Skip to main content
Top
Published in: European Journal of Medical Research 1/2023

Open Access 01-12-2023 | Idiopathic Pulmonary Fibrosis | Research

Evaluation of an ex vivo fibrogenesis model using human lung slices prepared from small tissues

Authors: Ying Sun, Pengyu Jing, Helina Gan, Xuejiao Wang, Ximing Zhu, Jiangjiang Fan, Haichao Li, Zhipei Zhang, James Chi Jen Lin, Zhongping Gu

Published in: European Journal of Medical Research | Issue 1/2023

Login to get access

Abstract

Background

In recent years, there have been breakthroughs in the preclinical research of respiratory diseases, such as organoids and organ tissue chip models, but they still cannot provide insight into human respiratory diseases well. Human lung slices model provides a promising in vitro model for the study of respiratory diseases because of its preservation of lung structure and major cell types.

Methods

Human lung slices were manually prepared from small pieces of lung tissues obtained from lung cancer patients subjected to lung surgery. To evaluate the suitability of this model for lung fibrosis research, lung slices were treated with CdCl2 (30 μM), TGF-β1 (1 ng/ml) or CdCl2 plus TGF-β1 for 3 days followed by toxicity assessment, gene expression analysis and histopathological observations.

Results

CdCl2 treatment resulted in a concentration-dependent toxicity profile evidenced by MTT assay as well as histopathological observations. In comparison with the untreated group, CdCl2 and TGF-β1 significantly induces MMP2 and MMP9 gene expression but not MMP1. Interestingly, CdCl2 plus TGF-β1 significantly induces the expression of MMP1 but not MMP2, MMP7 or MMP9. Microscopic observations reveal the pathogenesis of interstitial lung fibrosis in the lung slices of all groups; however, CdCl2 plus TGF-β1 treatment leads to a greater alveolar septa thickness and the formation of fibroblast foci-like pathological features. The lung slice model is in short of blood supply and the inflammatory/immune-responses are considered minimal.

Conclusions

The results are in favor of the hypothesis that idiopathic pulmonary fibrosis (IPF) is mediated by tissue damage and abnormal repair. Induction of MMP1 gene expression and fibroblast foci-like pathogenesis suggest that this model might represent an early stage of IPF.
Literature
2.
go back to reference Liu S, Lim YH, Pedersen M, Jørgensen JT, Amini H, Cole-Hunter T, Mehta AJ, So R, Mortensen LH, Westendorp RGJ, et al. Long-term air pollution and road traffic noise exposure and COPD: the Danish Nurse Cohort. Eur Respir J. 2021;58:1. Liu S, Lim YH, Pedersen M, Jørgensen JT, Amini H, Cole-Hunter T, Mehta AJ, So R, Mortensen LH, Westendorp RGJ, et al. Long-term air pollution and road traffic noise exposure and COPD: the Danish Nurse Cohort. Eur Respir J. 2021;58:1.
3.
go back to reference Malaviya R, Kipen HM, Businaro R, Laskin JD, Laskin DL. Pulmonary toxicants and fibrosis: innate and adaptive immune mechanisms. Toxicol Appl Pharmacol. 2020;409:115272.CrossRefPubMedPubMedCentral Malaviya R, Kipen HM, Businaro R, Laskin JD, Laskin DL. Pulmonary toxicants and fibrosis: innate and adaptive immune mechanisms. Toxicol Appl Pharmacol. 2020;409:115272.CrossRefPubMedPubMedCentral
4.
go back to reference Barnthouse M, Jones BL. The impact of environmental chronic and toxic stress on asthma. Clin Rev Allergy Immunol. 2019;57:427–38.CrossRefPubMed Barnthouse M, Jones BL. The impact of environmental chronic and toxic stress on asthma. Clin Rev Allergy Immunol. 2019;57:427–38.CrossRefPubMed
5.
go back to reference Fricker M, Deane A, Hansbro PM. Animal models of chronic obstructive pulmonary disease. Expert Opin Drug Discov. 2014;9:629–45.CrossRefPubMed Fricker M, Deane A, Hansbro PM. Animal models of chronic obstructive pulmonary disease. Expert Opin Drug Discov. 2014;9:629–45.CrossRefPubMed
6.
go back to reference Kianmeher M, Ghorani V, Boskabady MH. Animal model of asthma, various methods and measured parameters: a methodological review. Iran J Allergy Asthma Immunol. 2016;15:445–65.PubMed Kianmeher M, Ghorani V, Boskabady MH. Animal model of asthma, various methods and measured parameters: a methodological review. Iran J Allergy Asthma Immunol. 2016;15:445–65.PubMed
7.
go back to reference Liu T, De Los Santos FG, Phan SH. The bleomycin model of pulmonary fibrosis. Methods Mol Biol. 2017;1627:27–42.CrossRefPubMed Liu T, De Los Santos FG, Phan SH. The bleomycin model of pulmonary fibrosis. Methods Mol Biol. 2017;1627:27–42.CrossRefPubMed
8.
go back to reference Martignoni M, Groothuis GM, de Kanter R. Species differences between mouse, rat, dog, monkey and human CYP-mediated drug metabolism, inhibition and induction. Expert Opin Drug Metab Toxicol. 2006;2:875–94.CrossRefPubMed Martignoni M, Groothuis GM, de Kanter R. Species differences between mouse, rat, dog, monkey and human CYP-mediated drug metabolism, inhibition and induction. Expert Opin Drug Metab Toxicol. 2006;2:875–94.CrossRefPubMed
9.
go back to reference Davison AG, Fayers PM, Taylor AJ, Venables KM, Darbyshire J, Pickering CA, Chettle DR, Franklin D, Guthrie CJ, Scott MC, et al. Cadmium fume inhalation and emphysema. Lancet. 1988;1:663–7.CrossRefPubMed Davison AG, Fayers PM, Taylor AJ, Venables KM, Darbyshire J, Pickering CA, Chettle DR, Franklin D, Guthrie CJ, Scott MC, et al. Cadmium fume inhalation and emphysema. Lancet. 1988;1:663–7.CrossRefPubMed
10.
go back to reference Zhang W, Fievez L, Zhang F, Cheu E, Antoine N, Delguste C, Zhang Y, Rong W, Bureau F, Advenier C, Gustin P. Effects of formoterol and ipratropium bromide on repeated cadmium inhalation-induced pulmonary inflammation and emphysema in rats. Eur J Pharmacol. 2010;647:178–87.CrossRefPubMed Zhang W, Fievez L, Zhang F, Cheu E, Antoine N, Delguste C, Zhang Y, Rong W, Bureau F, Advenier C, Gustin P. Effects of formoterol and ipratropium bromide on repeated cadmium inhalation-induced pulmonary inflammation and emphysema in rats. Eur J Pharmacol. 2010;647:178–87.CrossRefPubMed
11.
go back to reference Lin CJ, Wu KH, Yew FH, Lee TC. Differential cytotoxicity of cadmium to rat embryonic fibroblasts and human skin fibroblasts. Toxicol Appl Pharmacol. 1995;133:20–6.CrossRefPubMed Lin CJ, Wu KH, Yew FH, Lee TC. Differential cytotoxicity of cadmium to rat embryonic fibroblasts and human skin fibroblasts. Toxicol Appl Pharmacol. 1995;133:20–6.CrossRefPubMed
12.
go back to reference Zscheppang K, Berg J, Hedtrich S, Verheyen L, Wagner DE, Suttorp N, Hippenstiel S, Hocke AC: Human pulmonary 3D models for translational research. Biotechnol J. 2018;13:1. Zscheppang K, Berg J, Hedtrich S, Verheyen L, Wagner DE, Suttorp N, Hippenstiel S, Hocke AC: Human pulmonary 3D models for translational research. Biotechnol J. 2018;13:1.
13.
go back to reference Alsafadi HN, Staab-Weijnitz CA, Lehmann M, Lindner M, Peschel B, Königshoff M, Wagner DE. An ex vivo model to induce early fibrosis-like changes in human precision-cut lung slices. Am J Physiol Lung Cell Mol Physiol. 2017;312:L896-l902.CrossRefPubMed Alsafadi HN, Staab-Weijnitz CA, Lehmann M, Lindner M, Peschel B, Königshoff M, Wagner DE. An ex vivo model to induce early fibrosis-like changes in human precision-cut lung slices. Am J Physiol Lung Cell Mol Physiol. 2017;312:L896-l902.CrossRefPubMed
14.
go back to reference Krabbe J, Esser A, Kanzler S, Braunschweig T, Kintsler S, Spillner J, Schröder T, Kalverkamp S, Balakirski G, Gerhards B, et al. The effects of zinc- and copper-containing welding fumes on murine, rat and human precision-cut lung slices. J Trace Elem Med Biol. 2018;49:192–201.CrossRefPubMed Krabbe J, Esser A, Kanzler S, Braunschweig T, Kintsler S, Spillner J, Schröder T, Kalverkamp S, Balakirski G, Gerhards B, et al. The effects of zinc- and copper-containing welding fumes on murine, rat and human precision-cut lung slices. J Trace Elem Med Biol. 2018;49:192–201.CrossRefPubMed
15.
go back to reference Zhan Z, Liu R, Chai L, Dai Y, Lv Y. Visualization of lung inflammation to pulmonary fibrosis via peroxynitrite fluctuation. Anal Chem. 2019;91:11461–6.CrossRefPubMed Zhan Z, Liu R, Chai L, Dai Y, Lv Y. Visualization of lung inflammation to pulmonary fibrosis via peroxynitrite fluctuation. Anal Chem. 2019;91:11461–6.CrossRefPubMed
16.
go back to reference Lin CJ, Yang PC, Hsu MT, Yew FH, Liu TY, Shun CT, Tyan SW, Lee TC. Induction of pulmonary fibrosis in organ-cultured rat lung by cadmium chloride and transforming growth factor-beta1. Toxicology. 1998;127:157–66.CrossRefPubMed Lin CJ, Yang PC, Hsu MT, Yew FH, Liu TY, Shun CT, Tyan SW, Lee TC. Induction of pulmonary fibrosis in organ-cultured rat lung by cadmium chloride and transforming growth factor-beta1. Toxicology. 1998;127:157–66.CrossRefPubMed
17.
go back to reference Lin JC, Talbot S, Lahjouji K, Roy JP, Sénécal J, Couture R, Morin A. Mechanism of cigarette smoke-induced kinin B(1) receptor expression in rat airways. Peptides. 2010;31:1940–5.CrossRefPubMed Lin JC, Talbot S, Lahjouji K, Roy JP, Sénécal J, Couture R, Morin A. Mechanism of cigarette smoke-induced kinin B(1) receptor expression in rat airways. Peptides. 2010;31:1940–5.CrossRefPubMed
18.
go back to reference Frankel FR, Steeger JR, Damiano VV, Sohn M, Oppenheim D, Weinbaum G. Induction of unilateral pulmonary fibrosis in the rat by cadmium chloride. Am J Respir Cell Mol Biol. 1991;5:385–94.CrossRefPubMed Frankel FR, Steeger JR, Damiano VV, Sohn M, Oppenheim D, Weinbaum G. Induction of unilateral pulmonary fibrosis in the rat by cadmium chloride. Am J Respir Cell Mol Biol. 1991;5:385–94.CrossRefPubMed
19.
go back to reference Kirschvink N, Vincke G, Fiévez L, Onclinx C, Wirth D, Belleflamme M, Louis R, Cataldo D, Peck MJ, Gustin P. Repeated cadmium nebulizations induce pulmonary MMP-2 and MMP-9 production and emphysema in rats. Toxicology. 2005;211:36–48.CrossRefPubMed Kirschvink N, Vincke G, Fiévez L, Onclinx C, Wirth D, Belleflamme M, Louis R, Cataldo D, Peck MJ, Gustin P. Repeated cadmium nebulizations induce pulmonary MMP-2 and MMP-9 production and emphysema in rats. Toxicology. 2005;211:36–48.CrossRefPubMed
20.
go back to reference Snider GL, Lucey EC, Faris B, Jung-Legg Y, Stone PJ, Franzblau C. Cadmium–chloride-induced air-space enlargement with interstitial pulmonary fibrosis is not associated with destruction of lung elastin. Implications for the pathogenesis of human emphysema. Am Rev Respir Dis. 1988;137:918–23. Snider GL, Lucey EC, Faris B, Jung-Legg Y, Stone PJ, Franzblau C. Cadmium–chloride-induced air-space enlargement with interstitial pulmonary fibrosis is not associated with destruction of lung elastin. Implications for the pathogenesis of human emphysema. Am Rev Respir Dis. 1988;137:918–23.
21.
go back to reference Lin JC, Roy JP, Verreault J, Talbot S, Côté F, Couture R, Morin A. An ex vivo approach to the differential parenchymal responses induced by cigarette whole smoke and its vapor phase. Toxicology. 2012;293:125–31.CrossRefPubMed Lin JC, Roy JP, Verreault J, Talbot S, Côté F, Couture R, Morin A. An ex vivo approach to the differential parenchymal responses induced by cigarette whole smoke and its vapor phase. Toxicology. 2012;293:125–31.CrossRefPubMed
22.
go back to reference Sawyer TW, Wilde PE, Rice P, Weiss MT. Toxicity of sulphur mustard in adult rat lung organ culture. Toxicology. 1995;100:39–49.CrossRefPubMed Sawyer TW, Wilde PE, Rice P, Weiss MT. Toxicity of sulphur mustard in adult rat lung organ culture. Toxicology. 1995;100:39–49.CrossRefPubMed
23.
go back to reference Driscoll KE, Maurer JK, Poynter J, Higgins J, Asquith T, Miller NS. Stimulation of rat alveolar macrophage fibronectin release in a cadmium chloride model of lung injury and fibrosis. Toxicol Appl Pharmacol. 1992;116:30–7.CrossRefPubMed Driscoll KE, Maurer JK, Poynter J, Higgins J, Asquith T, Miller NS. Stimulation of rat alveolar macrophage fibronectin release in a cadmium chloride model of lung injury and fibrosis. Toxicol Appl Pharmacol. 1992;116:30–7.CrossRefPubMed
25.
go back to reference Kulkarni T, O’Reilly P, Antony VB, Gaggar A, Thannickal VJ. Matrix remodeling in pulmonary fibrosis and emphysema. Am J Respir Cell Mol Biol. 2016;54:751–60.CrossRefPubMedPubMedCentral Kulkarni T, O’Reilly P, Antony VB, Gaggar A, Thannickal VJ. Matrix remodeling in pulmonary fibrosis and emphysema. Am J Respir Cell Mol Biol. 2016;54:751–60.CrossRefPubMedPubMedCentral
26.
go back to reference Roach DM, Fitridge RA, Laws PE, Millard SH, Varelias A, Cowled PA. Up-regulation of MMP-2 and MMP-9 leads to degradation of type IV collagen during skeletal muscle reperfusion injury; protection by the MMP inhibitor, doxycycline. Eur J Vasc Endovasc Surg. 2002;23:260–9.CrossRefPubMed Roach DM, Fitridge RA, Laws PE, Millard SH, Varelias A, Cowled PA. Up-regulation of MMP-2 and MMP-9 leads to degradation of type IV collagen during skeletal muscle reperfusion injury; protection by the MMP inhibitor, doxycycline. Eur J Vasc Endovasc Surg. 2002;23:260–9.CrossRefPubMed
27.
go back to reference Liu SS, Liu C, Lv XX, Cui B, Yan J, Li YX, Li K, Hua F, Zhang XW, Yu JJ, et al. The chemokine CCL1 triggers an AMFR-SPRY1 pathway that promotes differentiation of lung fibroblasts into myofibroblasts and drives pulmonary fibrosis. Immunity. 2021;54:2042-2056.e2048.CrossRefPubMed Liu SS, Liu C, Lv XX, Cui B, Yan J, Li YX, Li K, Hua F, Zhang XW, Yu JJ, et al. The chemokine CCL1 triggers an AMFR-SPRY1 pathway that promotes differentiation of lung fibroblasts into myofibroblasts and drives pulmonary fibrosis. Immunity. 2021;54:2042-2056.e2048.CrossRefPubMed
28.
go back to reference Speca S, Dubuquoy C, Rousseaux C, Chavatte P, Desreumaux P, Spagnolo P. GED-0507 attenuates lung fibrosis by counteracting myofibroblast transdifferentiation in vivo and in vitro. PLoS ONE. 2021;16:e0257281.CrossRefPubMedPubMedCentral Speca S, Dubuquoy C, Rousseaux C, Chavatte P, Desreumaux P, Spagnolo P. GED-0507 attenuates lung fibrosis by counteracting myofibroblast transdifferentiation in vivo and in vitro. PLoS ONE. 2021;16:e0257281.CrossRefPubMedPubMedCentral
29.
go back to reference Agarwal M, Goheen M, Jia S, Ling S, White ES, Kim KK. Type I collagen signaling regulates opposing fibrotic pathways through α(2)β(1) integrin. Am J Respir Cell Mol Biol. 2020;63:613–22.CrossRefPubMedPubMedCentral Agarwal M, Goheen M, Jia S, Ling S, White ES, Kim KK. Type I collagen signaling regulates opposing fibrotic pathways through α(2)β(1) integrin. Am J Respir Cell Mol Biol. 2020;63:613–22.CrossRefPubMedPubMedCentral
30.
go back to reference Sun KH, Chang Y, Reed NI, Sheppard D. α-Smooth muscle actin is an inconsistent marker of fibroblasts responsible for force-dependent TGFβ activation or collagen production across multiple models of organ fibrosis. Am J Physiol Lung Cell Mol Physiol. 2016;310:L824-836.CrossRefPubMedPubMedCentral Sun KH, Chang Y, Reed NI, Sheppard D. α-Smooth muscle actin is an inconsistent marker of fibroblasts responsible for force-dependent TGFβ activation or collagen production across multiple models of organ fibrosis. Am J Physiol Lung Cell Mol Physiol. 2016;310:L824-836.CrossRefPubMedPubMedCentral
32.
go back to reference Kasper M, Seidel D, Knels L, Morishima N, Neisser A, Bramke S, Koslowski R. Early signs of lung fibrosis after in vitro treatment of rat lung slices with CdCl2 and TGF-beta1. Histochem Cell Biol. 2004;121:131–40.CrossRefPubMed Kasper M, Seidel D, Knels L, Morishima N, Neisser A, Bramke S, Koslowski R. Early signs of lung fibrosis after in vitro treatment of rat lung slices with CdCl2 and TGF-beta1. Histochem Cell Biol. 2004;121:131–40.CrossRefPubMed
33.
go back to reference Gomes LR, Terra LF, Wailemann RA, Labriola L, Sogayar MC. TGF-β1 modulates the homeostasis between MMPs and MMP inhibitors through p38 MAPK and ERK1/2 in highly invasive breast cancer cells. BMC Cancer. 2012;12:26.CrossRefPubMedPubMedCentral Gomes LR, Terra LF, Wailemann RA, Labriola L, Sogayar MC. TGF-β1 modulates the homeostasis between MMPs and MMP inhibitors through p38 MAPK and ERK1/2 in highly invasive breast cancer cells. BMC Cancer. 2012;12:26.CrossRefPubMedPubMedCentral
34.
go back to reference Kim ES, Sohn YW, Moon A. TGF-beta-induced transcriptional activation of MMP-2 is mediated by activating transcription factor (ATF)2 in human breast epithelial cells. Cancer Lett. 2007;252:147–56.CrossRefPubMed Kim ES, Sohn YW, Moon A. TGF-beta-induced transcriptional activation of MMP-2 is mediated by activating transcription factor (ATF)2 in human breast epithelial cells. Cancer Lett. 2007;252:147–56.CrossRefPubMed
35.
go back to reference Sinpitaksakul SN, Pimkhaokham A, Sanchavanakit N, Pavasant P. TGF-beta1 induced MMP-9 expression in HNSCC cell lines via Smad/MLCK pathway. Biochem Biophys Res Commun. 2008;371:713–8.CrossRefPubMed Sinpitaksakul SN, Pimkhaokham A, Sanchavanakit N, Pavasant P. TGF-beta1 induced MMP-9 expression in HNSCC cell lines via Smad/MLCK pathway. Biochem Biophys Res Commun. 2008;371:713–8.CrossRefPubMed
36.
go back to reference Craig VJ, Zhang L, Hagood JS, Owen CA. Matrix metalloproteinases as therapeutic targets for idiopathic pulmonary fibrosis. Am J Respir Cell Mol Biol. 2015;53:585–600.CrossRefPubMedPubMedCentral Craig VJ, Zhang L, Hagood JS, Owen CA. Matrix metalloproteinases as therapeutic targets for idiopathic pulmonary fibrosis. Am J Respir Cell Mol Biol. 2015;53:585–600.CrossRefPubMedPubMedCentral
38.
go back to reference Bauer Y, White ES, de Bernard S, Cornelisse P, Leconte I, Morganti A, Roux S, Nayler O. MMP-7 is a predictive biomarker of disease progression in patients with idiopathic pulmonary fibrosis. ERJ Open Res. 2017;3:1. Bauer Y, White ES, de Bernard S, Cornelisse P, Leconte I, Morganti A, Roux S, Nayler O. MMP-7 is a predictive biomarker of disease progression in patients with idiopathic pulmonary fibrosis. ERJ Open Res. 2017;3:1.
39.
go back to reference Jaffar J, Wong M, Fishbein GA, Alhamdoosh M, McMillan L, Gamell-Fulla C, Ng M, Wilson N, Symons K, Glaspole I, Westall G: Matrix metalloproteinase-7 is increased in lung bases but not apices in idiopathic pulmonary fibrosis. ERJ Open Res. 2022;8:1. Jaffar J, Wong M, Fishbein GA, Alhamdoosh M, McMillan L, Gamell-Fulla C, Ng M, Wilson N, Symons K, Glaspole I, Westall G: Matrix metalloproteinase-7 is increased in lung bases but not apices in idiopathic pulmonary fibrosis. ERJ Open Res. 2022;8:1.
Metadata
Title
Evaluation of an ex vivo fibrogenesis model using human lung slices prepared from small tissues
Authors
Ying Sun
Pengyu Jing
Helina Gan
Xuejiao Wang
Ximing Zhu
Jiangjiang Fan
Haichao Li
Zhipei Zhang
James Chi Jen Lin
Zhongping Gu
Publication date
01-12-2023
Publisher
BioMed Central
Published in
European Journal of Medical Research / Issue 1/2023
Electronic ISSN: 2047-783X
DOI
https://doi.org/10.1186/s40001-023-01104-8

Other articles of this Issue 1/2023

European Journal of Medical Research 1/2023 Go to the issue