Skip to main content
Top
Published in: European Journal of Medical Research 1/2023

Open Access 01-12-2023 | Chronic Kidney Disease | Research

The characteristics of extrachromosomal circular DNA in patients with end-stage renal disease

Authors: Yue Peng, Yixi Li, Wei Zhang, Yu ShangGuan, Ting Xie, Kang Wang, Jing Qiu, Wenjun Pu, Biying Hu, Xinzhou Zhang, Lianghong Yin, Donge Tang, Yong Dai

Published in: European Journal of Medical Research | Issue 1/2023

Login to get access

Abstract

Background

End-stage renal disease (ESRD) is the final stage of chronic kidney disease (CKD). In addition to the structurally intact chromosome genomic DNA, there is a double-stranded circular DNA called extrachromosomal circular DNA (eccDNA), which is thought to be involved in the epigenetic regulation of human disease. However, the features of eccDNA in ESRD patients are barely known. In this study, we identified eccDNA from ESRD patients and healthy people, as well as revealed the characteristics of eccDNA in patients with ESRD.

Methods

Using the high-throughput Circle-Sequencing technique, we examined the eccDNA in peripheral blood mononuclear cells (PBMCs) from healthy people (NC) (n = 12) and ESRD patients (n = 16). We analyzed the length distribution, genome elements, and motifs feature of eccDNA in ESRD patients. Then, after identifying the specific eccDNA in ESRD patients, we explored the potential functions of the target genes of the specific eccDNA. Finally, we investigated the probable hub eccDNA using algorithms.

Results

In total, 14,431 and 11,324 eccDNAs were found in the ESRD and NC groups, respectively, with sizes ranging from 0.01 kb to 60 kb at most. Additionally, the ESRD group had a greater distribution of eccDNA on chromosomes 4, 11, 13, and 20. In two groups, we also discovered several motifs of specific eccDNAs. Furthermore, we identified 13,715 specific eccDNAs in the ESRD group and 10,585 specific eccDNAs in the NC group, both of which were largely annotated as mRNA catalog. Pathway studies using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) showed that the specific eccDNA in ESRD was markedly enriched in cell junction and communication pathways. Furthermore, we identified potentially 20 hub eccDNA-targeting genes from all ESRD-specific eccDNA-targeting genes. Also, we found that 39 eccDNA-targeting genes were associated with ESRD, and some of these eccDNAs may be related to the pathogenesis of ESRD.

Conclusions

Our findings revealed the characteristics of eccDNA in ESRD patients and discovered potentially hub and ESRD-relevant eccDNA-targeting genes, suggesting a novel probable mechanism of ESRD.
Appendix
Available only for authorised users
Literature
1.
go back to reference Johnson CA, Levey AS, Coresh J, Levin A, Eknoyan JG, et al. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis. 2002;39(2 Suppl 1):S1–266. Johnson CA, Levey AS, Coresh J, Levin A, Eknoyan JG, et al. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis. 2002;39(2 Suppl 1):S1–266.
2.
go back to reference Wang J, Zhang L, Tang SC, Kashihara N, Kim YS, Togtokh A, et al. Disease burden and challenges of chronic kidney disease in North and East Asia. Kidney Int. 2018;94(1):22–5.PubMedCrossRef Wang J, Zhang L, Tang SC, Kashihara N, Kim YS, Togtokh A, et al. Disease burden and challenges of chronic kidney disease in North and East Asia. Kidney Int. 2018;94(1):22–5.PubMedCrossRef
3.
go back to reference Zhang L, Wang J, Yang CW, Tang SC, Kashihara N, Kim YS, et al. International Society of Nephrology Global Kidney Health Atlas: structures, organization and services for the management of kidney failure in North and East Asia. Kidney Int Suppl. 2011;11(2):e77–85.CrossRef Zhang L, Wang J, Yang CW, Tang SC, Kashihara N, Kim YS, et al. International Society of Nephrology Global Kidney Health Atlas: structures, organization and services for the management of kidney failure in North and East Asia. Kidney Int Suppl. 2011;11(2):e77–85.CrossRef
4.
go back to reference Zhang L, Long J, Jiang W, Shi Y, He X, Zhou Z, et al. Trends in chronic kidney disease in China. N Engl J Med. 2016;375(9):905–6.PubMedCrossRef Zhang L, Long J, Jiang W, Shi Y, He X, Zhou Z, et al. Trends in chronic kidney disease in China. N Engl J Med. 2016;375(9):905–6.PubMedCrossRef
5.
go back to reference Malekmakan L, Tadayon T, Roozbeh J, Sayadi M. End-stage renal disease in the Middle East: a systematic review and meta-analysis. Iran J Kidney Dis. 2018;12(4):195–203.PubMed Malekmakan L, Tadayon T, Roozbeh J, Sayadi M. End-stage renal disease in the Middle East: a systematic review and meta-analysis. Iran J Kidney Dis. 2018;12(4):195–203.PubMed
6.
go back to reference Malekmakan L, Malekmakan A, Daneshian A, Pakfetrat M, Roosbeh J. Hypertension and diabetes remain the main causes of chronic renal failure in Fars Province, Iran 2013. Saudi J Kidney Dis Transpl. 2016;27(2):423–4.PubMedCrossRef Malekmakan L, Malekmakan A, Daneshian A, Pakfetrat M, Roosbeh J. Hypertension and diabetes remain the main causes of chronic renal failure in Fars Province, Iran 2013. Saudi J Kidney Dis Transpl. 2016;27(2):423–4.PubMedCrossRef
7.
go back to reference Liyanage T, Ninomiya T, Jha V, Neal B, Patrice HM, Okpechi I, et al. Worldwide access to treatment for end-stage kidney disease: a systematic review. Lancet. 2015;385(9981):1975–82.PubMedCrossRef Liyanage T, Ninomiya T, Jha V, Neal B, Patrice HM, Okpechi I, et al. Worldwide access to treatment for end-stage kidney disease: a systematic review. Lancet. 2015;385(9981):1975–82.PubMedCrossRef
8.
go back to reference Arogundade FA, Omotoso BA, Adelakun A, Bamikefa T, Ezeugonwa R, Omosule B, et al. Burden of end-stage renal disease in sub-Saharan Africa. Clin Nephrol. 2020;93(1):3–7.PubMedCrossRef Arogundade FA, Omotoso BA, Adelakun A, Bamikefa T, Ezeugonwa R, Omosule B, et al. Burden of end-stage renal disease in sub-Saharan Africa. Clin Nephrol. 2020;93(1):3–7.PubMedCrossRef
9.
go back to reference Herzog CA, Asinger RW, Berger AK, Charytan DM, Díez J, Hart RG, et al. Cardiovascular disease in chronic kidney disease. A clinical update from kidney disease: improving global outcomes (KDIGO). Kidney Int. 2011;80(6):572–86.PubMedCrossRef Herzog CA, Asinger RW, Berger AK, Charytan DM, Díez J, Hart RG, et al. Cardiovascular disease in chronic kidney disease. A clinical update from kidney disease: improving global outcomes (KDIGO). Kidney Int. 2011;80(6):572–86.PubMedCrossRef
10.
go back to reference Wong G, Staplin N, Emberson J, Baigent C, Turner R, Chalmers J, et al. Chronic kidney disease and the risk of cancer: an individual patient data meta-analysis of 32,057 participants from six prospective studies. BMC Cancer. 2016;16:488.CrossRefPubMedPubMedCentral Wong G, Staplin N, Emberson J, Baigent C, Turner R, Chalmers J, et al. Chronic kidney disease and the risk of cancer: an individual patient data meta-analysis of 32,057 participants from six prospective studies. BMC Cancer. 2016;16:488.CrossRefPubMedPubMedCentral
11.
12.
go back to reference Cox D, Yuncken C, Spriggs AI. Minute chromatin bodies in malignant tumours of childhood. Lancet. 1965;1(7402):55–8.PubMedCrossRef Cox D, Yuncken C, Spriggs AI. Minute chromatin bodies in malignant tumours of childhood. Lancet. 1965;1(7402):55–8.PubMedCrossRef
13.
go back to reference Møller HD, Mohiyuddin M, Prada-Luengo I, Sailani MR, Halling JF, Plomgaard P, et al. Circular DNA elements of chromosomal origin are common in healthy human somatic tissue. Nat Commun. 2018;9(1):1069.PubMedPubMedCentralCrossRef Møller HD, Mohiyuddin M, Prada-Luengo I, Sailani MR, Halling JF, Plomgaard P, et al. Circular DNA elements of chromosomal origin are common in healthy human somatic tissue. Nat Commun. 2018;9(1):1069.PubMedPubMedCentralCrossRef
14.
go back to reference Molin WT, Yaguchi A, Blenner M, Saski CA. Autonomous replication sequences from the Amaranthus palmeri eccDNA replicon enable replication in yeast. BMC Res Notes. 2020;13(1):330.PubMedPubMedCentralCrossRef Molin WT, Yaguchi A, Blenner M, Saski CA. Autonomous replication sequences from the Amaranthus palmeri eccDNA replicon enable replication in yeast. BMC Res Notes. 2020;13(1):330.PubMedPubMedCentralCrossRef
15.
go back to reference Paulsen T, Shibata Y, Kumar P, Dillon L, Dutta A. Small extrachromosomal circular DNAs, microDNA, produce short regulatory RNAs that suppress gene expression independent of canonical promoters. Nucleic Acids Res. 2019;47(9):4586–96.PubMedPubMedCentralCrossRef Paulsen T, Shibata Y, Kumar P, Dillon L, Dutta A. Small extrachromosomal circular DNAs, microDNA, produce short regulatory RNAs that suppress gene expression independent of canonical promoters. Nucleic Acids Res. 2019;47(9):4586–96.PubMedPubMedCentralCrossRef
16.
go back to reference Cohen S, Regev A, Lavi S. Small polydispersed circular DNA (spcDNA) in human cells: association with genomic instability. Oncogene. 1997;14(8):977–85.PubMedCrossRef Cohen S, Regev A, Lavi S. Small polydispersed circular DNA (spcDNA) in human cells: association with genomic instability. Oncogene. 1997;14(8):977–85.PubMedCrossRef
17.
go back to reference Taanman JW. The mitochondrial genome: structure, transcription, translation and replication. Biochim Biophys Acta. 1999;1410(2):103–23.PubMedCrossRef Taanman JW. The mitochondrial genome: structure, transcription, translation and replication. Biochim Biophys Acta. 1999;1410(2):103–23.PubMedCrossRef
18.
go back to reference Storlazzi CT, Lonoce A, Guastadisegni MC, Trombetta D, D’Addabbo P, Daniele G, et al. Gene amplification as double minutes or homogeneously staining regions in solid tumors: origin and structure. Genome Res. 2010;20(9):1198–206.PubMedPubMedCentralCrossRef Storlazzi CT, Lonoce A, Guastadisegni MC, Trombetta D, D’Addabbo P, Daniele G, et al. Gene amplification as double minutes or homogeneously staining regions in solid tumors: origin and structure. Genome Res. 2010;20(9):1198–206.PubMedPubMedCentralCrossRef
19.
go back to reference Barr FG, Nauta LE, Davis RJ, Schäfer BW, Nycum LM, Biegel JA. In vivo amplification of the PAX3-FKHR and PAX7-FKHR fusion genes in alveolar rhabdomyosarcoma. Hum Mol Genet. 1996;5(1):15–21.PubMedCrossRef Barr FG, Nauta LE, Davis RJ, Schäfer BW, Nycum LM, Biegel JA. In vivo amplification of the PAX3-FKHR and PAX7-FKHR fusion genes in alveolar rhabdomyosarcoma. Hum Mol Genet. 1996;5(1):15–21.PubMedCrossRef
20.
go back to reference Carroll SM, DeRose ML, Gaudray P, Moore CM, Needham-Vandevanter DR, Von Hoff DD, et al. Double minute chromosomes can be produced from precursors derived from a chromosomal deletion. Mol Cell Biol. 1988;8(4):1525–33.PubMedPubMedCentral Carroll SM, DeRose ML, Gaudray P, Moore CM, Needham-Vandevanter DR, Von Hoff DD, et al. Double minute chromosomes can be produced from precursors derived from a chromosomal deletion. Mol Cell Biol. 1988;8(4):1525–33.PubMedPubMedCentral
21.
22.
go back to reference Mehanna P, Gagné V, Lajoie M, Spinella JF, St-Onge P, Sinnett D, et al. Characterization of the microDNA through the response to chemotherapeutics in lymphoblastoid cell lines. PLoS ONE. 2017;12(9): e0184365.PubMedPubMedCentralCrossRef Mehanna P, Gagné V, Lajoie M, Spinella JF, St-Onge P, Sinnett D, et al. Characterization of the microDNA through the response to chemotherapeutics in lymphoblastoid cell lines. PLoS ONE. 2017;12(9): e0184365.PubMedPubMedCentralCrossRef
23.
go back to reference Wang M, Chen X, Yu F, Ding H, Zhang Y, Wang K. Extrachromosomal circular DNAs: origin, formation and emerging function in cancer. Int J Biol Sci. 2021;17(4):1010–25.PubMedPubMedCentralCrossRef Wang M, Chen X, Yu F, Ding H, Zhang Y, Wang K. Extrachromosomal circular DNAs: origin, formation and emerging function in cancer. Int J Biol Sci. 2021;17(4):1010–25.PubMedPubMedCentralCrossRef
24.
go back to reference Lv W, Pan X, Han P, Wang Z, Feng W, Xing X, et al. Circle-Seq reveals genomic and disease-specific hallmarks in urinary cell-free extrachromosomal circular DNAs. Clin Transl Med. 2022;12(4): e817.PubMedPubMedCentralCrossRef Lv W, Pan X, Han P, Wang Z, Feng W, Xing X, et al. Circle-Seq reveals genomic and disease-specific hallmarks in urinary cell-free extrachromosomal circular DNAs. Clin Transl Med. 2022;12(4): e817.PubMedPubMedCentralCrossRef
25.
go back to reference Inker LA, Astor BC, Fox CH, Isakova T, Lash JP, Peralta CA, et al. KDOQI US commentary on the 2012 KDIGO clinical practice guideline for the evaluation and management of CKD. Am J Kidney Dis. 2014;63(5):713–35.PubMedCrossRef Inker LA, Astor BC, Fox CH, Isakova T, Lash JP, Peralta CA, et al. KDOQI US commentary on the 2012 KDIGO clinical practice guideline for the evaluation and management of CKD. Am J Kidney Dis. 2014;63(5):713–35.PubMedCrossRef
27.
go back to reference Panda SK, Kumar S, Tupperwar NC, Vaidya T, George A, Rath S, et al. Chitohexaose activates macrophages by alternate pathway through TLR4 and blocks endotoxemia. PLoS Pathog. 2012;8(5): e1002717.PubMedPubMedCentralCrossRef Panda SK, Kumar S, Tupperwar NC, Vaidya T, George A, Rath S, et al. Chitohexaose activates macrophages by alternate pathway through TLR4 and blocks endotoxemia. PLoS Pathog. 2012;8(5): e1002717.PubMedPubMedCentralCrossRef
28.
go back to reference Moller HD. Circle-Seq: isolation and sequencing of chromosome-derived circular DNA elements in cells. Methods Mol Biol. 2020;2119:165–81.CrossRefPubMed Moller HD. Circle-Seq: isolation and sequencing of chromosome-derived circular DNA elements in cells. Methods Mol Biol. 2020;2119:165–81.CrossRefPubMed
30.
go back to reference Prada-Luengo I, Krogh A, Maretty L, Regenberg B. Sensitive detection of circular DNAs at single-nucleotide resolution using guided realignment of partially aligned reads. BMC Bioinform. 2019;20(1):663.CrossRef Prada-Luengo I, Krogh A, Maretty L, Regenberg B. Sensitive detection of circular DNAs at single-nucleotide resolution using guided realignment of partially aligned reads. BMC Bioinform. 2019;20(1):663.CrossRef
31.
go back to reference Møller HD, Bojsen RK, Tachibana C, Parsons L, Botstein D, Regenberg B. Genome-wide purification of extrachromosomal circular DNA from eukaryotic cells. J Vis Exp. 2016;110: e54239. Møller HD, Bojsen RK, Tachibana C, Parsons L, Botstein D, Regenberg B. Genome-wide purification of extrachromosomal circular DNA from eukaryotic cells. J Vis Exp. 2016;110: e54239.
33.
go back to reference Møller HD, Ramos-Madrigal J, Prada-Luengo I, Gilbert MTP, Regenberg B. Near-random distribution of chromosome-derived circular DNA in the condensed genome of pigeons and the larger, more repeat-rich human genome. Genome Biol Evol. 2020;12(1):3762–77.PubMedCrossRef Møller HD, Ramos-Madrigal J, Prada-Luengo I, Gilbert MTP, Regenberg B. Near-random distribution of chromosome-derived circular DNA in the condensed genome of pigeons and the larger, more repeat-rich human genome. Genome Biol Evol. 2020;12(1):3762–77.PubMedCrossRef
34.
go back to reference Sin STK, Jiang P, Deng J, Ji L, Cheng SH, Dutta A, et al. Identification and characterization of extrachromosomal circular DNA in maternal plasma. Proc Natl Acad Sci USA. 2020;117(3):1658–65.PubMedPubMedCentralCrossRef Sin STK, Jiang P, Deng J, Ji L, Cheng SH, Dutta A, et al. Identification and characterization of extrachromosomal circular DNA in maternal plasma. Proc Natl Acad Sci USA. 2020;117(3):1658–65.PubMedPubMedCentralCrossRef
35.
go back to reference Gusev E, Solomatina L, Zhuravleva Y, Sarapultsev A. The pathogenesis of end-stage renal disease from the standpoint of the theory of general pathological processes of inflammation. Int J Mol Sci. 2021;22(21):11453.PubMedPubMedCentralCrossRef Gusev E, Solomatina L, Zhuravleva Y, Sarapultsev A. The pathogenesis of end-stage renal disease from the standpoint of the theory of general pathological processes of inflammation. Int J Mol Sci. 2021;22(21):11453.PubMedPubMedCentralCrossRef
37.
go back to reference Titan SM, Venturini G, Padilha K, Goulart AC, Lotufo PA, Bensenor IJ, et al. Metabolomics biomarkers and the risk of overall mortality and ESRD in CKD: results from the Progredir Cohort. PLoS ONE. 2019;14(3): e0213764.PubMedPubMedCentralCrossRef Titan SM, Venturini G, Padilha K, Goulart AC, Lotufo PA, Bensenor IJ, et al. Metabolomics biomarkers and the risk of overall mortality and ESRD in CKD: results from the Progredir Cohort. PLoS ONE. 2019;14(3): e0213764.PubMedPubMedCentralCrossRef
38.
go back to reference Gandhi G, Mehta T, Contractor P, Tung G. Genotoxic damage in end-stage renal disease. Mutat Res Genet Toxicol Environ Mutagen. 2018;835:1–10.PubMedCrossRef Gandhi G, Mehta T, Contractor P, Tung G. Genotoxic damage in end-stage renal disease. Mutat Res Genet Toxicol Environ Mutagen. 2018;835:1–10.PubMedCrossRef
39.
40.
go back to reference Wu S, Turner KM, Nguyen N, Raviram R, Erb M, Santini J, et al. Circular ecDNA promotes accessible chromatin and high oncogene expression. Nature. 2019;575(7784):699–703.PubMedPubMedCentralCrossRef Wu S, Turner KM, Nguyen N, Raviram R, Erb M, Santini J, et al. Circular ecDNA promotes accessible chromatin and high oncogene expression. Nature. 2019;575(7784):699–703.PubMedPubMedCentralCrossRef
41.
go back to reference Cai M, Zhang H, Hou L, Gao W, Song Y, Cui X, et al. Inhibiting homologous recombination decreases extrachromosomal amplification but has no effect on intrachromosomal amplification in methotrexate-resistant colon cancer cells. Int J Cancer. 2019;144(5):1037–48.PubMedCrossRef Cai M, Zhang H, Hou L, Gao W, Song Y, Cui X, et al. Inhibiting homologous recombination decreases extrachromosomal amplification but has no effect on intrachromosomal amplification in methotrexate-resistant colon cancer cells. Int J Cancer. 2019;144(5):1037–48.PubMedCrossRef
42.
go back to reference de Mendoza A, Sebé-Pedrós A. Origin and evolution of eukaryotic transcription factors. Curr Opin Genet Dev. 2019;58:25–32.PubMedCrossRef de Mendoza A, Sebé-Pedrós A. Origin and evolution of eukaryotic transcription factors. Curr Opin Genet Dev. 2019;58:25–32.PubMedCrossRef
43.
go back to reference Jetten AM. GLIS1-3 transcription factors: critical roles in the regulation of multiple physiological processes and diseases. Cell Mol Life Sci. 2018;75(19):3473–94.PubMedPubMedCentralCrossRef Jetten AM. GLIS1-3 transcription factors: critical roles in the regulation of multiple physiological processes and diseases. Cell Mol Life Sci. 2018;75(19):3473–94.PubMedPubMedCentralCrossRef
44.
go back to reference Dai H, Zhou J, Zhu B. Gene co-expression network analysis identifies the hub genes associated with immune functions for nocturnal hemodialysis in patients with end-stage renal disease. Medicine. 2018;97(37): e12018.PubMedPubMedCentralCrossRef Dai H, Zhou J, Zhu B. Gene co-expression network analysis identifies the hub genes associated with immune functions for nocturnal hemodialysis in patients with end-stage renal disease. Medicine. 2018;97(37): e12018.PubMedPubMedCentralCrossRef
45.
go back to reference Geng XD, Wang WW, Feng Z, Liu R, Cheng XL, Shen WJ, et al. Identification of key genes and pathways in diabetic nephropathy by bioinformatics analysis. J Diabetes Investig. 2019;10(4):972–84.PubMedPubMedCentralCrossRef Geng XD, Wang WW, Feng Z, Liu R, Cheng XL, Shen WJ, et al. Identification of key genes and pathways in diabetic nephropathy by bioinformatics analysis. J Diabetes Investig. 2019;10(4):972–84.PubMedPubMedCentralCrossRef
46.
go back to reference Li W, Tan Y, Gao F, Xiang M. Overexpression of TRIM3 protects against LPS-induced acute kidney injury via repressing IRF3 pathway and NLRP3 inflammasome. Int Urol Nephrol. 2022;54(6):1331–42.CrossRefPubMedPubMedCentral Li W, Tan Y, Gao F, Xiang M. Overexpression of TRIM3 protects against LPS-induced acute kidney injury via repressing IRF3 pathway and NLRP3 inflammasome. Int Urol Nephrol. 2022;54(6):1331–42.CrossRefPubMedPubMedCentral
47.
go back to reference Huang YS, Lu KC, Chao TK, Chen JS, Chen A, Guo CY, et al. Role of melatonin receptor 1A and pituitary homeobox-1 coexpression in protecting tubular epithelial cells in membranous nephropathy. J Pineal Res. 2018;65(1): e12482.PubMedCrossRef Huang YS, Lu KC, Chao TK, Chen JS, Chen A, Guo CY, et al. Role of melatonin receptor 1A and pituitary homeobox-1 coexpression in protecting tubular epithelial cells in membranous nephropathy. J Pineal Res. 2018;65(1): e12482.PubMedCrossRef
48.
go back to reference Lanata CM, Nititham J, Taylor KE, Chung SA, Torgerson DG, Seldin MF, et al. Genetic contributions to lupus nephritis in a multi-ethnic cohort of systemic lupus erythematous patients. PLoS ONE. 2018;13(6): e0199003.PubMedPubMedCentralCrossRef Lanata CM, Nititham J, Taylor KE, Chung SA, Torgerson DG, Seldin MF, et al. Genetic contributions to lupus nephritis in a multi-ethnic cohort of systemic lupus erythematous patients. PLoS ONE. 2018;13(6): e0199003.PubMedPubMedCentralCrossRef
49.
go back to reference Ma RC, Tam CH, Wang Y, Luk AO, Hu C, Yang X, et al. Genetic variants of the protein kinase C-beta 1 gene and development of end-stage renal disease in patients with type 2 diabetes. JAMA. 2010;304(8):881–9.PubMedCrossRef Ma RC, Tam CH, Wang Y, Luk AO, Hu C, Yang X, et al. Genetic variants of the protein kinase C-beta 1 gene and development of end-stage renal disease in patients with type 2 diabetes. JAMA. 2010;304(8):881–9.PubMedCrossRef
50.
go back to reference Zhou L, Li Y, Hao S, Zhou D, Tan RJ, Nie J, et al. Multiple genes of the renin-angiotensin system are novel targets of Wnt/β-catenin signaling. J Am Soc Nephrol. 2015;26(1):107–20.PubMedCrossRef Zhou L, Li Y, Hao S, Zhou D, Tan RJ, Nie J, et al. Multiple genes of the renin-angiotensin system are novel targets of Wnt/β-catenin signaling. J Am Soc Nephrol. 2015;26(1):107–20.PubMedCrossRef
51.
go back to reference Köttgen A, Pattaro C, Böger CA, Fuchsberger C, Olden M, Glazer NL, et al. New loci associated with kidney function and chronic kidney disease. Nat Genet. 2010;42(5):376–84.PubMedPubMedCentralCrossRef Köttgen A, Pattaro C, Böger CA, Fuchsberger C, Olden M, Glazer NL, et al. New loci associated with kidney function and chronic kidney disease. Nat Genet. 2010;42(5):376–84.PubMedPubMedCentralCrossRef
52.
go back to reference Puthumana J, Thiessen-Philbrook H, Xu L, Coca SG, Garg AX, Himmelfarb J, et al. Biomarkers of inflammation and repair in kidney disease progression. J Clin Invest. 2021;131(3):e139927.CrossRefPubMedPubMedCentral Puthumana J, Thiessen-Philbrook H, Xu L, Coca SG, Garg AX, Himmelfarb J, et al. Biomarkers of inflammation and repair in kidney disease progression. J Clin Invest. 2021;131(3):e139927.CrossRefPubMedPubMedCentral
53.
go back to reference Manchanda PK, Singh R, Mittal RD. Cytokine (IL-10 -1082 and -819) and chemokine receptor (CCR2 and CCR5) gene polymorphism in North Indian patients with end-stage renal disease. DNA Cell Biol. 2009;28(4):177–83.PubMedCrossRef Manchanda PK, Singh R, Mittal RD. Cytokine (IL-10 -1082 and -819) and chemokine receptor (CCR2 and CCR5) gene polymorphism in North Indian patients with end-stage renal disease. DNA Cell Biol. 2009;28(4):177–83.PubMedCrossRef
54.
go back to reference Otterpohl KL, Busselman BW, Ratnayake I, Hart RG, Hart KR, Evans CM, et al. Conditional Myh9 and Myh10 inactivation in adult mouse renal epithelium results in progressive kidney disease. JCI Insight. 2020;5(21): e138530.PubMedPubMedCentralCrossRef Otterpohl KL, Busselman BW, Ratnayake I, Hart RG, Hart KR, Evans CM, et al. Conditional Myh9 and Myh10 inactivation in adult mouse renal epithelium results in progressive kidney disease. JCI Insight. 2020;5(21): e138530.PubMedPubMedCentralCrossRef
56.
go back to reference Du J, Hu Z, Mitch WE. Molecular mechanisms activating muscle protein degradation in chronic kidney disease and other catabolic conditions. Eur J Clin Invest. 2005;35(3):157–63.PubMedCrossRef Du J, Hu Z, Mitch WE. Molecular mechanisms activating muscle protein degradation in chronic kidney disease and other catabolic conditions. Eur J Clin Invest. 2005;35(3):157–63.PubMedCrossRef
57.
go back to reference Kim EY, Anderson M, Dryer SE. Sustained activation of N-methyl-D-aspartate receptors in podoctyes leads to oxidative stress, mobilization of transient receptor potential canonical 6 channels, nuclear factor of activated T cells activation, and apoptotic cell death. Mol Pharmacol. 2012;82(4):728–37.PubMedPubMedCentralCrossRef Kim EY, Anderson M, Dryer SE. Sustained activation of N-methyl-D-aspartate receptors in podoctyes leads to oxidative stress, mobilization of transient receptor potential canonical 6 channels, nuclear factor of activated T cells activation, and apoptotic cell death. Mol Pharmacol. 2012;82(4):728–37.PubMedPubMedCentralCrossRef
58.
go back to reference Tian D, Jacobo SM, Billing D, Rozkalne A, Gage SD, Anagnostou T, et al. Antagonistic regulation of actin dynamics and cell motility by TRPC5 and TRPC6 channels. Sci Signal. 2010;3(145):ra77.PubMedPubMedCentralCrossRef Tian D, Jacobo SM, Billing D, Rozkalne A, Gage SD, Anagnostou T, et al. Antagonistic regulation of actin dynamics and cell motility by TRPC5 and TRPC6 channels. Sci Signal. 2010;3(145):ra77.PubMedPubMedCentralCrossRef
60.
go back to reference Poli A, Billi AM, Mongiorgi S, Ratti S, McCubrey JA, Suh PG, et al. Nuclear phosphatidylinositol signaling: focus on phosphatidylinositol phosphate kinases and phospholipases C. J Cell Physiol. 2016;231(8):1645–55.PubMedCrossRef Poli A, Billi AM, Mongiorgi S, Ratti S, McCubrey JA, Suh PG, et al. Nuclear phosphatidylinositol signaling: focus on phosphatidylinositol phosphate kinases and phospholipases C. J Cell Physiol. 2016;231(8):1645–55.PubMedCrossRef
61.
go back to reference Yu X, Xia Y, Zeng L, Zhang X, Chen L, Yan S, et al. A blockade of PI3Kγ signaling effectively mitigates angiotensin II-induced renal injury and fibrosis in a mouse model. Sci Rep. 2018;8(1):10988.PubMedPubMedCentralCrossRef Yu X, Xia Y, Zeng L, Zhang X, Chen L, Yan S, et al. A blockade of PI3Kγ signaling effectively mitigates angiotensin II-induced renal injury and fibrosis in a mouse model. Sci Rep. 2018;8(1):10988.PubMedPubMedCentralCrossRef
62.
go back to reference Kang SS, Chang JW, Park Y. Nutritional status predicts 10-year mortality in patients with end-stage renal disease on hemodialysis. Nutrients. 2017;9(4):399.PubMedPubMedCentralCrossRef Kang SS, Chang JW, Park Y. Nutritional status predicts 10-year mortality in patients with end-stage renal disease on hemodialysis. Nutrients. 2017;9(4):399.PubMedPubMedCentralCrossRef
63.
go back to reference Garibotto G, Bonanni A, Verzola D. Effect of kidney failure and hemodialysis on protein and amino acid metabolism. Curr Opin Clin Nutr Metab Care. 2012;15(1):78–84.PubMedCrossRef Garibotto G, Bonanni A, Verzola D. Effect of kidney failure and hemodialysis on protein and amino acid metabolism. Curr Opin Clin Nutr Metab Care. 2012;15(1):78–84.PubMedCrossRef
Metadata
Title
The characteristics of extrachromosomal circular DNA in patients with end-stage renal disease
Authors
Yue Peng
Yixi Li
Wei Zhang
Yu ShangGuan
Ting Xie
Kang Wang
Jing Qiu
Wenjun Pu
Biying Hu
Xinzhou Zhang
Lianghong Yin
Donge Tang
Yong Dai
Publication date
01-12-2023
Publisher
BioMed Central
Published in
European Journal of Medical Research / Issue 1/2023
Electronic ISSN: 2047-783X
DOI
https://doi.org/10.1186/s40001-023-01064-z

Other articles of this Issue 1/2023

European Journal of Medical Research 1/2023 Go to the issue