potency, kinase activity, and substrate utilization, irrespective of sensitivity to imatinib. Mol Cell Biol. 2006;26(16):6082–93.PubMedPubMedCentralCrossRef
71.
go back to reference Schneeweiss-Gleixner M, Byrgazov K, Stefanzl G, et al. CDK4/CDK6 inhibition as a novel strategy to suppress the growth and survival of BCR-ABL1T315I+ clones in TKI-resistant CML. EBioMedicine. 2019;50:111–21.PubMedPubMedCentralCrossRef Schneeweiss-Gleixner M, Byrgazov K, Stefanzl G, et al. CDK4/CDK6 inhibition as a novel strategy to suppress the growth and survival of BCR-ABL1T315I+ clones in TKI-resistant CML. EBioMedicine. 2019;50:111–21.PubMedPubMedCentralCrossRef
72.
go back to reference Sponseiler I, Bandian AM, Pusic P, Lion T. Combinatorial treatment options for highly resistant compound mutations in the kinase domain of the BCR::ABL1 fusion gene in Ph-positive leukemias. Am J Hematol. 2024;99(1):E9–E11.PubMedCrossRef Sponseiler I, Bandian AM, Pusic P, Lion T. Combinatorial treatment options for highly resistant compound mutations in the kinase domain of the BCR::ABL1 fusion gene in Ph-positive leukemias. Am J Hematol. 2024;99(1):E9–E11.PubMedCrossRef
73.
go back to reference Valent P, Hadzijusufovic E, Schernthaner GH, Wolf D, Rea D, le Coutre P. Vascular safety issues in CML patients treated with BCR/ABL1 kinase inhibitors. Blood. 2015;125(6):901–6.PubMedCrossRef Valent P, Hadzijusufovic E, Schernthaner GH, Wolf D, Rea D, le Coutre P. Vascular safety issues in CML patients treated with BCR/ABL1 kinase inhibitors. Blood. 2015;125(6):901–6.PubMedCrossRef
74.
go back to reference Hauswirth AW, Florian S, Printz D, Sotlar K, Krauth MT, Fritsch G, et al. Expression of the target receptor CD33 in CD34+/CD38−/CD123+ AML stem cells. Eur J Clin Invest. 2007;37:73–82.PubMedCrossRef Hauswirth AW, Florian S, Printz D, Sotlar K, Krauth MT, Fritsch G, et al. Expression of the target receptor CD33 in CD34+/CD38−/CD123+ AML stem cells. Eur J Clin Invest. 2007;37:73–82.PubMedCrossRef
75.
go back to reference Herrmann H, Cerny-Reiterer S, Gleixner KV, et al. CD34(+)/CD38(−) stem cells in chronic myeloid leukemia express Siglec‑3 (CD33) and are responsive to the CD33-targeting drug gemtuzumab/ozogamicin. Haematologica. 2012;97(2):219–26.PubMedPubMedCentralCrossRef Herrmann H, Cerny-Reiterer S, Gleixner KV, et al. CD34(+)/CD38(−) stem cells in chronic myeloid leukemia express Siglec‑3 (CD33) and are responsive to the CD33-targeting drug gemtuzumab/ozogamicin. Haematologica. 2012;97(2):219–26.PubMedPubMedCentralCrossRef
76.
go back to reference Appelbaum FR, Bernstein ID. Gemtuzumab ozogamicin for acute myeloid leukemia. Blood. 2017;130:2373–6.PubMedCrossRef Appelbaum FR, Bernstein ID. Gemtuzumab ozogamicin for acute myeloid leukemia. Blood. 2017;130:2373–6.PubMedCrossRef
77.
go back to reference Valent P, Bonnet D, Wöhrer S, Andreeff M, Copland M, Chomienne C, Eaves C. Heterogeneity of neoplastic stem cells: theoretical, functional, and clinical implications. Cancer Res. 2013;73(3):1037–45.PubMedCrossRef Valent P, Bonnet D, Wöhrer S, Andreeff M, Copland M, Chomienne C, Eaves C. Heterogeneity of neoplastic stem cells: theoretical, functional, and clinical implications. Cancer Res. 2013;73(3):1037–45.PubMedCrossRef
78.
go back to reference Valent P, Akin C, Arock M, Bock C, George TI, Galli SJ, et al. Proposed terminology and classification of pre-malignant neoplastic conditions: a consensus proposal. EBioMedicine. 2017;26:17–24.PubMedPubMedCentralCrossRef Valent P, Akin C, Arock M, Bock C, George TI, Galli SJ, et al. Proposed terminology and classification of pre-malignant neoplastic conditions: a consensus proposal. EBioMedicine. 2017;26:17–24.PubMedPubMedCentralCrossRef
Metadata
Title
15 years Ludwig Boltzmann Institute for Hematology and Oncology (LBI HO): achievements and future perspectives
Authors
Peter Valent, M.D.
Emir Hadzijusufovic, D.V.M.
Irina Sadovnik, Ph.D.
Thomas W. Grunt, Ph.D.
Barbara Peter, D.V.M.
Michael Willmann, D.V.M.
Harald Herrmann, M.D.
Daniel Ivanov, Ph.D.
Gregor Eisenwort, M.D. Ph.D.
Heidrun Karlic, Ph.D.
Georg Greiner, M.D. Ph.D.
Karoline V. Gleixner, M.D. Ph.D.
Thomas Rülicke, Ph.D.
Maik Dahlhoff, D.V.M.
Philipp Staber, M.D. Ph.D.
Wolfgang R. Sperr, M.D.
Michael Pfeilstöcker, M.D.
Thomas Lion, M.D. Ph.D. MSc.
Felix Keil
Gregor Hoermann
Publication date
26-03-2024
Publisher
Springer Vienna
Published in
memo - Magazine of European Medical Oncology
Print ISSN: 1865-5041
Electronic ISSN: 1865-5076
DOI
https://doi.org/10.1007/s12254-024-00966-w
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine