Skip to main content
Top
Published in: Cancer Cell International 1/2022

Open Access 01-12-2022 | Chronic Lymphocytic Leukemia | Review

A review on the role of mir-16-5p in the carcinogenesis

Authors: Soudeh Ghafouri-Fard, Tayyebeh Khoshbakht, Bashdar Mahmud Hussen, Sara Tharwat Abdullah, Mohammad Taheri, Mohammad Samadian

Published in: Cancer Cell International | Issue 1/2022

Login to get access

Abstract

miR-16-5p is microRNA with important roles in the development of diverse malignancies including neuroblastoma, osteosarcoma, hepatocellular carcinoma, cervical cancer, breast cancer, brain tumors, gastrointestinal cancers, lung cancer and bladder cancer. This miRNA has 22 nucleotides. hsa-miR-16-5p is produced by MIR16-1 gene. First evidence for its participation in the carcinogenesis has been obtained by studies reporting deletion and/or down-regulation of these miRNAs in chronic lymphocytic leukemia. Subsequent studies have shown down-regulation of miR-16-5p in a variety of cancer cell lines and clinical samples. Besides, tumor suppressor role of miR-16-5p has been verified in animal models of different types of cancers. Studies in these models have shown that over-expression of this miRNA or modulation of expression of lncRNAs that sponge this miRNA can block carcinogenic processes. In the current review, we summarize function of miR-16-5p in the development and progression of different cancers.
Literature
1.
go back to reference Wahid F, Shehzad A, Khan T, Kim YY. MicroRNAs: synthesis, mechanism, function, and recent clinical trials. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research. 2010;1803(11):1231–43. Wahid F, Shehzad A, Khan T, Kim YY. MicroRNAs: synthesis, mechanism, function, and recent clinical trials. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research. 2010;1803(11):1231–43.
2.
go back to reference Peng Y, Croce CM. The role of MicroRNAs in human cancer. Signal Transduct Target therapy. 2016;1(1):1–9.CrossRef Peng Y, Croce CM. The role of MicroRNAs in human cancer. Signal Transduct Target therapy. 2016;1(1):1–9.CrossRef
3.
go back to reference Galvão-Lima LJ, Morais AH, Valentim RA, Barreto EJ. miRNAs as biomarkers for early cancer detection and their application in the development of new diagnostic tools. Biomed Eng Online. 2021;20(1):1–20.CrossRef Galvão-Lima LJ, Morais AH, Valentim RA, Barreto EJ. miRNAs as biomarkers for early cancer detection and their application in the development of new diagnostic tools. Biomed Eng Online. 2021;20(1):1–20.CrossRef
4.
go back to reference Filipów S, Łaczmański Ł. Blood Circulating miRNAs as Cancer Biomarkers for Diagnosis and Surgical Treatment Response. Front Genet. 2019;10:169-. PubMed PMID: 30915102. eng.PubMedPubMedCentralCrossRef Filipów S, Łaczmański Ł. Blood Circulating miRNAs as Cancer Biomarkers for Diagnosis and Surgical Treatment Response. Front Genet. 2019;10:169-. PubMed PMID: 30915102. eng.PubMedPubMedCentralCrossRef
5.
go back to reference Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proceedings of the national academy of sciences. 2002;99(24):15524-9. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proceedings of the national academy of sciences. 2002;99(24):15524-9.
6.
go back to reference Calin GA, Cimmino A, Fabbri M, Ferracin M, Wojcik SE, Shimizu M, et al. MiR-15a and miR-16-1 cluster functions in human leukemia. Proceedings of the National Academy of Sciences. 2008;105(13):5166-71. Calin GA, Cimmino A, Fabbri M, Ferracin M, Wojcik SE, Shimizu M, et al. MiR-15a and miR-16-1 cluster functions in human leukemia. Proceedings of the National Academy of Sciences. 2008;105(13):5166-71.
7.
go back to reference Chava S, Reynolds CP, Pathania AS, Gorantla S, Poluektova LY, Coulter DW, et al. miR-15a‐5p, miR‐15b‐5p, and miR‐16‐5p inhibit tumor progression by directly targeting MYCN in neuroblastoma. Mol Oncol. 2020;14(1):180–96.PubMedCrossRef Chava S, Reynolds CP, Pathania AS, Gorantla S, Poluektova LY, Coulter DW, et al. miR-15a‐5p, miR‐15b‐5p, and miR‐16‐5p inhibit tumor progression by directly targeting MYCN in neuroblastoma. Mol Oncol. 2020;14(1):180–96.PubMedCrossRef
8.
go back to reference Zhang X, Zhang J, Liu Q, Zhao Y, Zhang W, Yang H. Circ-CUX1 accelerates the progression of neuroblastoma via miR-16-5p/DMRT2 axis. Neurochem Res. 2020;45(12):2840–55.PubMedCrossRef Zhang X, Zhang J, Liu Q, Zhao Y, Zhang W, Yang H. Circ-CUX1 accelerates the progression of neuroblastoma via miR-16-5p/DMRT2 axis. Neurochem Res. 2020;45(12):2840–55.PubMedCrossRef
9.
go back to reference Gu Z, Li Z, Xu R, Zhu X, Hu R, Xue Y, et al. miR-16-5p Suppresses Progression and Invasion of Osteosarcoma via Targeting at Smad3. Front Pharmacol. 2020;11:1324.PubMedPubMedCentralCrossRef Gu Z, Li Z, Xu R, Zhu X, Hu R, Xue Y, et al. miR-16-5p Suppresses Progression and Invasion of Osteosarcoma via Targeting at Smad3. Front Pharmacol. 2020;11:1324.PubMedPubMedCentralCrossRef
10.
go back to reference Yu J, Zhang H, Yan L, Chang F, Jia Z, Yang X. microRNA-16-5p targeted tetraspanin 15 gene to inhibit the proliferation, migration and invasion of osteosarcoma cell through phospoinositide 3-kinase/protein kinase B signaling pathway. Zhonghua yi xue za zhi. 2020;100(21):1668–75.PubMed Yu J, Zhang H, Yan L, Chang F, Jia Z, Yang X. microRNA-16-5p targeted tetraspanin 15 gene to inhibit the proliferation, migration and invasion of osteosarcoma cell through phospoinositide 3-kinase/protein kinase B signaling pathway. Zhonghua yi xue za zhi. 2020;100(21):1668–75.PubMed
11.
go back to reference Liu Z, Wang Y, Wang L, Yao B, Sun L, Liu R, et al. Long non-coding RNA AGAP2-AS1, functioning as a competitive endogenous RNA, upregulates ANXA11 expression by sponging miR-16-5p and promotes proliferation and metastasis in hepatocellular carcinoma. J Experimental Clin Cancer Res. 2019;38(1):1–15.CrossRef Liu Z, Wang Y, Wang L, Yao B, Sun L, Liu R, et al. Long non-coding RNA AGAP2-AS1, functioning as a competitive endogenous RNA, upregulates ANXA11 expression by sponging miR-16-5p and promotes proliferation and metastasis in hepatocellular carcinoma. J Experimental Clin Cancer Res. 2019;38(1):1–15.CrossRef
12.
go back to reference Cheng B, Ding F, Huang C, Xiao H, Fei F, Li J. Role of miR-16-5p in the proliferation and metastasis of hepatocellular carcinoma. Eur Rev Med Pharmacol Sci. 2019;23(1):137–45.PubMed Cheng B, Ding F, Huang C, Xiao H, Fei F, Li J. Role of miR-16-5p in the proliferation and metastasis of hepatocellular carcinoma. Eur Rev Med Pharmacol Sci. 2019;23(1):137–45.PubMed
13.
go back to reference Zhou Y, Huang Y, Dai T, Hua Z, Xu J, Lin Y, et al. LncRNA TTN-AS1 intensifies sorafenib resistance in hepatocellular carcinoma by sponging miR-16-5p and upregulation of cyclin E1. Biomed Pharmacother. 2021;133:111030.PubMedCrossRef Zhou Y, Huang Y, Dai T, Hua Z, Xu J, Lin Y, et al. LncRNA TTN-AS1 intensifies sorafenib resistance in hepatocellular carcinoma by sponging miR-16-5p and upregulation of cyclin E1. Biomed Pharmacother. 2021;133:111030.PubMedCrossRef
14.
go back to reference Zhang Y, Lu C, Cui H. Long non-coding RNA SNHG22 facilitates hepatocellular carcinoma tumorigenesis and angiogenesis via DNA methylation of microRNA miR-16-5p. Bioengineered. 2021;12(1):7446–58.PubMedPubMedCentralCrossRef Zhang Y, Lu C, Cui H. Long non-coding RNA SNHG22 facilitates hepatocellular carcinoma tumorigenesis and angiogenesis via DNA methylation of microRNA miR-16-5p. Bioengineered. 2021;12(1):7446–58.PubMedPubMedCentralCrossRef
15.
go back to reference Zhang S, Wang W, Wu X, Liu W, Ding F. miR-16‐5p modulates the radiosensitivity of cervical cancer cells via regulating coactivator‐associated arginine methyltransferase 1. Pathol Int. 2020;70(1):12–20.PubMedCrossRef Zhang S, Wang W, Wu X, Liu W, Ding F. miR-16‐5p modulates the radiosensitivity of cervical cancer cells via regulating coactivator‐associated arginine methyltransferase 1. Pathol Int. 2020;70(1):12–20.PubMedCrossRef
16.
go back to reference Zhao Z, Ji M, Wang Q, He N, Li Y. miR-16-5p/PDK4-mediated metabolic reprogramming is involved in chemoresistance of cervical cancer. Mol Therapy-Oncolytics. 2020;17:509–17.CrossRef Zhao Z, Ji M, Wang Q, He N, Li Y. miR-16-5p/PDK4-mediated metabolic reprogramming is involved in chemoresistance of cervical cancer. Mol Therapy-Oncolytics. 2020;17:509–17.CrossRef
18.
go back to reference Wang Z, Hu S, Li X, Liu Z, Han D, Wang Y, et al. MiR-16-5p suppresses breast cancer proliferation by targeting ANLN. BMC Cancer. 2021;21(1):1–12.CrossRef Wang Z, Hu S, Li X, Liu Z, Han D, Wang Y, et al. MiR-16-5p suppresses breast cancer proliferation by targeting ANLN. BMC Cancer. 2021;21(1):1–12.CrossRef
19.
go back to reference Qu Y, Liu H, Lv X, Liu Y, Wang X, Zhang M, et al. MicroRNA-16-5p overexpression suppresses proliferation and invasion as well as triggers apoptosis by targeting VEGFA expression in breast carcinoma. Oncotarget. 2017;8(42):72400.PubMedPubMedCentralCrossRef Qu Y, Liu H, Lv X, Liu Y, Wang X, Zhang M, et al. MicroRNA-16-5p overexpression suppresses proliferation and invasion as well as triggers apoptosis by targeting VEGFA expression in breast carcinoma. Oncotarget. 2017;8(42):72400.PubMedPubMedCentralCrossRef
20.
go back to reference Zhang H, Zhang J, Dong L, Ma R. LncRNA ATXN8OS enhances tamoxifen resistance in breast cancer. Open Med. 2021;16(1):68–80.CrossRef Zhang H, Zhang J, Dong L, Ma R. LncRNA ATXN8OS enhances tamoxifen resistance in breast cancer. Open Med. 2021;16(1):68–80.CrossRef
21.
go back to reference Krell A, Wolter M, Stojcheva N, Hertler C, Liesenberg F, Zapatka M, et al. MiR-16‐5p is frequently down‐regulated in astrocytic gliomas and modulates glioma cell proliferation, apoptosis and response to cytotoxic therapy. Neuropathol Appl Neurobiol. 2019;45(5):441–58.PubMed Krell A, Wolter M, Stojcheva N, Hertler C, Liesenberg F, Zapatka M, et al. MiR-16‐5p is frequently down‐regulated in astrocytic gliomas and modulates glioma cell proliferation, apoptosis and response to cytotoxic therapy. Neuropathol Appl Neurobiol. 2019;45(5):441–58.PubMed
22.
go back to reference You S, He X, Wang M, Mao L, Zhang L. Tanshinone IIA. Suppresses Glioma Cell Proliferation, Migration and Invasion Both in vitro and in vivo Partially Through miR-16-5p/Talin-1 (TLN1) Axis. Cancer Manage Res. 2020;12:11309.CrossRef You S, He X, Wang M, Mao L, Zhang L. Tanshinone IIA. Suppresses Glioma Cell Proliferation, Migration and Invasion Both in vitro and in vivo Partially Through miR-16-5p/Talin-1 (TLN1) Axis. Cancer Manage Res. 2020;12:11309.CrossRef
23.
go back to reference Yu M, Lu W, Cao Z, Xuan T. LncRNA LINC00662 Exerts an Oncogenic Effect on Osteosarcoma by the miR-16-5p/ITPR1 Axis. Journal of oncology. 2021;2021. Yu M, Lu W, Cao Z, Xuan T. LncRNA LINC00662 Exerts an Oncogenic Effect on Osteosarcoma by the miR-16-5p/ITPR1 Axis. Journal of oncology. 2021;2021.
24.
go back to reference Xu M, Sun X, Liu Y, Chang L, Te Wang H, Wang S. hsa_circ_0005721 triggers proliferation, migration and invasion of osteosarcoma by upregulating the linear transcript TEP1. J BU ON: Official J Balkan Union Oncol. 2021;26(4):1588–94. Xu M, Sun X, Liu Y, Chang L, Te Wang H, Wang S. hsa_circ_0005721 triggers proliferation, migration and invasion of osteosarcoma by upregulating the linear transcript TEP1. J BU ON: Official J Balkan Union Oncol. 2021;26(4):1588–94.
25.
go back to reference Xie F, Xie G, Sun Q. Long noncoding RNA DLX6-AS1 promotes the progression in cervical cancer by targeting miR-16-5p/ARPP19 axis. Cancer Biother Radiopharm. 2020;35(2):129–36.PubMedCrossRef Xie F, Xie G, Sun Q. Long noncoding RNA DLX6-AS1 promotes the progression in cervical cancer by targeting miR-16-5p/ARPP19 axis. Cancer Biother Radiopharm. 2020;35(2):129–36.PubMedCrossRef
26.
go back to reference Jo H, Park Y, Kim J, Kwon H, Kim T, Lee J, et al. Elevated miR-16-5p induces somatostatin receptor 2 expression in neuroendocrine tumor cells. PLoS ONE. 2020;15(10):e0240107.PubMedPubMedCentralCrossRef Jo H, Park Y, Kim J, Kwon H, Kim T, Lee J, et al. Elevated miR-16-5p induces somatostatin receptor 2 expression in neuroendocrine tumor cells. PLoS ONE. 2020;15(10):e0240107.PubMedPubMedCentralCrossRef
27.
go back to reference Zhang H, Yang K, Ren T, Huang Y, Tang X, Guo W. miR-16-5p inhibits chordoma cell proliferation, invasion and metastasis by targeting Smad3. Cell Death Dis. 2018;9(6):1–13.CrossRef Zhang H, Yang K, Ren T, Huang Y, Tang X, Guo W. miR-16-5p inhibits chordoma cell proliferation, invasion and metastasis by targeting Smad3. Cell Death Dis. 2018;9(6):1–13.CrossRef
28.
go back to reference Wang C, Wang Y, Wang J, Guo X. LINC00662 triggers malignant progression of chordoma by the activation of RNF144B via targeting miR-16-5p. Eur Rev Med Pharmacol Sci. 2020;24(3):1007–22.PubMed Wang C, Wang Y, Wang J, Guo X. LINC00662 triggers malignant progression of chordoma by the activation of RNF144B via targeting miR-16-5p. Eur Rev Med Pharmacol Sci. 2020;24(3):1007–22.PubMed
29.
go back to reference Li Z, Suo B, Long G, Gao Y, Song J, Zhang M, et al. Exosomal miRNA-16-5p derived from M1 macrophages enhances T cell-dependent immune response by regulating PD-L1 in gastric cancer. Front Cell Dev Biology. 2020;8:1362.CrossRef Li Z, Suo B, Long G, Gao Y, Song J, Zhang M, et al. Exosomal miRNA-16-5p derived from M1 macrophages enhances T cell-dependent immune response by regulating PD-L1 in gastric cancer. Front Cell Dev Biology. 2020;8:1362.CrossRef
30.
go back to reference Zhu C, Huang Q, Zhu H. Melatonin inhibits the proliferation of gastric cancer cells through regulating the miR-16-5p-Smad3 pathway. DNA Cell Biol. 2018;37(3):244–52.PubMedCrossRef Zhu C, Huang Q, Zhu H. Melatonin inhibits the proliferation of gastric cancer cells through regulating the miR-16-5p-Smad3 pathway. DNA Cell Biol. 2018;37(3):244–52.PubMedCrossRef
31.
go back to reference Wang H, Di X, Bi Y, Sun S, Wang T. Long non-coding RNA LINC00649 regulates YES-associated protein 1 (YAP1)/Hippo pathway to accelerate gastric cancer (GC) progression via sequestering miR-16-5p. Bioengineered. 2021;12(1):1791–802.PubMedPubMedCentralCrossRef Wang H, Di X, Bi Y, Sun S, Wang T. Long non-coding RNA LINC00649 regulates YES-associated protein 1 (YAP1)/Hippo pathway to accelerate gastric cancer (GC) progression via sequestering miR-16-5p. Bioengineered. 2021;12(1):1791–802.PubMedPubMedCentralCrossRef
32.
go back to reference Zhuo S, Sun M, Bai R, Lu D, Di S, Ma T, et al. Long intergenic non-coding RNA 00473 promotes proliferation and migration of gastric cancer via the miR-16-5p/CCND2 axis and by regulating AQP3. Cell Death Dis. 2021;12(5):1–14.CrossRef Zhuo S, Sun M, Bai R, Lu D, Di S, Ma T, et al. Long intergenic non-coding RNA 00473 promotes proliferation and migration of gastric cancer via the miR-16-5p/CCND2 axis and by regulating AQP3. Cell Death Dis. 2021;12(5):1–14.CrossRef
33.
go back to reference Wang Q, Chen Y, Lu H, Wang H, Feng H, Xu J, et al. Quercetin radiosensitizes non-small cell lung cancer cells through the regulation of miR‐16‐5p/WEE1 axis. IUBMB Life. 2020;72(5):1012–22.PubMedCrossRef Wang Q, Chen Y, Lu H, Wang H, Feng H, Xu J, et al. Quercetin radiosensitizes non-small cell lung cancer cells through the regulation of miR‐16‐5p/WEE1 axis. IUBMB Life. 2020;72(5):1012–22.PubMedCrossRef
34.
go back to reference Peng Q, Chen Y, Li C. Long noncoding RNA Linc00210 promotes non-small cell lung cancer progression via sponging miR-16-5p/PTK2 axis. Eur Rev Med Pharmacol Sci. 2020;24(18):9438–52.PubMed Peng Q, Chen Y, Li C. Long noncoding RNA Linc00210 promotes non-small cell lung cancer progression via sponging miR-16-5p/PTK2 axis. Eur Rev Med Pharmacol Sci. 2020;24(18):9438–52.PubMed
35.
go back to reference Du R, Jiang F, Yin Y, Xu J, Li X, Hu L, et al. Knockdown of lncRNA X inactive specific transcript (XIST) radiosensitizes non-small cell lung cancer (NSCLC) cells through regulation of miR-16-5p/WEE1 G2 checkpoint kinase (WEE1) axis. Int J ImmunoPathol Pharmacol. 2021;35:2058738420966087.PubMedPubMedCentralCrossRef Du R, Jiang F, Yin Y, Xu J, Li X, Hu L, et al. Knockdown of lncRNA X inactive specific transcript (XIST) radiosensitizes non-small cell lung cancer (NSCLC) cells through regulation of miR-16-5p/WEE1 G2 checkpoint kinase (WEE1) axis. Int J ImmunoPathol Pharmacol. 2021;35:2058738420966087.PubMedPubMedCentralCrossRef
36.
go back to reference Wu H, Wei M, Jiang X, Tan J, Xu W, Fan X, et al. lncRNA PVT1 promotes tumorigenesis of colorectal cancer by stabilizing miR-16-5p and interacting with the VEGFA/VEGFR1/AKT axis. Mol Therapy-Nucleic Acids. 2020;20:438–50.CrossRef Wu H, Wei M, Jiang X, Tan J, Xu W, Fan X, et al. lncRNA PVT1 promotes tumorigenesis of colorectal cancer by stabilizing miR-16-5p and interacting with the VEGFA/VEGFR1/AKT axis. Mol Therapy-Nucleic Acids. 2020;20:438–50.CrossRef
37.
go back to reference Huang X, Hou Y, Weng X, Pang W, Hou L, Liang Y, et al. Diethyldithiocarbamate-copper complex (CuET) inhibits colorectal cancer progression via miR-16-5p and 15b-5p/ALDH1A3/PKM2 axis-mediated aerobic glycolysis pathway. Oncogenesis. 2021;10(1):1–16.CrossRef Huang X, Hou Y, Weng X, Pang W, Hou L, Liang Y, et al. Diethyldithiocarbamate-copper complex (CuET) inhibits colorectal cancer progression via miR-16-5p and 15b-5p/ALDH1A3/PKM2 axis-mediated aerobic glycolysis pathway. Oncogenesis. 2021;10(1):1–16.CrossRef
38.
go back to reference Xu Y, Shen L, Li F, Yang J, Wan X, Ouyang M. microRNA-16‐5p‐containing exosomes derived from bone marrow‐derived mesenchymal stem cells inhibit proliferation, migration, and invasion, while promoting apoptosis of colorectal cancer cells by downregulating ITGA2. J Cell Physiol. 2019;234(11):21380–94.PubMedCrossRef Xu Y, Shen L, Li F, Yang J, Wan X, Ouyang M. microRNA-16‐5p‐containing exosomes derived from bone marrow‐derived mesenchymal stem cells inhibit proliferation, migration, and invasion, while promoting apoptosis of colorectal cancer cells by downregulating ITGA2. J Cell Physiol. 2019;234(11):21380–94.PubMedCrossRef
39.
go back to reference Papagiannopoulos CI, Theodoroula NF, Vizirianakis IS. miR-16-5p Promotes Erythroid Maturation of Erythroleukemia Cells by Regulating Ribosome Biogenesis. Pharmaceuticals. 2021;14(2):137.PubMedPubMedCentralCrossRef Papagiannopoulos CI, Theodoroula NF, Vizirianakis IS. miR-16-5p Promotes Erythroid Maturation of Erythroleukemia Cells by Regulating Ribosome Biogenesis. Pharmaceuticals. 2021;14(2):137.PubMedPubMedCentralCrossRef
40.
go back to reference Wang F, Wang W, Lu L, Xie Y, Yan J, Chen Y, et al. MicroRNA–16–5p regulates cell survival, cell cycle and apoptosis by targeting AKT3 in prostate cancer cells. Oncol Rep. 2020;44(3):1282–92.PubMedCrossRef Wang F, Wang W, Lu L, Xie Y, Yan J, Chen Y, et al. MicroRNA–16–5p regulates cell survival, cell cycle and apoptosis by targeting AKT3 in prostate cancer cells. Oncol Rep. 2020;44(3):1282–92.PubMedCrossRef
41.
go back to reference Wang F, Mao A, Tang J, Zhang Q, Yan J, Wang Y, et al. microRNA-16‐5p enhances radiosensitivity through modulating Cyclin D1/E1–pRb–E2F1 pathway in prostate cancer cells. J Cell Physiol. 2019;234(8):13182–90.PubMedCrossRef Wang F, Mao A, Tang J, Zhang Q, Yan J, Wang Y, et al. microRNA-16‐5p enhances radiosensitivity through modulating Cyclin D1/E1–pRb–E2F1 pathway in prostate cancer cells. J Cell Physiol. 2019;234(8):13182–90.PubMedCrossRef
42.
go back to reference Chen S-S, Tang C-H, Chie M-J, Tsai C-H, Fong Y-C, Lu Y-C, et al. Resistin facilitates VEGF-A-dependent angiogenesis by inhibiting miR-16-5p in human chondrosarcoma cells. Cell Death Dis. 2019;10(1):1–12.CrossRef Chen S-S, Tang C-H, Chie M-J, Tsai C-H, Fong Y-C, Lu Y-C, et al. Resistin facilitates VEGF-A-dependent angiogenesis by inhibiting miR-16-5p in human chondrosarcoma cells. Cell Death Dis. 2019;10(1):1–12.CrossRef
43.
go back to reference Sang S, Zhang Z, Qin S, Li C, Dong Y. MicroRNA-16-5p inhibits osteoclastogenesis in giant cell tumor of bone. BioMed research international. 2017;2017. Sang S, Zhang Z, Qin S, Li C, Dong Y. MicroRNA-16-5p inhibits osteoclastogenesis in giant cell tumor of bone. BioMed research international. 2017;2017.
44.
go back to reference Feng X, Dong X, Wu D, Zhao H, Xu C, Li H. Long noncoding RNA small nucleolar RNA host gene 12 promotes papillary thyroid carcinoma cell growth and invasion by targeting miR-16-5p. Histol Histopathol. 2019;35(2):217–24.PubMed Feng X, Dong X, Wu D, Zhao H, Xu C, Li H. Long noncoding RNA small nucleolar RNA host gene 12 promotes papillary thyroid carcinoma cell growth and invasion by targeting miR-16-5p. Histol Histopathol. 2019;35(2):217–24.PubMed
45.
go back to reference Ren Y, Huang W, Weng G, Cui P, Liang H, Li Y. lncrna PVT1 promotes proliferation, invasion and epithelial–mesenchymal transition of renal cell carcinoma cells through downregulation of mir-16-5p. OncoTargets and therapy. 2019;12:2563.PubMedPubMedCentralCrossRef Ren Y, Huang W, Weng G, Cui P, Liang H, Li Y. lncrna PVT1 promotes proliferation, invasion and epithelial–mesenchymal transition of renal cell carcinoma cells through downregulation of mir-16-5p. OncoTargets and therapy. 2019;12:2563.PubMedPubMedCentralCrossRef
46.
go back to reference He J, Qiu Z, Zhang H, Gao Z, Jiang Y, Li Z, et al. MicroRNA–16–5p/BIMP1/NF–κB axis regulates autophagy to exert a tumor–suppressive effect on bladder cancer. Mol Med Rep. 2021;24(2):1–10.CrossRef He J, Qiu Z, Zhang H, Gao Z, Jiang Y, Li Z, et al. MicroRNA–16–5p/BIMP1/NF–κB axis regulates autophagy to exert a tumor–suppressive effect on bladder cancer. Mol Med Rep. 2021;24(2):1–10.CrossRef
47.
go back to reference Liu Y, Huang X, Guo L, Luo N. LINC00649 Facilitates the Cellular Process of Bladder Cancer Cells via Signaling Axis miR-16-5p/JARID2. Urologia Internationalis. 2021:1–9. Liu Y, Huang X, Guo L, Luo N. LINC00649 Facilitates the Cellular Process of Bladder Cancer Cells via Signaling Axis miR-16-5p/JARID2. Urologia Internationalis. 2021:1–9.
48.
go back to reference Gao Y, Ouyang X, Zuo L, Xiao Y, Sun Y, Chang C, et al. R-2HG downregulates ERα to inhibit cholangiocarcinoma via the FTO/m6A-methylated ERα/miR16-5p/YAP1 signal pathway. Mol Therapy-Oncolytics. 2021;23:65–81.CrossRef Gao Y, Ouyang X, Zuo L, Xiao Y, Sun Y, Chang C, et al. R-2HG downregulates ERα to inhibit cholangiocarcinoma via the FTO/m6A-methylated ERα/miR16-5p/YAP1 signal pathway. Mol Therapy-Oncolytics. 2021;23:65–81.CrossRef
49.
go back to reference Casabonne D, Benavente Y, Seifert J, Costas L, Armesto M, Arestin M, et al. Serum levels of hsa-miR‐16‐5p, hsa‐miR‐29a‐3p, hsa‐miR‐150‐5p, hsa‐miR‐155‐5p and hsa‐miR‐223‐3p and subsequent risk of chronic lymphocytic leukemia in the EPIC study. Int J Cancer. 2020;147(5):1315–24.PubMedCrossRef Casabonne D, Benavente Y, Seifert J, Costas L, Armesto M, Arestin M, et al. Serum levels of hsa-miR‐16‐5p, hsa‐miR‐29a‐3p, hsa‐miR‐150‐5p, hsa‐miR‐155‐5p and hsa‐miR‐223‐3p and subsequent risk of chronic lymphocytic leukemia in the EPIC study. Int J Cancer. 2020;147(5):1315–24.PubMedCrossRef
50.
go back to reference Saral MA, Tuncer SB, Odemis DA, Erdogan OS, Erciyas SK, Saip P, et al. New biomarkers in peripheral blood of patients with ovarian cancer: high expression levels of miR-16-5p, miR-17-5p, and miR-638. Archives of Gynecology and Obstetrics. 2021:1–9. Saral MA, Tuncer SB, Odemis DA, Erdogan OS, Erciyas SK, Saip P, et al. New biomarkers in peripheral blood of patients with ovarian cancer: high expression levels of miR-16-5p, miR-17-5p, and miR-638. Archives of Gynecology and Obstetrics. 2021:1–9.
51.
go back to reference Lee TJ, Yuan X, Kerr K, Yoo JY, Kim DH, Kaur B, et al. Strategies to Modulate MicroRNA Functions for the Treatment of Cancer or Organ Injury. Pharmacol Rev. 2020 Jul;72(3):639–67. PubMed PMID: 32554488. Pubmed Central PMCID: PMC7300323. Epub 2020/06/20. eng.PubMedPubMedCentralCrossRef Lee TJ, Yuan X, Kerr K, Yoo JY, Kim DH, Kaur B, et al. Strategies to Modulate MicroRNA Functions for the Treatment of Cancer or Organ Injury. Pharmacol Rev. 2020 Jul;72(3):639–67. PubMed PMID: 32554488. Pubmed Central PMCID: PMC7300323. Epub 2020/06/20. eng.PubMedPubMedCentralCrossRef
Metadata
Title
A review on the role of mir-16-5p in the carcinogenesis
Authors
Soudeh Ghafouri-Fard
Tayyebeh Khoshbakht
Bashdar Mahmud Hussen
Sara Tharwat Abdullah
Mohammad Taheri
Mohammad Samadian
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2022
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-022-02754-0

Other articles of this Issue 1/2022

Cancer Cell International 1/2022 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine